Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

The underlying mechanisms of Oxysophocarpine (OSC) in Cerebral Ischemia (CI) treatment were investigated through network pharmacology, molecular docking, and experiments.

Methods

The potential targets of OSC were predicted using the PubChem, SwissTargetPrediction, and PharmMapper databases. Relevant CI targets were identified through the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases, and common targets between OSC and cerebral ischemia were determined using Venny2.1.0. Drug-disease Protein-Protein Interaction (PPI) networks were analyzed using the String database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of key targets were conducted using the DAVID database. Molecular docking verification was performed using Autodock Vina. The results of the network pharmacological analysis were validated through experiments.

Results

Mapping the drug and disease targets yielded 126 common targets. GO and KEGG enrichment analysis revealed that OSC's therapeutic mechanism in CI involves multiple pathways, including those related to cancer, MAPK signaling, and PI3K-Akt signaling. Molecular docking results demonstrated strong binding activity of OSC to core protein targets. experiments indicated that OSC enhances the survival rate of four hours of sugar deprivation and 12 hours of reoxygenation (OGD4h/R12h) in bEnd.3 cells and reduces the protein expression of p-PI3K and p-Akt.

Conclusion

The “multi-target and multi-mechanism” actions of OSC in CI treatment were elucidated through network pharmacology and molecular docking, providing a scientific basis for further investigation.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808359027250105180011
2025-01-21
2025-09-19
Loading full text...

Full text loading...

References

  1. MaidaC.D. NorritoR.L. DaidoneM. TuttolomondoA. PintoA. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches.Int. J. Mol. Sci.20202118645410.3390/ijms21186454 32899616
    [Google Scholar]
  2. MarthaS.R. FraserJ.F. PennypackerK.R. Acid–base and electrolyte changes drive early pathology in ischemic stroke.Neuromolecular Med.201921454054510.1007/s12017‑019‑08555‑5 31280473
    [Google Scholar]
  3. GongC.X. ZhangQ. XiongX.Y. YuanJ.J. YangG.Q. HuangJ.C. LiuJ. DuanC.M. Rui-Xu; Qiu, Z.M.; Meng, Z.Y.; Zhou, K.; Wang, F.X.; Zhao, C.H.; Li, F.; Yang, Q.W. Pericytes regulate cerebral perfusion through VEGFR1 in ischemic stroke.Cell. Mol. Neurobiol.20224261897190810.1007/s10571‑021‑01071‑w 33712886
    [Google Scholar]
  4. MaJ. MaY. ShuaibA. WinshipI.R. Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats.Sci. Rep.20201011239210.1038/s41598‑020‑69122‑8 32709950
    [Google Scholar]
  5. KatanM. LuftA. Global burden of stroke.Semin. Neurol.201838220821110.1055/s‑0038‑1649503 29791947
    [Google Scholar]
  6. WangY. YangY. ZhangS. LiC. ZhangL. Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: Implications for cerebral ischemia and neurodegenerative diseases.Neurobiol. Aging20208711010.1016/j.neurobiolaging.2019.12.013 31986345
    [Google Scholar]
  7. ShangY. ZhangZ. TianJ. LiX. Anti-inflammatory effects of natural products on cerebral ischemia.Front. Pharmacol.20221391463010.3389/fphar.2022.914630 35795571
    [Google Scholar]
  8. ShiK. ZouM. JiaD.M. ShiS. YangX. LiuQ. DongJ. ShethK.N. WangX. ShiF.D. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke.Circ. Res.20211281627510.1161/CIRCRESAHA.120.317596 33070717
    [Google Scholar]
  9. WangY. XiaoG. HeS. LiuX. ZhuL. YangX. ZhangY. OrgahJ. FengY. WangX. ZhangB. ZhuY. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization.Biomed. Pharmacother.202012510994510.1016/j.biopha.2020.109945 32028240
    [Google Scholar]
  10. YilmazE. AcarG. OnalU. ErdoganE. BaltaciA.K. MogulkocR. Effect of 2-Week naringin supplementation on neurogenesis and BDNF levels in ischemia–reperfusion model of Rats.Neuromolecular Med.2024261410.1007/s12017‑023‑08771‑0 38457013
    [Google Scholar]
  11. AladagT. AcarG. MogulkocR. BaltaciA.K. Improvement of neuronal and cognitive functions following treatment with 3′,4′ dihydroxyflavonol in experimental focal cerebral ischemia-reperfusion injury in rats.Eur. J. Pharmacol.202497617667010.1016/j.ejphar.2024.176670 38795755
    [Google Scholar]
  12. WangX. WangY. YuanT. WangH. ZengZ. TianL. CuiL. GuoJ. ChenY. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension.Phytomedicine202413515606210.1016/j.phymed.2024.156062 39305743
    [Google Scholar]
  13. YangY. XuY. QianS. TangT. WangK. FengJ. DingR. YaoJ. HuangJ. WangJ. Systematic investigation of the multi-scale mechanisms of herbal medicine on treating ventricular remodeling: Theoretical and experimental studies.Phytomedicine202311215470610.1016/j.phymed.2023.154706 36796187
    [Google Scholar]
  14. PanJ. WangJ. LeiZ. WangH. ZengN. ZouJ. ZhangX. SunJ. GuoD. LuanF. ShiY. Therapeutic potential of chinese herbal medicine and underlying mechanism for the treatment of myocardial infarction. Phytother. Res., 2024ptr.836810.1002/ptr.8368
    [Google Scholar]
  15. LuY. LouJ. LiuX. WangS. Oxysophocarpine reduces oxygen-glucose deprivation-induced microglial activation and injury.Am. J. Transl. Res.20179522662275 28559977
    [Google Scholar]
  16. MohamedE.M. SaeedR.Y. MonaD. In Silico and in vitro screening of 50 curcumin compounds as EGFR and NF-kappaB inhibitors.Int. J. Mol. Sci.2022237
    [Google Scholar]
  17. ZhuW.S. GuoW. ZhuJ.N. TangC.M. FuY.H. LinQ.X. TanN. ShanZ.X. Hsp90aa1: A novel target gene of miR-1 in cardiac ischemia/reperfusion injury.Sci. Rep.2016612449810.1038/srep24498 27076094
    [Google Scholar]
  18. BudasG.R. ChurchillE.N. DisatnikM.H. SunL. Mochly-RosenD. Mitochondrial import of PKCε is mediated by HSP90: A role in cardioprotection from ischaemia and reperfusion injury.Cardiovasc. Res.2010881839210.1093/cvr/cvq154 20558438
    [Google Scholar]
  19. LiY. LiX. ShuangliX. 1,25-D3 attenuates cerebral ischemia injury by regulating mitochondrial metabolism via the AMPK/AKT/GSK3beta pathway.Front. Aging Neurosci.202214101545310.3389/fnagi.2022.1015453 36325190
    [Google Scholar]
  20. MoysenovichA.M. TatarskiyV.V. YastrebovaM.A. BessonovI.V. ArkhipovaA.Y. KolosovA.S. DavydovaI. KhamidullinaA.I. BogushV.G. DebabovV.G. ShaitanK.V. ShtilA.A. MoisenovichM.M. Akt and Src mediate the photocrosslinked fibroin-induced neural differentiation.Neuroreport2020311077077510.1097/WNR.0000000000001482 32467514
    [Google Scholar]
  21. MaoX.W. PanC.S. HuangP. LiuY.Y. WangC.S. YanL. HuB.H. ChangX. HeK. MuH.N. LiQ. SunK. FanJ.Y. HanJ.Y. Levo-tetrahydropalmatine attenuates mouse blood-brain barrier injury induced by focal cerebral ischemia and reperfusion: Involvement of Src kinase.Sci. Rep.2015511115510.1038/srep11155 26059793
    [Google Scholar]
  22. HuQ. QiuL. GeL. WeiY. Sevoflurane postconditioning alleviates hypoxic-ischemic brain damage in rats by inhibiting the endoplasmic reticulum stress PERK/ATF4/CHOP pathway.Tissue Cell20248610228910.1016/j.tice.2023.102289 38194851
    [Google Scholar]
  23. StoupN. LiberelleM. LebègueN. Van SeuningenI. Emerging paradigms and recent progress in targeting ErbB in cancers.Trends Pharmacol. Sci.202445655257610.1016/j.tips.2024.04.009 38797570
    [Google Scholar]
  24. DavisR.J. Signal transduction by the JNK group of MAP kinases.Cell2000103223925210.1016/S0092‑8674(00)00116‑1 11057897
    [Google Scholar]
  25. NijboerC.H. HeijnenC.J. GroenendaalF. van BelF. KavelaarsA. Alternate pathways preserve tumor necrosis factor-alpha production after nuclear factor-kappaB inhibition in neonatal cerebral hypoxia-ischemia.Stroke200940103362336810.1161/STROKEAHA.109.560250 19628795
    [Google Scholar]
  26. ThorntonT.M. Pedraza-AlvaG. DengB. WoodC.D. AronshtamA. ClementsJ.L. SabioG. DavisR.J. MatthewsD.E. DobleB. RinconM. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation.Science2008320587666767010.1126/science.1156037 18451303
    [Google Scholar]
  27. OkunoS. SaitoA. HayashiT. ChanP.H. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia.J. Neurosci.200424367879788710.1523/JNEUROSCI.1745‑04.2004 15356200
    [Google Scholar]
  28. BrotfainE. GruenbaumS.E. BoykoM. KutzR. ZlotnikA. KleinM. Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury.Curr. Neuropharmacol.201614664165310.2174/1570159X14666160309123554 26955967
    [Google Scholar]
  29. RitzelR.M. CapozziL.A. McCulloughL.D. Sex, stroke, and inflammation: The potential for estrogen-mediated immunoprotection in stroke.Horm. Behav.201363223825310.1016/j.yhbeh.2012.04.007 22561337
    [Google Scholar]
  30. EtgenA.M. Jover-MengualT. Suzanne ZukinR. Neuroprotective actions of estradiol and novel estrogen analogs in ischemia: Translational implications.Front. Neuroendocrinol.201132333635210.1016/j.yfrne.2010.12.005 21163293
    [Google Scholar]
  31. ZhangC. WangL. GuoY. FengW. Systematic analysis of brain and skull ischemic injury expression profiles reveals associations of the tumor immune microenvironment and cell death with ischemic stroke.Front. Immunol.202213108254610.3389/fimmu.2022.1082546 36605216
    [Google Scholar]
  32. ChenX. WuH. ChenH. WangQ. XieX. ShenJ. Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades.Mol. Neurobiol.20195643053306710.1007/s12035‑018‑1294‑3 30088176
    [Google Scholar]
  33. MingY.C. ChaoH.C. ChuS.M. LuoC.C. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) protected intestinal ischemia-reperfusion injury through JNK and p38/MAPK-dependent pathway for anti-apoptosis.Pediatr. Neonatol.201960333233610.1016/j.pedneo.2018.08.003 30455099
    [Google Scholar]
  34. MartinsR. LithgowG.J. LinkW. Long live FOXO: Unraveling the role of FOXO proteins in aging and longevity.Aging Cell201615219620710.1111/acel.12427 26643314
    [Google Scholar]
  35. LiuK. ZhuY. GaoW. HanX. ZhangQ. ZhaoY. ZuY. Resveratrol alleviates heart failure by activating foxo3a to counteract oxidative stress and apoptosis.Biomed. Pharmacother.202418111771610.1016/j.biopha.2024.117716 39626375
    [Google Scholar]
  36. Garza-ReyesM.G. Mora-RuízM.D. Chávez-SánchezL. Madrid-MillerA. Cabrera-QuinteroA.J. Maravillas-MonteroJ.L. Zentella-DehesaA. Moreno-RuízL. Pastor-SalgadoS. Ramírez-AriasE. Pérez-VelázquezN. Chávez-RuedaA.K. Blanco-FavelaF. Vazquez-GonzalezW.G. Contreras-RodríguezA. Effect of interleukin-17 in the activation of monocyte subsets in patients with ST-segment elevation myocardial infarction.J. Immunol. Res.202020201910.1155/2020/5692829 32676508
    [Google Scholar]
  37. SongX. QianY. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases.Cell. Signal.201325122335234710.1016/j.cellsig.2013.07.021 23917206
    [Google Scholar]
  38. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in traditional Chinese medicine: A narrative review.J. Tradit. Chin. Med.2022423479486 35610020
    [Google Scholar]
  39. LiZ. QuB. WuX. ChenH. WangJ. ZhouL. WuX. ZhangW. Methodology improvement for network pharmacology to correct the deviation of deduced medicinal constituents and mechanism: Xian-Ling-Gu-Bao as an example.J. Ethnopharmacol.202228911505810.1016/j.jep.2022.115058 35114343
    [Google Scholar]
  40. YuH. WangN. ZhaoX. HanL. PengJ. Integrated serum pharmacochemistry with network pharmacology and pharmacological validation to elucidate the mechanism of yiqitongmai decoction (YQTMD) against myocardial infarction.J. Ethnopharmacol.202433111832910.1016/j.jep.2024.118329 38750989
    [Google Scholar]
  41. CuiJ. ShiY. XuX. ZhaoF. ZhangJ. WeiB. Identifying the cardioprotective mechanism of danyu tongmai granules against myocardial infarction by targeted metabolomics combined with network pharmacology.Phytomedicine20229815382910.1016/j.phymed.2021.153829 35104768
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808359027250105180011
Loading
/content/journals/lddd/10.2174/0115701808359027250105180011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test