Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Artificial Intelligence (AI), due to digitalization, has recently conquered the healthcare disciplines. AI has substantially progressed in healthcare and medical research for preventive, predictive, and personalized care. AI will continue to become the ultimate healthcare-effective tool for serious ailments requiring the early detection of rebuttal. It is a fast-growing automated system based on algorithms positioned to benefit patients, clinicians, researchers, and physicians involved in treatment, prognosis, and preventive care in health. The primary focus of artificial intelligence is technologically expedited solutions to complex challenges. AI's remarkable contribution to machine learning has become a transforming opportunity in medical science. The optimized research, formulation, and development in AI reduce the cost of medical therapy, provide extensive care, improve patient compliance, and promote personalized medicine. The articles were cited from SCI-hub, PUBMED, Scopus, and Google Scholar. AI is assisted with autonomous disease assessing and screening tools that can save time for clinicians and help in the early diagnosis of diabetic retinopathy, cancer detection, and chromosomal disorders to solve complex hurdles. The automated image quality improvement tool makes AI an effective medium for targeting highly complex drug molecules and specific sensors to target organs. Furthermore, the masses have utilized their application in medical devices, pharmaceutical technology, dosage form designing, medical research, and regulatory frameworks to explore the medical era of AI in the healthcare field. However, the integration of AI in medical practice is in the early stages and needs further research to fit an AI model-based approach in clinical settings. AI limitations in health and medical research arise from biases related to gender variation, ethical concerns, complex algorithms, regulatory, cyber security, model evaluation, and problems faced by policymakers. Certain vulnerability factors that can cause health record data breaches and ethical concerns present challenges in healthcare settings due to result failure. Therefore, solutions to overcome these challenges are essential to set the future of AI in clinical research. All such concerns and their solutions must be successfully deployed from research to clinical settings to adopt transformative AI models in medical science. This will help scientists and researchers explore lead molecules and identify newer therapeutic targets. It is crucial to implement measures to control and frame policy guidelines, conduct continuous checks on cybersecurity, solve ethical issues, and consider the possibility of AI adoption in pharmaceutical industries, banking, research areas, hospitals, administration, and clinical practice.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808342987241216081153
2024-12-18
2025-09-18
Loading full text...

Full text loading...

References

  1. ScannellJ.W. BlanckleyA. BoldonH. WarringtonB. Diagnosing the decline in pharmaceutical R&D efficiency.Nat. Rev. Drug Discov.201211319120010.1038/nrd368122378269
    [Google Scholar]
  2. MunosB. Lessons from 60 years of pharmaceutical innovation.Nat. Rev. Drug Discov.200981295996810.1038/nrd296119949401
    [Google Scholar]
  3. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  4. Biggest challenges facing the pharmaceutical industry in 2023. 2023. Available from: https://www.pssindia.com/2023/01/23/biggest-challenges-facing-the-pharmaceutical-industry-in-2023/ (accessed on 25 May 2024)
  5. ChavdaV. ValuD. ParikhP. TiwariN. ChhipaA. ShuklaS. PatelS. BalarP. Paiva-SantosA. PatravaleV. Conventional and novel diagnostic tools for the diagnosis of emerging SARS-CoV-2 variants.Vaccines202311237410.3390/vaccines1102037436851252
    [Google Scholar]
  6. SharmaR. ShishodiaA. GunasekaranA. MinH. MunimZ.H. The role of artificial intelligence in supply chain management: Mapping the territory.Int. J. Prod. Res.202260247527755010.1080/00207543.2022.2029611
    [Google Scholar]
  7. Times of india pharmaceutical supply chain management: Crises and innovations. Available from: https://timesofindia.indiatimes.com/blogs/voices/pharmaceutical-supply-chain-management-crises-and-innovations/ (accessed on 15 May 2024).
  8. DakaA. PeerD. RNAi-based nanomedicines for targeted personalized therapy.Adv. Drug Deliv. Rev.201264131508152110.1016/j.addr.2012.08.01422975009
    [Google Scholar]
  9. SunartiS. RahmanF.F. NaufalM. RiskyM. FebriyantoK. MasninaR. Artificial intelligence in healthcare: Opportunities and risk for future.Gac. Sanit.202135Suppl. 1S67S7010.1016/j.gaceta.2020.12.019
    [Google Scholar]
  10. ParkC.W. SeoS.W. KangN. KoB. ChoiB.W. ParkC.M. ChangD.K. KimH. KimH. LeeH. JangJ. YeJ.C. JeonJ.H. SeoJ.B. KimK.J. JungK.H. KimN. PaekS. ShinS.Y. YooS. ChoiY.S. KimY. YoonH.J. Artificial intelligence in health care: current applications and issues.J. Korean Med. Sci.20203548e42510.3346/jkms.2020.35.e42533316861
    [Google Scholar]
  11. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z35039756
    [Google Scholar]
  12. Ghaffar NiaN. KaplanogluE. NasabA. Evaluation of artificial intelligence techniques in disease diagnosis and prediction.Discover Artif. Intell.202331510.1007/s44163‑023‑00049‑5
    [Google Scholar]
  13. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑529777175
    [Google Scholar]
  14. WaldsteinS.M. SeeböckP. DonnerR. SadeghipourA. BogunovićH. OsborneA. Schmidt-ErfurthU. Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning.Sci. Rep.20201011295410.1038/s41598‑020‑69814‑132737379
    [Google Scholar]
  15. PlestedJ. GedeonT. Deep transfer learning for image classification: A survey.arXiv2022
    [Google Scholar]
  16. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. AlqahtaniT. AlshayaA.I. AlmoharebS.N. AldairemA. AlrashedM. Bin SalehK. BadreldinH.A. Al YamiM.S. Al HarbiS. AlbekairyA.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z37740191
    [Google Scholar]
  17. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑135704152
    [Google Scholar]
  18. SubramanianM. WojtusciszynA. FavreL. BoughorbelS. ShanJ. LetaiefK.B. PitteloudN. ChouchaneL. Precision medicine in the era of artificial intelligence: Implications in chronic disease management.J. Transl. Med.202018147210.1186/s12967‑020‑02658‑533298113
    [Google Scholar]
  19. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. ZhaoJ. SnowdonJ.L. Precision Medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.1288432961010
    [Google Scholar]
  20. PulleyJ.M. DennyJ.C. PetersonJ.F. BernardG.R. Vnencak-JonesC.L. RamirezA.H. DelaneyJ.T. BowtonE. BrothersK. JohnsonK. CrawfordD.C. SchildcroutJ. MasysD.R. DilksH.H. WilkeR.A. ClaytonE.W. ShultzE. LaposataM. McPhersonJ. JirjisJ.N. RodenD.M. Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project.Clin. Pharmacol. Ther.2012921879510.1038/clpt.2011.37122588608
    [Google Scholar]
  21. HuangC. ClaytonE.A. MatyuninaL.V. McDonaldL.D. BenignoB.B. VannbergF. McDonaldJ.F. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy.Sci. Rep.2018811644410.1038/s41598‑018‑34753‑530401894
    [Google Scholar]
  22. SheuY. MagdamoC. MillerM. DasS. BlackerD. SmollerJ.W. AI-assisted prediction of differential response to antidepressant classes using electronic health records.NPJ Digit. Med.2023617310.1038/s41746‑023‑00817‑837100858
    [Google Scholar]
  23. UddinM. WangY. Woodbury-SmithM. Artificial intelligence for precision medicine in neurodevelopmental disorders.NPJ Digit. Med.20192111210.1038/s41746‑019‑0191‑031799421
    [Google Scholar]
  24. MartinG.L. JouganousJ. SavidanR. BellecA. GoehrsC. BenkebilM. MiremontG. MicallefJ. SalvoF. ParienteA. LétinierL. Validation of artificial intelligence to support the automatic coding of patient adverse drug reaction reports, using nationwide pharmacovigilance data.Drug Saf.202245553554810.1007/s40264‑022‑01153‑835579816
    [Google Scholar]
  25. LeeH. KimH.J. ChangH.W. KimD.J. MoJ. KimJ.E. Development of a system to support warfarin dose decisions using deep neural networks.Sci. Rep.20211111474510.1038/s41598‑021‑94305‑234285309
    [Google Scholar]
  26. BlasiakA. TruongA. TanW.J.L. KumarK.S. TanS.B. TeoC.B. TanB.K.J. TadeoX. TanH.L. CheeC.E. YongW-P. HoD. SundarR. PRECISE CURATE.AI: A prospective feasibility trial to dynamically modulate personalized chemotherapy dose with artificial intelligence.J. Clin. Oncol.20224016Suppl.1574410.1200/JCO.2022.40.16_suppl.1574
    [Google Scholar]
  27. SjövallF. LanckohrC. BrachtH. What’s new in therapeutic drug monitoring of antimicrobials?Intensive Care Med.202349785785910.1007/s00134‑023‑07060‑537133741
    [Google Scholar]
  28. PartinA. BrettinT.S. ZhuY. NarykovO. ClydeA. OverbeekJ. StevensR.L. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends.Front. Med.202310108609710.3389/fmed.2023.108609736873878
    [Google Scholar]
  29. ZhangH. ChenY. LiF. Predicting anticancer drug response with deep learning constrained by signaling pathways.Front. Bioinform.2021163934910.3389/fbinf.2021.63934936303766
    [Google Scholar]
  30. HanK. CaoP. WangY. XieF. MaJ. YuM. WangJ. XuY. ZhangY. WanJ. A review of approaches for Predicting Drug-Drug interactions based on machine learning.Front. Pharmacol.20221281485810.3389/fphar.2021.81485835153767
    [Google Scholar]
  31. LiuJ.Y.H. RuddJ.A. Predicting drug adverse effects using a new Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD).Sci. Rep.2023131693510.1038/s41598‑023‑33655‑537117211
    [Google Scholar]
  32. SerovN. VinogradovV. Artificial intelligence to bring nanomedicine to life.Adv. Drug Deliv. Rev.202218411419410.1016/j.addr.2022.11419435283223
    [Google Scholar]
  33. EgorovE. PietersC. Korach-RechtmanH. ShkloverJ. SchroederA. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.Drug Deliv. Transl. Res.202111234535210.1007/s13346‑021‑00929‑233585972
    [Google Scholar]
  34. LabCompare: Liquid Handling Equipment. Available from: https://www.labcompare.com/General-Laboratory-Equipment/312-Liquid-Handling-Equipment/ (Accessed on 25 June, 2024).
  35. ThermoFisher: Spinnaker microplate robot. Available from https://www.thermofisher.com/order/catalog/product/SPK0001#/SPK0001 (Accessed on 25 June 2024).
  36. FleischerH. BaumannD. JoshiS. ChuX. RoddelkopfT. KlosM. Analytical measurements and efficient process generation using a dual-arm robot equipped with electronic pipettes.Energies20181110256710.3390/en11102567
    [Google Scholar]
  37. CresswellK. RamalingamS. SheikhA. Can robots improve testing capacity for SARS-CoV-2?J. Med. Internet Res.2020228e2016910.2196/20169
    [Google Scholar]
  38. CutronaM.B. SimpsonJ.C. A high-throughput automated confocal microscopy platform for quantitative phenotyping of nanoparticle uptake and transport in spheroids.Small201915371902033-, 37, 190203310.1002/smll.20190203331334922
    [Google Scholar]
  39. VisionO. What is automated confocal microscopy for life sciences?Vision Online2019
    [Google Scholar]
  40. ElliottA.D. Confocal microscopy: principles and modern practices.Curr. Protoc. Cytom.2020921e6810.1002/cpcy.6831876974
    [Google Scholar]
  41. PuzynT. RasulevB. GajewiczA. HuX. DasariT.P. MichalkovaA. HwangH.M. ToropovA. LeszczynskaD. LeszczynskiJ. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.Nat. Nanotechnol.20116317517810.1038/nnano.2011.1021317892
    [Google Scholar]
  42. RegitnigP. MüllerH. HolzingerA. Expectations of artificial intelligence for pathology. In: Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges. HolzingerA. GoebelR. MengelM. MüllerH. ChamSpringer International Publishing202011510.1007/978‑3‑030‑50402‑1_1
    [Google Scholar]
  43. HessK.R. AndersonK. SymmansW.F. ValeroV. IbrahimN. MejiaJ.A. BooserD. TheriaultR.L. BuzdarA.U. DempseyP.J. RouzierR. SneigeN. RossJ.S. VidaurreT. GómezH.L. HortobagyiG.N. PusztaiL. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer.J. Clin. Oncol.200624264236424410.1200/JCO.2006.05.686116896004
    [Google Scholar]
  44. DasK.P. J, C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges.Front. in Medical Technol.20234106714410.3389/fmedt.2022.106714436688144
    [Google Scholar]
  45. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.2023
    [Google Scholar]
  46. YuanY. WuY. ChengJ. YangK. XiaY. WuH. PanX. Applications of artificial intelligence to lipid nanoparticle delivery.Particuology202490889710.1016/j.partic.2023.11.014
    [Google Scholar]
  47. El-NaggarN.E.A. DalalS.R. ZweilA.M. EltarahonyM. Artificial intelligence-based optimization for chitosan nanoparticles biosynthesis, characterization and in vitro assessment of its anti-biofilm potentiality.Sci. Rep.2023131440110.1038/s41598‑023‑30911‑636928367
    [Google Scholar]
  48. NuhnL. Artificial intelligence assists nanoparticles to enter solid tumours.Nat. Nanotechnol.202318655055110.1038/s41565‑023‑01382‑737081083
    [Google Scholar]
  49. HanR. YeZ. ZhangY. ChengY. ZhengY. OuyangD. Predicting liposome formulations by the integrated machine learning and molecular modeling approaches.Asian J. of Pharm. Sci.202318310081110081410.1016/j.ajps.2023.10081137274923
    [Google Scholar]
  50. BaghaeiB. SaebM.R. JafariS.H. KhonakdarH.A. RezaeeB. GoodarziV. MohammadiY. Modeling and closed‐loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery.J. Appl. Polym. Sci.2017134334514510.1002/app.45145
    [Google Scholar]
  51. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/13816120778076595417504169
    [Google Scholar]
  52. BlasiakA. KhongJ. KeeT. CURATE. AI: Optimizing personalized medicine with artificial intelligence.SLAS Technol.20202529510510.1177/247263031989031631771394
    [Google Scholar]
  53. VyasM. Artificial intelligence: The beginning of a new era in pharmacy profession.Asian J. Pharm.2018127276
    [Google Scholar]
  54. SellwoodM.A. AhmedM. SeglerM.H.S. BrownN. Artificial intelligence in drug discovery.Future Med. Chem.201810172025202810.4155/fmc‑2018‑021230101607
    [Google Scholar]
  55. ZhuH. Big data and artificial intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑02332431518513
    [Google Scholar]
  56. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  57. BrownN. Silico Medicinal Chemistry: Computational Methods to Support Drug Design.Royal Society of Chemistry2015
    [Google Scholar]
  58. PereiraJ.C. CaffarenaE.R. dos SantosC.N. Boosting docking-based virtual screening with deep learning.J. Chem. Inf. Model.201656122495250610.1021/acs.jcim.6b0035528024405
    [Google Scholar]
  59. FirthN.C. AtrashB. BrownN. BlaggJ. MOARF, an integrated workflow for multiobjective optimization: Implementation, synthesis, and biological evaluation.J. Chem. Inf. Model.20155561169118010.1021/acs.jcim.5b0007326054755
    [Google Scholar]
  60. ZhangL. TanJ. HanD. ZhuH. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery.Drug Discov. Today201722111680168510.1016/j.drudis.2017.08.01028881183
    [Google Scholar]
  61. JainN. In silico de novo design of novel NNRTIs: A bio-molecular modelling approach.RSC Advances20155148141482710.1039/C4RA15478A
    [Google Scholar]
  62. WangY. GuoY. KuangQ. PuX. JiY. ZhangZ. LiM. A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach.J. Comput. Aided Mol. Des.201529434936010.1007/s10822‑014‑9827‑y25527073
    [Google Scholar]
  63. KingR.D. HirstJ.D. SternbergM.J. Comparison of artificial intelligence methods for modeling pharmaceutical QSARS.Appl. Artif. Intell.19959221323310.1080/08839519508945474
    [Google Scholar]
  64. ZangQ. MansouriK. WilliamsA.J. JudsonR.S. AllenD.G. CaseyW.M. KleinstreuerN.C. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning.J. Chem. Inf. Model.2017571364910.1021/acs.jcim.6b0062528006899
    [Google Scholar]
  65. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b0072831294972
    [Google Scholar]
  66. RuppM. KörnerR. TetkoI.V. Estimation of acid dissociation constants using graph kernels.Mol. Inform.2010291073174010.1002/minf.20100007227464016
    [Google Scholar]
  67. Home. 2010. Available from: deep-tox.info
  68. NayakS. Kumar DasR. Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation. Service Robotics.London, UKIntechOpen2020
    [Google Scholar]
  69. BodenstedtS. WagnerM. Müller-StichB.P. WeitzJ. SpeidelS. Artificial intelligence-assisted surgery: Potential and challenges.Visc. Med.202036645045510.1159/00051135133447600
    [Google Scholar]
  70. BabelA. TanejaR. Mondello MalvestitiF. MonacoA. DondeS. Artificial intelligence solutions to increase medication adherence in patients with non-communicable diseases.Front. Digit. Health2021366986910.3389/fdgth.2021.66986934713142
    [Google Scholar]
  71. VermaD. SinghK.R.B. YadavA.K. NayakV. SinghJ. SolankiP.R. SinghR.P. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications.Biosens. Bioelectron. X20221110015310.1016/j.biosx.2022.100153
    [Google Scholar]
  72. MalcheT. TharewalS. TiwariP.K. JabarullaM.Y. AlnuaimA.A. HatamlehW.A. UllahM.A. Artificial intelligence of things- (aiot-) based patient activity tracking system for remote patient monitoring.J. Healthc. Eng.2022202211510.1155/2022/873221335273786
    [Google Scholar]
  73. KohD.M. PapanikolaouN. BickU. IllingR. KahnC.E.Jr Kalpathi-CramerJ. MatosC. Martí-BonmatíL. MilesA. MunS.K. NapelS. RockallA. SalaE. StricklandN. PriorF. Artificial intelligence and machine learning in cancer imaging.Commun. Med.20222113310.1038/s43856‑022‑00199‑036310650
    [Google Scholar]
  74. Artificial Intelligence in medical devices. 2020. Available from: https://www.kantify.com/insights/artificial-intelligence-in-medical-devices
  75. DasS.K. DasguptaR.K. RoyS.D. ShilD. AI in Indian healthcare: From roadmap to reality.Intelligent Pharmacy20242332933410.1016/j.ipha.2024.02.005
    [Google Scholar]
  76. GrundyB.L. JonesP.K. LovittA. Telemedicine in critical care.Crit. Care Med.198210747147510.1097/00003246‑198207000‑000147083874
    [Google Scholar]
  77. DouinD.J. WardM.J. LindsellC.J. HowellM.P. HoughC.L. ExlineM.C. GongM.N. AboodiM.S. TenfordeM.W. FeldsteinL.R. StubblefieldW.B. SteingrubJ.S. PrekkerM.E. BrownS.M. PeltanI.D. KhanA. FilesD.C. GibbsK.W. RiceT.W. CaseyJ.D. HagerD.N. QadirN. HenningD.J. WilsonJ.G. PatelM.M. SelfW.H. GindeA.A. ICU bed utilization during the coronavirus disease 2019 pandemic in a multistate analysis-March to June 2020.Crit. Care Explor.202133e036110.1097/CCE.000000000000036133786437
    [Google Scholar]
  78. AgarwalN. JainP. PathakR. Telemedicine in India: A tool for transforming health care in the era of COVID-19 pandemic.J. Educ. Health Promot.202028919010.4103/jehp.jehp_472_20
    [Google Scholar]
  79. RezaeiT. KhouzaniP.J. KhouzaniS.J. Integrating artificial intelligence into telemedicine: Revolutionizing healthcare delivery.Kindle202310.5281/zenodo.8395812
    [Google Scholar]
  80. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.01033099022
    [Google Scholar]
  81. SharmaS. RawalR. ShahD. Addressing the challenges of AI-based telemedicine: Best practices and lessons learned.J. Educ. Health Promot.202312133810.4103/jehp.jehp_402_2338023098
    [Google Scholar]
  82. Artificial intelligence and cybersecurity in healthcare (YEL2023) - IHF. 2010. Available from: https://ihf-fih.org/news-insights/artificial-intelligence-and-cybersecurity-in-healthcare/
  83. CharD.S. ShahN.H. MagnusD. Implementing machine learning in health care - Addressing ethical challenges.N. Engl. J. Med.20183781198198310.1056/NEJMp171422929539284
    [Google Scholar]
  84. ForcierM.B. GalloisH. MullanS. JolyY. Integrating artificial intelligence into health care through data access: can the GDPR act as a beacon for policymakers?J. Law Biosci.20196131733510.1093/jlb/lsz01331666972
    [Google Scholar]
  85. MudgalK.S. DasN. The ethical adoption of artificial intelligence in radiology.BJR Open2020212019002010.1259/bjro.2019002033178959
    [Google Scholar]
  86. AholaM. The role of human error in successful cyber security breaches.Available from: https://blog.usecure.io/the-role-of-human-error-in-successful-cyber-security-breaches
    [Google Scholar]
  87. SlabodkinG. Insulin pumps among millions of devices facing risk from newly disclosed cyber vulnerability, IBM says. 2020.2020Available from: https://www.medtechdive.com/news/insulin-pumps-among-millions-of-iot-devices-vulnerable-to-hacker-attacks/584043/
    [Google Scholar]
  88. Regulatory Compliance Laws On Data Privacy & Security. Available from: https://www.protecto.ai/blog/impact-of-regulatory-compliance-laws#:~:text=Regulatory%20compliance%20laws%20are%20essential,breach%20or%20other%20security%20incident (Accessed on 14 June 2024).
  89. KruseC.S. FrederickB. JacobsonT. MonticoneD.K. Cybersecurity in healthcare: A systematic review of modern threats and trends.Technol. Health Care201725111010.3233/THC‑16126327689562
    [Google Scholar]
  90. AIIMS delhi servers were hacked by Chinese, damage contained: Sources. 2010. Available from: ndtv.com
  91. Holloway, S. Irish cyberattack provides wake-up call for European imaging IT. Available from: https://www.auntminnieeurope.com/index.aspx?sec=sup&sub=pac&pag=dis&ItemID=620205
  92. SunT.Q. MedagliaR. Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare.Gov. Inf. Q.201936236838310.1016/j.giq.2018.09.008
    [Google Scholar]
  93. GüngörH. Creating value with artificial intelligence: A multi-stakeholder perspective.J. Creat. Value202061728510.1177/2394964320921071
    [Google Scholar]
  94. PuaschunderJ.M. Stakeholder perspectives on Artificial Intelligence (AI), robotics and big data in healthcare: An empirical study.SSRN Electron. J2019
    [Google Scholar]
  95. SullivanH.R. SchweikartS.J. Are current tort liability doctrines adequate for addressing injury caused by ai?AMA J. Ethics2019212E160E16610.1001/amajethics.2019.16030794126
    [Google Scholar]
  96. FeijóoC. KwonY. BauerJ.M. Harnessing artificial intelligence (AI) to increase wellbeing for all: the case for a new technology diplomacy.Telecomm. Policy202044610198810.1016/j.telpol.2020.101988
    [Google Scholar]
  97. ReddyS. WinterJ.S. PadmanabhanS. Artificial intelligence in healthcare-opportunities and challenges.J. Hosp. Manag. Health Policy202152310.21037/jhmhp‑21‑31
    [Google Scholar]
  98. NallamothuP.T. CuthrellK.M. Artificial intelligence in health sector: Current status and future perspectives.Asian J. Res. Comput. Sci.202315411410.9734/ajrcos/2023/v15i4325
    [Google Scholar]
  99. JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑00010129507784
    [Google Scholar]
  100. ChatterjeeS. DohanM.S. Artificial intelligence for healthcare in India: Policy initiatives, challenges, and recommendations.Int. J. Healthc. Inf. Syst. Inform.202116411110.4018/IJHISI.20211001.oa17
    [Google Scholar]
  101. GuoJ. LiB. The application of medical artificial intelligence technology in rural areas of developing countries.Health Equity20182117410.1089/heq.2018.0037
    [Google Scholar]
  102. PanagariyaD.A. The challenges and innovative solutions to rural health dilemmas.Ann. Neurosci.201421412512710.5214/ans.0972.7531.21040125452670
    [Google Scholar]
  103. AoC. JinS. DingH. ZouQ. YuL. Application and development of artificial intelligence and intelligent disease diagnosis.Curr. Pharm. Des.202026263069307510.2174/138161282666620033109115632228416
    [Google Scholar]
  104. NautiyalG. SharmaI. PandeyP. SharmaS.K. Autoimmune diseases: Recent insights on epidemiology, pathogenesis, and prevalence rate.Artificial intelligence and autoimmune diseases. Studies in computational intelligence;Springer: Singapore20241133335810.1007/978‑981‑99‑9029‑0_2
    [Google Scholar]
  105. Virtual reality and augmented reality group therapy for treating mental health, substance abuse, and developmental disorders.Patent US20190252080A12010
    [Google Scholar]
  106. Virtual reality behavioral health platform.Patent US20210090714A12010
    [Google Scholar]
  107. Techniques for treating mental health disorders using digital therapeutics.Patent US20210335498A12010
    [Google Scholar]
  108. Management of psychiatric or mental conditions using digital or augmented reality with personalized exposure progression.Patent WO2023102125A12010
    [Google Scholar]
  109. Deep learning medical systems and methods for medical procedures.Patent US10242443B22010
    [Google Scholar]
  110. Virtual reality behavioral health platform.Patent US20210090714A12010
    [Google Scholar]
  111. Methods and systems for providing digital therapeutics for treating mental health disorders using machine learning.Patent US20210335478A12010
    [Google Scholar]
  112. 16 surgical robotics companies you need to know. 2010. Available from: https://www.massdevice.com/16-surgical-robotics-companies-you-need-to-know/
  113. Endovascular Robotics - Siemens Healthineers - Siemens Healthineers India . 2010. Available from: siemens-healthineers.com (Accessed on 26 June, 2024
  114. Robotic X-ray imaging - Siemens Healthineers. 2010. Available from: siemens-healthineers.com (Accessed on 26 June, 2024
  115. Digital Transformation of Radiology - Siemens Healthineers. 2010. Available from: siemens-healthineers.com (Accessed on 26 June, 2024).
  116. Flex Robotics – Robotic Surgical 2010. Available from: robotics-surgical.com
  117. Technology. Available from: https://titanmedicalinc.com/
  118. MedTech. 2010. Available from: jnj.com
  119. OR3O Dual Mobility | Smith+Nephew Global. 2010. Available from: smith-nephew.com
  120. LEGION◊ CONCELOC◊ cementless total knee system. Available from https://www.smith-nephew.com/en/health-care-professionals/products/orthopaedics/legion-conceloc
/content/journals/lddd/10.2174/0115701808342987241216081153
Loading
/content/journals/lddd/10.2174/0115701808342987241216081153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test