Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Obstructive sleep apnea (OSA) is characterized by recurrent stenosis or collapse of the upper airway during sleep. This directly leads to reduced ventilation or apnea, followed by arterial hypoxemia and hypercapnia.

Aim

The study aims to explore whether hydrogen sulfide (H2S) could serve as a protective factor for the hypoglossal nucleus (HN) against chronic intermittent hypoxia (CIH) in rats.

Methods

A total of 12 adult male Sprague-Dawley (SD) rats were randomly and equally divided into two groups (CIH and control group). Rats in the CIH group were housed in a hypoxic chamber with the oxygen volume fraction alternating between 21% and 5% by providing air for 60 s and nitrogen for 60 s from 8:30am to 16:30pm each day for 35 days. The control group was housed in a chamber with a normal oxygen level. After 5 weeks, expressions of different synthases in the HN were detected using Western blot analysis and qRT-PCR.

Results

Transcriptions of synthetase gene CBS ( < 0.01) and 3MST ( < 0.05) in the CIH group were significantly reduced compared to those in the control group. Expression of H2S synthetase 3MST was significantly down-regulated in the hypoglossal nucleus of CIH rats compared to that in the control group ( < 0.05). The expression of CBS was significantly reduced in the CIH group compared to that in control group ( < 0.05).

Conclusion

CBS and 3MST-H2S pathways may be involved in regulating hypoglossal nerve activity related to respiration and protecting the HN from CIH-induced injury. This study suggests that the CBS and 3MST-H2S pathways could be one of the important pathogenesis of OSA.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808358454250219114915
2025-02-21
2025-09-01
Loading full text...

Full text loading...

References

  1. NeelapuB.C. KharbandaO.P. SardanaH.K. BalachandranR. SardanaV. KapoorP. GuptaA. VasamsettiS. Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: A systematic review and meta-analysis of cephalometric studies.Sleep Med. Rev.201731799010.1016/j.smrv.2016.01.007 27039222
    [Google Scholar]
  2. FogelR.B. TrinderJ. WhiteD.P. MalhotraA. RaneriJ. SchoryK. KleverlaanD. PierceR.J. The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls.J. Physiol.2005564254956210.1113/jphysiol.2005.083659 15695240
    [Google Scholar]
  3. OsmanA.M. CarberryJ.C. GandeviaS.C. ButlerJ.E. EckertD.J. Changes in pharyngeal collapsibility and genioglossus reflex responses to negative pressure during the respiratory cycle in obstructive sleep apnoea.J. Physiol.2020598356758010.1113/JP278433 31782971
    [Google Scholar]
  4. MezzanotteW.S. TangelD.J. WhiteD.P. Influence of sleep onset on upper-airway muscle activity in apnea patients versus normal controls.Am. J. Respir. Crit. Care Med.199615361880188710.1164/ajrccm.153.6.8665050 8665050
    [Google Scholar]
  5. HornerR.L. Neuromodulation of hypoglossal motoneurons during sleep.Respir. Physiol. Neurobiol.20081641-217919610.1016/j.resp.2008.06.012 18620080
    [Google Scholar]
  6. CaoR. ZhangM.J. ZhouY.T. LiuY.J. WangH.H. ZhangQ.X. ShiY.W. LiJ.C. WongT.S. YinM. The dorsal and the ventral side of hypoglossal motor nucleus showed different response to chronic intermittent hypoxia in rats.Sleep Breath.202125132533010.1007/s11325‑020‑02125‑x 32562172
    [Google Scholar]
  7. ChenW.L. NiuY.Y. JiangW.Z. TangH.L. ZhangC. XiaQ.M. TangX.Q. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways.Rev. Neurosci.201526212914210.1515/revneuro‑2014‑0051 25528761
    [Google Scholar]
  8. ShibuyaN. TanakaM. YoshidaM. OgasawaraY. TogawaT. IshiiK. KimuraH. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain.Antioxid. Redox Signal.200911470371410.1089/ars.2008.2253 18855522
    [Google Scholar]
  9. KimuraH. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system.Neurochem. Int.201912611812510.1016/j.neuint.2019.01.027 30849397
    [Google Scholar]
  10. ZhongH. YuH. ChenJ. SunJ. GuoL. HuangP. ZhongY. Hydrogen sulfide and endoplasmic reticulum stress: A potential therapeutic target for central nervous system degeneration diseases.Front. Pharmacol.20201170210.3389/fphar.2020.00702 32477150
    [Google Scholar]
  11. HuH. ShiY. ChenQ. YangW. ZhouH. ChenL. TangY. ZhengY. Endogenous hydrogen sulfide is involved in regulation of respiration in medullary slice of neonatal rats.Neuroscience200815641074108210.1016/j.neuroscience.2008.08.025 18793700
    [Google Scholar]
  12. PanJ.G. HuH.Y. ZhangJ. ZhouH. ChenL. TangY.H. ZhengY. Protective effect of hydrogen sulfide on hypoxic respiratory suppression in medullary slice of neonatal rats.Respir. Physiol. Neurobiol.2010171318118610.1016/j.resp.2010.04.006 20406698
    [Google Scholar]
  13. DonattiA.F. SorianoR.N. SabinoJ.P. BrancoL.G.S. Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Bötzinger complex downregulates ventilatory responses to hypoxia.Respir. Physiol. Neurobiol.20142009710410.1016/j.resp.2014.06.007 24953676
    [Google Scholar]
  14. EtoK. OgasawaraM. UmemuraK. NagaiY. KimuraH. Hydrogen sulfide is produced in response to neuronal excitation.J. Neurosci.20022293386339110.1523/JNEUROSCI.22‑09‑03386.2002 11978815
    [Google Scholar]
  15. RussoD.C. TringaliG. RagazzoniE. MaggianoN. MeniniE. VairanoM. PreziosiP. NavarraP. Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat.J. Neuroendocrinol.200012322523310.1046/j.1365‑2826.2000.00441.x 10718918
    [Google Scholar]
  16. WangR. Two’s company, three’s a crowd: Can H 2 S be the third endogenous gaseous transmitter?FASEB J.200216131792179810.1096/fj.02‑0211hyp 12409322
    [Google Scholar]
  17. ChenL. ZhangJ. DingY. LiH. NieL. YanX. ZhouH. ZhengY. KATP channels of parafacial respiratory group (pFRG) neurons are involved in H2S-mediated central inhibition of respiratory rhythm in medullary slices of neonatal rats.Brain Res.2013152714114810.1016/j.brainres.2013.07.009 23850648
    [Google Scholar]
  18. PanJ.G. ZhangJ. ZhouH. ChenL. TangY.H. ZhengY. Protective action of endogenously generated H2S on hypoxia-induced respiratory suppression and its relation to antioxidation and down-regulation of c-fos mRNA in medullary slices of neonatal rats.Respir. Physiol. Neurobiol.2011178223023410.1016/j.resp.2011.06.013 21723961
    [Google Scholar]
  19. BosE.M. LeuveninkH.G.D. SnijderP.M. KloosterhuisN.J. HillebrandsJ.L. LeemansJ.C. FlorquinS. GoorV.H. Hydrogen sulfide-induced hypometabolism prevents renal ischemia/reperfusion injury.J. Am. Soc. Nephrol.20092091901190510.1681/ASN.2008121269 19628669
    [Google Scholar]
  20. BakaeeanB. KabiriM. IranfarH. SaberiM.R. ChamaniJ. Binding effect of common ions to human serum albumin in the presence of norfloxacin: Investigation with spectroscopic and zeta potential approaches.J. Solution Chem.201241101777180110.1007/s10953‑012‑9895‑3
    [Google Scholar]
  21. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑4 36787038
    [Google Scholar]
  22. LiM. NieL. HuY. YanX. XueL. ChenL. ZhouH. ZhengY. Chronic intermittent hypoxia promotes expression of 3-mercaptopyruvate sulfurtransferase in adult rat medulla oblongata.Auton. Neurosci.20131791-2848910.1016/j.autneu.2013.08.066 24051007
    [Google Scholar]
  23. LiH. ChenL. HouX. ZhouH. ZhengY. Hydrogen sulfide attenuates hypoxia-induced respiratory suppression in anesthetized adult rats.Respir. Physiol. Neurobiol.20162201910.1016/j.resp.2015.09.001 26365007
    [Google Scholar]
  24. DonovanJ. WongP.S. GarleM.J. AlexanderS.P.H. DunnW.R. RalevicV. Coronary artery hypoxic vasorelaxation is augmented by perivascular adipose tissue through a mechanism involving hydrogen sulphide and cystathionine‐β‐synthase.Acta Physiol. 20182244e1312610.1111/apha.13126 29896909
    [Google Scholar]
  25. DonovanJ. WongP.S. RobertsR.E. GarleM.J. AlexanderS.P.H. DunnW.R. RalevicV. A critical role for cystathionine-β-synthase in hydrogen sulfide-mediated hypoxic relaxation of the coronary artery.Vascul. Pharmacol.201793-95203210.1016/j.vph.2017.05.004 28552745
    [Google Scholar]
  26. TaoB. WangR. SunC. ZhuY. 3-Mercaptopyruvate sulfurtransferase, not cystathionine β-synthase nor cystathionine γ-lyase, mediates hypoxia-induced migration of vascular endothelial cells.Front. Pharmacol.2017865710.3389/fphar.2017.00657 28979207
    [Google Scholar]
  27. WangJ. HoganJ.O. WangR. WhiteC. KimD. Role of cystathionine-γ-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca2+] and ventilation in mice.Respir. Physiol. Neurobiol.20172469810610.1016/j.resp.2017.08.009 28851593
    [Google Scholar]
  28. MakarenkoV.V. NanduriJ. RaghuramanG. FoxA.P. GadallaM.M. KumarG.K. SnyderS.H. PrabhakarN.R. Endogenous H 2 S is required for hypoxic sensing by carotid body glomus cells.Am. J. Physiol. Cell Physiol.20123039C916C92310.1152/ajpcell.00100.2012 22744006
    [Google Scholar]
  29. WuB. TengH. ZhangL. LiH. LiJ. WangL. LiH. Interaction of hydrogen sulfide with oxygen sensing under hypoxia.Oxid. Med. Cell. Longev.201520151910.1155/2015/758678 26078818
    [Google Scholar]
  30. EckertD.J. WhiteD.P. JordanA.S. MalhotraA. WellmanA. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets.Am. J. Respir. Crit. Care Med.20131888996100410.1164/rccm.201303‑0448OC 23721582
    [Google Scholar]
  31. PengY.J. ZhangX. GridinaA. ChupikovaI. McCormickD.L. ThomasR.J. ScammellT.E. KimG. VasavdaC. NanduriJ. KumarG.K. SemenzaG.L. SnyderS.H. PrabhakarN.R. Complementary roles of gasotransmitters CO and H 2 S in sleep apnea.Proc. Natl. Acad. Sci. USA201711461413141810.1073/pnas.1620717114 28115703
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808358454250219114915
Loading
/content/journals/lddd/10.2174/0115701808358454250219114915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test