Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Activated Protein C (APC) is a plasma serine protease with antithrombotic function. APC acts as an anticoagulant by promoting the degradation of factors Va and VIIIa, thus inhibiting the formation of thrombin. Specific inhibition of APC has been proposed to benefit hemophilia therapy.

Methods

We used chromogenic tripeptide substrate hydrolysis assay to screen a series of arginine and arginine-like containing small molecules to identify inhibitors of APC. Similar hydrolysis assays were used to determine selectivity against other serine proteases and blood-clotting enzymes. Molecular modeling was exploited to illustrate the binding of the most potent and selective inhibitor onto the putative binding site.

Results

We identified inhibitor as a potent inhibitor with an value of 1.1 µM. The molecule demonstrated >100-fold selectivity against thrombin, factor XIa, and neutrophil elastase, >50-fold selectivity against factor XIIIa, 10-fold selectivity against factor Xa, and 8-fold selectivity against human plasmin. Molecular modeling reveals that inhibitor binds to the active site of APC with the best-docked structure, indicating that one protonated amidino group establishes a salt bridge to the side chain carboxylate of Asp189 residue. Another inhibitor was identified, yet it was not as selective to APC. Importantly, inhibitor demonstrates favorable physicochemical, pharmacokinetic, and drug-likeness properties.

Conclusion

Inhibitor is a selective and potent inhibitor of APC that serves as a powerful lead for the development of hemophilia therapy.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808340492250115102419
2025-03-07
2025-08-16
Loading full text...

Full text loading...

References

  1. PolderdijkS.G.I. BaglinT.P. HuntingtonJ.A. Targeting activated protein C to treat hemophilia.Curr. Opin. Hematol.201724544645210.1097/MOH.0000000000000364 28632502
    [Google Scholar]
  2. LusherJ.M. Inhibitor antibodies to factor VIII and factor IX: Management.Semin. Thromb. Hemost.2000260217918810.1055/s‑2000‑9821 10919411
    [Google Scholar]
  3. HartmannJ. CroteauS.E. 2017 Clinical trials update: Innovations in hemophilia therapy.Am. J. Hematol.201691121252126010.1002/ajh.24543 27563744
    [Google Scholar]
  4. EsmonC.T. Protein C anticoagulant system—anti-inflammatory effects.Semin. Immunopathol.201234112713210.1007/s00281‑011‑0284‑6 21822632
    [Google Scholar]
  5. GriffinJ.H. ZlokovicB.V. MosnierL.O. Activated protein C: Biased for translation.Blood2015125192898290710.1182/blood‑2015‑02‑355974 25824691
    [Google Scholar]
  6. PolderdijkS.G.I. AdamsT.E. IvanciuL. CamireR.M. BaglinT.P. HuntingtonJ.A. Design and characterization of an APC-specific serpin for the treatment of hemophilia.Blood2017129110511310.1182/blood‑2016‑05‑718635 27789479
    [Google Scholar]
  7. HalimehS. KurnikK. SchobessR. WermesC. JunkerR. KreuzW. PollmannH. Nowak-GöttlU. Escuriola EttingshausenC. Symptomatic onset of severe hemophilia A in childhood is dependent on the presence of prothrombotic risk factors.Thromb. Haemost.200185221820010.1055/s‑0037‑1615679 11246535
    [Google Scholar]
  8. VianelloF. BelviniD. Dal BelloF. TagarielloG. ZanonE. LombardiA-M. ZerbinatiP. GirolamiA. Mild bleeding diathesis in a boy with combined severe haemophilia B (C 10400 →T) and heterozygous factor V Leiden.Haemophilia20017551151410.1046/j.1365‑2516.2001.00551.x 11554942
    [Google Scholar]
  9. NicholsW.C. AmanoK. CacherisP.M. FigueiredoM.S. MichaelidesK. SchwaabR. HoyerL. KaufmanR.J. GinsburgD. Moderation of hemophilia A phenotype by the factor V R506Q mutation.Blood19968841183118710.1182/blood.V88.4.1183.bloodjournal8841183 8695835
    [Google Scholar]
  10. Al-HoraniR.A. AfosahD.K. MottamalM. Triazol-1-yl benzamides promote anticoagulant activity via inhibition of factor XIIa.Cardiovasc. Hematol. Agents Med. Chem.202321210811910.2174/1871525721666221031141323 36321236
    [Google Scholar]
  11. WoodlandM.L.D. ThompsonA. LipfordA. GoyalN. SchexnaildreJ.C. MottamalM. AfosahD.K. Al-HoraniR.A. New triazole-based potent inhibitors of human factor XIIa as anticoagulants.ACS Omega202499106941070810.1021/acsomega.3c09335 38463342
    [Google Scholar]
  12. ChilesR. AfosahD.K. Al-HoraniR.A. Investigation of the anticoagulant activity of cyclic sulfated glycosaminoglycan mimetics.Carbohydr. Res.202352910883110.1016/j.carres.2023.108831 37209666
    [Google Scholar]
  13. Al-HoraniR.A. ParsaeianE. MohammadM. MottamalM. Sulfonated non‐saccharide molecules and human factor XIa: Enzyme inhibition and computational studies.Chem. Biol. Drug Des.20221001647910.1111/cbdd.14053 35377529
    [Google Scholar]
  14. KarS. BankstonP. AfosahD.K. Al-HoraniR.A. Lignosulfonic acid sodium is a noncompetitive inhibitor of human factor XIa.Pharmaceuticals202114988610.3390/ph14090886 34577586
    [Google Scholar]
  15. Al-HoraniR.A. AliterK.F. KarS. MottamalM. Sulfonated nonsaccharide heparin mimetics are potent and noncompetitive inhibitors of human neutrophil elastase.ACS Omega2021619126991271010.1021/acsomega.1c00935 34056422
    [Google Scholar]
  16. KarS. MottamalM. Al-HoraniR.A. Discovery of benzyl tetraphosphonate derivative as inhibitor of human factor xia.ChemistryOpen20209111161117210.1002/open.202000277 33204588
    [Google Scholar]
  17. BugnonM. RöhrigU.F. GoullieuxM. PerezM.A.S. DainaA. MichielinO. ZoeteV. SwissDock 2024: Major enhancements for small-molecule docking with attracting cavities and autodock vina.Nucleic Acids Res.202452W1W324W33210.1093/nar/gkae300 38686803
    [Google Scholar]
  18. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  19. ErtlP. RohdeB. SelzerP. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.J. Med. Chem.200043203714371710.1021/jm000942e 11020286
    [Google Scholar]
  20. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  21. MartinY.C. A bioavailability score.J. Med. Chem.20054893164317010.1021/jm0492002 15857122
    [Google Scholar]
  22. BaellJ.B. HollowayG.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.J. Med. Chem.20105372719274010.1021/jm901137j 20131845
    [Google Scholar]
  23. BrenkR. SchipaniA. JamesD. KrasowskiA. GilbertI.H. FrearsonJ. WyattP.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases.ChemMedChem20083343544410.1002/cmdc.200700139 18064617
    [Google Scholar]
  24. TeagueS.J. DavisA.M. LeesonP.D. OpreaT. The design of leadlike combinatorial libraries.Angew. Chem. Int. Ed.199938243743374810.1002/(SICI)1521‑3773(19991216)38:24<3743::AID‑ANIE3743>3.0.CO;2‑U 10649345
    [Google Scholar]
  25. ButenasS. DrungilaiteV. MannK.G. Fluorogenic substrates for activated protein C: Substrate structure-efficiency correlation.Anal. Biochem.1995225223124110.1006/abio.1995.1148 7762785
    [Google Scholar]
  26. ButenasS. DiLorenzoM.E. MannK.G. Ultrasensitive fluorogenic substrates for serine proteases.Thromb. Haemost.19977841193120110.1055/s‑0038‑1657714 9364984
    [Google Scholar]
  27. ZhaoX.Y. WilmenA. WangD. WangX. BauzonM. KimJ.Y. LindenL. LiL. EgnerU. MarquardtT. MoosmayerD. TebbeJ. GlückJ.M. EllingerP. McLeanK. YuanS. YegneswaranS. JiangX. EvansV. GuJ.M. SchneiderD. ZhuY. XuY. MallariC. HessleinA. WangY. SchmidtN. GutberletK. Ruehl-FehlertC. FreybergerA. HermistonT. PatelC. SimD. MosnierL.O. LauxV. Targeted inhibition of activated protein C by a non-active-site inhibitory antibody to treat hemophilia.Nat. Commun.2020111299210.1038/s41467‑020‑16720‑9 32532974
    [Google Scholar]
  28. MiesbachW. KlamrothR. OldenburgJ. TiedeA. Gene therapy for hemophilia-opportunities and risks.Dtsch. Arztebl. Int.202211951-52887894 36468250
    [Google Scholar]
  29. HermansC. PierceG.F. Bispecific antibodies mimicking factor VIII in hemophilia A: Converting innovation to an essential medicine.Res. Pract. Thromb. Haemost.20237410017310.1016/j.rpth.2023.100173 37538493
    [Google Scholar]
  30. BoyceS. RangarajanS. RNAi for the treatment of people with hemophilia: Current evidence and patient selection.J. Blood Med.20231431732710.2147/JBM.S390521 37123985
    [Google Scholar]
  31. MancusoM.E. InghamS.J.M. KunzeM. Befovacimab, an anti‐tissue factor pathway inhibitor antibody: Early termination of the multiple‐dose, dose‐escalating Phase 2 study due to thrombosis.Haemophilia202228570271210.1111/hae.14595 35667016
    [Google Scholar]
  32. JiangM. YangF. JiangY. ChengL. HanJ. YiJ. ZhangG. MaZ. CaoL. ZuoB. ZhouL. HuangL. NiuS. XiaZ. ZhouX. BaiX. EsmonN.L. RuanC. XiaL. HanY. EsmonC.T. WuD. XuJ. Blocking human protein C anticoagulant activity improves clotting defects of hemophilia mice expressing human protein C.Blood Adv.20226113304331410.1182/bloodadvances.2021006214 35390147
    [Google Scholar]
  33. ZhaoY. WeyandA.C. ShavitJ.A. Novel treatments for hemophilia through rebalancing of the coagulation cascade.Pediatr. Blood Cancer2021685e2893410.1002/pbc.28934 33577709
    [Google Scholar]
  34. SperandioO. WildhagenK.C.A.A. SchrijverR. WieldersS. VilloutreixB.O. NicolaesG.A.F. Identification of novel small molecule inhibitors of activated protein C.Thromb. Res.201413361105111410.1016/j.thromres.2014.01.026 24513148
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808340492250115102419
Loading
/content/journals/lddd/10.2174/0115701808340492250115102419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test