Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Hypertension, a major risk factor for cardiovascular disease, is often managed with antihypertensive drugs. Medicinal plants are commonly used to control hypertension, and many studies assess their antihypertensive effects using the rat mesenteric vascular bed model.

Objective

This paper aims to highlight the value of the rat mesenteric vascular bed as a pharmacological model for evaluating the vascular effects of medicinal plants with traditional antihypertensive properties.

Methods

We reviewed 55 articles published between 1980 and 2022, using Scopus, PubMed, Web of Science, and Google Scholar databases, focusing on medicinal plants studied in the rat mesenteric vascular bed. Furthermore, we conducted a computational evaluation of the main vasorelaxant phytochemicals derived from these plants.

Results

We identified 63 species from 36 plant families evaluated in the mesenteric artery. Most of these plants showed varying degrees of vasorelaxation due to vasorelaxant phytochemicals. The mechanisms of vasorelaxation include angiotensin-converting enzyme inhibition, L-type voltage-gated calcium channel blockade, and activation of muscarinic (M3), and adrenergic (β2) receptors. These experimental findings were supported by computational studies, which confirmed the potent antihypertensive effect.

Conclusion

The rat mesenteric artery remains a valuable model for studying the vascular effects of plants and for developing new antihypertensive drugs.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808329640241115110836
2024-12-09
2025-09-27
Loading full text...

Full text loading...

References

  1. ChaachouayN. Herbal medicine used in the treatment of cardiovascular diseases in the Rif, North of Morocco.Front. Pharmacol.20221392191810.3389/fphar.2022.92191836034811
    [Google Scholar]
  2. El AchhabY. Prevalence, control and risk factors related to hypertension among Moroccan adults: A multicentre study.East. Mediterr. Health J.201925744745610.26719/emhj.18.05731612976
    [Google Scholar]
  3. BurtonA. SmithM. FalkenbergT.J.E.J.o.I.M. Building WHO’s global strategy for traditional medicine.Eur. J. Integr. Med.201571131510.1016/j.eujim.2014.12.007
    [Google Scholar]
  4. NoorF. Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals202215557210.3390/ph1505057235631398
    [Google Scholar]
  5. AekthammaratD. PannangpetchP. TangsucharitP.J.P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats.Phytomedicine20195491610.1016/j.phymed.2018.10.02330668387
    [Google Scholar]
  6. JohnsC. GavrasI. HandyD.E. SalomaoA. GavrasH. Models of experimental hypertension in mice.Hypertension19962861064106910.1161/01.HYP.28.6.10648952597
    [Google Scholar]
  7. KnoxM. VinetR. FuentesL. MoralesB. MartínezJ.L. A review of endothelium-dependent and-independent vasodilation induced by phytochemicals in isolated rat aorta.Animals20199962310.3390/ani909062331470540
    [Google Scholar]
  8. YamoriY. Possible involvement of androgen in increased norepinephrine synthesis in blood vessels of spontaneously hypertensive rats.Jpn. J. Pharmacol.198466443944410.1254/jjp.66.439
    [Google Scholar]
  9. HaddouS. Investigating the biological activities of moroccan Cannabis sativa L. seed extracts: Antimicrobial, anti-inflammatory, and antioxidant effects with molecular docking analysis.Morocan J. Chem.2023114897131810.48317/IMIST.PRSM/morjchem‑v11i04.42100
    [Google Scholar]
  10. Paredes-CarbajalC. Isolated aorta model and its contribution to phytopharmacology.Boletin Latinoamericano y del Caribe de plantas Medicinales y Aromaticas,20121113545
    [Google Scholar]
  11. VinetR. Modulation of alpha-adrenergic-induced contractions by endothelium-derived relaxing factor in rat aorta.Gen. Pharmacol.199122113714210.1016/0306‑3623(91)90324‑y1675615
    [Google Scholar]
  12. ChengY. NdisangJ.F. TangG. CaoK. WangR. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats.Am. J. Physiol. Heart Circ. Physiol.20042875H2316H232310.1152/ajpheart.00331.200415191893
    [Google Scholar]
  13. NaitoY. YoshidaH. KonishiC. OharaN. Differences in responses to norepinephrine and adenosine triphosphate in isolated, perfused mesenteric vascular beds between normotensive and spontaneously hypertensive rats.J. Cardiovasc. Pharmacol.199832580781810.1097/00005344‑199811000‑000189821856
    [Google Scholar]
  14. CalfíoC. Huidobro-ToroJ.P. Potent vasodilator and cellular antioxidant activity of endemic patagonian calafate berries (Berberis microphylla) with nutraceutical potential.Molecules20192415270010.3390/molecules2415270031349544
    [Google Scholar]
  15. DubeyM.P. SrimalR.C. NityanandS. DhawanB.N. Pharmacological studies on coleonol, a hypotensive diterpene from Coleus forskohlii.J. Ethnopharmacol.19813111310.1016/0378‑8741(81)90010‑67193263
    [Google Scholar]
  16. KanoY. Chemistry of ginger and dried ginger rhizome. J. Tradit. Sino-Jpn.Med198785156
    [Google Scholar]
  17. SuekawaM. AburadaM. HosoyaE.J.J. Pharmacological studies on ginger. II. Pressor action of (6)-shogaol in anesthetized rats, or hindquarters, tail and mesenteric vascular beds of rats.J. Pharmacobiodyn.198691084285210.1248/bpb1978.9.8423820061
    [Google Scholar]
  18. GuanY-Y. Inhibition of norepinephrine-induced contractile responses of canine mesenteric artery by plant total saponins. Blo.Vess.198825631231510.1159/0001587453203142
    [Google Scholar]
  19. KamataK. NoguchiM. NagaiM. Hypotensive effects of lithospermic acid B isolated from the extract of Salviae miltiorrhizae Radix in the rat.Gen. Pharmacol.1994251697310.1016/0306‑3623(94)90011‑68026714
    [Google Scholar]
  20. AnrepG.V. KenawyM.R. BarsoumG.S. The coronary vasodilator action of khellin.Am. Heart J.194937453154210.1016/0002‑8703(49)91131‑X18124896
    [Google Scholar]
  21. DuarteJ. TorresA.I. ZarzueloA. Cardiovascular effects of visnagin on rats.Planta Med.2000661353910.1055/s‑2000‑1110810705731
    [Google Scholar]
  22. GarcíaD. LeiroJ. DelgadoR. SanmartínM.L. UbeiraF.M. Mangifera indica L. extract (Vimang) and mangiferin modulate mouse humoral immune responses.Phytother. Res.200317101182118710.1002/ptr.133814669253
    [Google Scholar]
  23. BeltránA.E. AlvarezY. XavierF.E. HernanzR. RodriguezJ. NúñezA.J. AlonsoM.J. SalaicesM. Vascular effects of the Mangifera indica L. extract (Vimang).Eur. J. Pharmacol.2004499329730510.1016/j.ejphar.2004.07.07315381052
    [Google Scholar]
  24. AdaramoyeO.A. MedeirosI.A. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries.J. Smooth Muscle Res.2009451395310.1540/jsmr.45.3919377272
    [Google Scholar]
  25. SasakiY. SuzukiM. MatsumotoT. HosokawaT. KobayashiT. KamataK. NagumoS. Vasorelaxant activity of Sappan Lignum constituents and extracts on rat aorta and mesenteric artery.Biol. Pharm. Bull.20103391555156010.1248/bpb.33.155520823574
    [Google Scholar]
  26. HaamC.E. ByeonS. ChoiS. OhE.Y. ChoiS.K. LeeY.H. Vasorelaxant effect of Trachelospermi caulis extract on rat mesenteric resistance arteries.Molecules20222716530010.3390/molecules2716530036014534
    [Google Scholar]
  27. RaffaiG. KhangG. VanhoutteP.M. Vanillin and vanillin analogs relax porcine coronary and basilar arteries by inhibiting L-type Ca2+ channels.J. Pharmacol. Exp. Ther.20153521142210.1124/jpet.114.21793525344384
    [Google Scholar]
  28. Muccillo BaischA.L. JohnstonK.B. Paganini SteinF.L. Endothelium-dependent vasorelaxing activity of aqueous extracts of Ilex paraguariensis on mesenteric arterial bed of rats.J. Ethnopharmacol.199860213313910.1016/S0378‑8741(97)00140‑29582003
    [Google Scholar]
  29. GebaraK.S. Gasparotto-JuniorA. SantiagoP.G. CardosoC.A.L. de SouzaL.M. MorandC. CostaT.A. Cardozo-JuniorE.L. Daily intake of chlorogenic acids from consumption of maté (Ilex paraguariensis A. St.-Hil.) traditional beverages.J. Agric. Food Chem.20176546100931010010.1021/acs.jafc.7b0409329056047
    [Google Scholar]
  30. ChenZ.Y. ZhangZ.S. KwanK.Y. ZhuM. HoW.K.K. HuangY. Endothelium-dependent relaxation induced by hawthorn extract in rat mesenteric artery.Life Sci.199863221983199110.1016/S0024‑3205(98)00476‑79839542
    [Google Scholar]
  31. AttardE. AttardH. The potential angiotensin-converting enzyme inhibitory activity of oleanolic acid in the hydroethanolic extract of Crataegus monogyna Jacq.Nat. Prod. Commun.20061538138510.1177/1934578X0600100507
    [Google Scholar]
  32. FarrugiaD.L. Investigative study on the angiotensin converting enzyme (ACE) inhibiting properties of the terpenoid extract of Crataegus monogyna using in silico models.J. Pharmacogn. Phytother.201352343710.5897/JPP12.031
    [Google Scholar]
  33. GibbonsS. OriowoM.A. Antihypertensive effect of an aqueous extract of Zygophyllum coccineum L. in rats.Phytother. Res.200115545245510.1002/ptr.83611507744
    [Google Scholar]
  34. SalehN.A.M. El-HadidiM.N. An approach to the chemosystematics of the zygophyllaceae.Biochem. Syst. Ecol.19775212112810.1016/0305‑1978(77)90040‑0
    [Google Scholar]
  35. BalasuriyaN. RupasingheH.P.V. Antihypertensive properties of flavonoid-rich apple peel extract.Food Chem.201213542320232510.1016/j.foodchem.2012.07.02322980808
    [Google Scholar]
  36. de MouraR.S. VianaF.S.C. SouzaM A V. KovaryK. GuedesD.C. OliveiraE.P.B. RubenichL.M.S. CarvalhoL.C.R.M. OliveiraR.M. TanoT. CorreiaM.L.G. Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract.J. Pharm. Pharmacol.200254111515152010.1211/00223570215312495554
    [Google Scholar]
  37. NaderaliE.K. DoyleP.J. WilliamsG. Resveratrol induces vasorelaxation of mesenteric and uterine arteries from female guinea-pigs.Clin. Sci.200098553754310.1042/cs0980537
    [Google Scholar]
  38. de MouraR.S. CostaS.S. JansenJ.M. SilvaC.A. LopesC.S. Bernardo-FilhoM. da SilvaV.N. CriddleD.N. PortelaB.N. RubenichL.M.S. AraújoR.G. CarvalhoL.C.R.M. Bronchodilator activity of Mikania glomerata Sprengel on human bronchi and guinea-pig trachea.J. Pharm. Pharmacol.200254224925610.1211/002235702177827711858213
    [Google Scholar]
  39. RicardoL.M. BrandãoM.G. Mikania glomerata Spreng. & Mikania laevigata Sch. Bip. ex Baker. Medicinal and Aromatic Plants of South America.Springer201833734410.1007/978‑94‑024‑1552‑0_30
    [Google Scholar]
  40. HeJ.Y. ZhangW. HeL.C. CaoY.X. Imperatorin induces vasodilatation possibly via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release.Eur. J. Pharmacol.20075731-317017510.1016/j.ejphar.2007.06.04317662269
    [Google Scholar]
  41. ZhangY. WangQ.L. ZhanY.Z. DuanH.J. CaoY.J. HeL.C. Role of store-operated calcium entry in imperatorin-induced vasodilatation of rat small mesenteric artery.Eur. J. Pharmacol.20106471-312613110.1016/j.ejphar.2010.08.01020813104
    [Google Scholar]
  42. ZhangY. CaoY. WangQ. ZhengL. ZhangJ. HeL. A potential calcium antagonist and its antihypertensive effects.Fitoterapia201182798899610.1016/j.fitote.2011.05.01621679750
    [Google Scholar]
  43. OliveiraE.J. RomeroM.A. SilvaM.S. SilvaB.A. MedeirosI.A. Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin.Planta Med.200167760560810.1055/s‑2001‑1735511582535
    [Google Scholar]
  44. DeyamaT. NishibeS. KwanC-Y. ZhangW-B. Endothelium-dependent vascular relaxation induced by Eucommia ulmoides Oliv. bark extract is mediated by NO and EDHF in small vessels.Naunyn Schmiedebergs Arch. Pharmacol.2004369220621110.1007/s00210‑003‑0822‑414673511
    [Google Scholar]
  45. KwanC.Y. ChenC.X. DeyamaT. NishibeS. Endothelium-dependent vasorelaxant effects of the aqueous extracts of the Eucommia ulmoides Oliv. leaf and bark: Implications on their antihypertensive action.Vascul. Pharmacol.200340522923510.1016/j.vph.2003.09.00115259789
    [Google Scholar]
  46. WangC.Y. TangL. HeJ.W. LiJ. WangY.Z. Ethnobotany, phytochemistry and pharmacological properties of Eucommia ulmoides: A review.Am. J. Chin. Med.201947225930010.1142/S0192415X1950013730857406
    [Google Scholar]
  47. DeyamaT. NishibeS. KitagawaS. OgiharaY. TakedaT. OhmotoT. NikaidoT. SankawaU. Inhibition of adenosine 3′,5′-cyclic monophosphate phosphodiesterase by lignan glucosides of Eucommia bark.Chem. Pharm. Bull.198836143543910.1248/cpb.36.4352837341
    [Google Scholar]
  48. LozoyaX. EnriquezR. El zapote blanco; investigacion sobre una planta medicinal mexicana.TexasConsejo Nacional de Ciencia y Tecnología1981134
    [Google Scholar]
  49. Lozoya-LegorretaX. Rodríguez-ReynagaD. Ortega-GalvánJ. Enriquez-HabibR. Isolation of a hypotensive substance from seeds of Casimiroa edulis.Arch. Invest. Med.197894565573727850
    [Google Scholar]
  50. MagosG.A. VidrioH. ReynoldsW.F. EnríquezR.G. Pharmacology of Casimiroa edulis iv. hypotensive effects of compounds isolated from methanolic extracts in rats and guinea pigs.J. Ethnopharmacol.1998641354410.1016/S0378‑8741(98)00101‑910075120
    [Google Scholar]
  51. BertinR. ChenZ. Martínez-VázquezM. García-ArgaézA. FroldiG. Vasodilation and radical-scavenging activity of imperatorin and selected coumarinic and flavonoid compounds from genus Casimiroa.Phytomedicine201421558659410.1016/j.phymed.2013.10.03024309287
    [Google Scholar]
  52. DeviR.C. SimS.M. IsmailR. Effect of Cymbopogon citratus and citral on vascular smooth muscle of the isolated thoracic rat aorta.Evid. Based Complement. Alternat. Med.201220121810.1155/2012/53947522675383
    [Google Scholar]
  53. YamawakiH. SatoK. HoriM. OzakiH. KarakiH. Platelet‐derived growth factor causes endothelium‐independent relaxation of rabbit mesenteric artery via the release of a prostanoid.Br. J. Pharmacol.200013181546155210.1038/sj.bjp.070377111139430
    [Google Scholar]
  54. da SilvaM.A. de CarvalhoL.C.R.M. VictórioC.P. OgnibeneD.T. ResendeA.C. de SouzaM.A.V. Chemical composition and vasodilator activity of different Alpinia zerumbet leaf extracts, a potential source of bioactive flavonoids.Med. Chem. Res.202130112103211310.1007/s00044‑021‑02791‑w
    [Google Scholar]
  55. MangelsD.R. MohlerE.R.III Catechins as potential mediators of cardiovascular health.Arterioscler. Thromb. Vasc. Biol.201737575776310.1161/ATVBAHA.117.30904828336557
    [Google Scholar]
  56. ChenX.Q. HuT. HanY. HuangW. YuanH.B. ZhangY.T. DuY. JiangY.W. Preventive effects of catechins on cardiovascular disease.Molecules20162112175910.3390/molecules2112175928009849
    [Google Scholar]
  57. CoșarcăS. TanaseC. MunteanD.L. Therapeutic aspects of catechin and its derivatives–an update.Acta Biologica Marisiensis201921212910.2478/abmj‑2019‑0003
    [Google Scholar]
  58. NovakovicA. MarinkoM. JankovicG. StojanovicI. MilojevicP. NenezicD. KanjuhV. YangQ. HeG.W. Endothelium-dependent vasorelaxant effect of procyanidin B2 on human internal mammary artery.Eur. J. Pharmacol.2017807758110.1016/j.ejphar.2017.04.01528414054
    [Google Scholar]
  59. SantosM.R. NascimentoN.M. AntoniolliA.R. MedeirosI.A. Endothelium-derived factors and k+ channels are involved in the vasorelaxation induced by Sida cordifolia L. in the rat superior mesenteric artery.Pharmazie200661546646916724548
    [Google Scholar]
  60. SinghD.K. Ethno botanical approaches, pharmacological and phytochemical benefits of genus Sida used in traditional medicines.J. Med. Pharma. Alli. Sci.20211043304330910.22270/jmpas.V10I4.1185
    [Google Scholar]
  61. FerreiraH.C. SerraC.P. EndringerD.C. LemosV.S. BragaF.C. CortesS.F. Endothelium-dependent vasodilation induced by Hancornia speciosa in rat superior mesenteric artery.Phytomedicine2007147-847347810.1016/j.phymed.2006.11.00817174539
    [Google Scholar]
  62. Edelvio de BarrosG. A rapid method for determination of some phenolic acids in brazilian tropical fruits of mangaba (Hancornia speciosa Gomes) and Umbu (Spondias tuberosa Arruda Camara) by UPLC.J. Analyt. Sci. Meth. Instrum.2013030311010.4236/jasmi.2013.33A001
    [Google Scholar]
  63. SilvaG.C. BragaF.C. LimaM.P. PesqueroJ.L. LemosV.S. CortesS.F. Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO.J. Ethnopharmacol.2011137170971310.1016/j.jep.2011.06.03121756990
    [Google Scholar]
  64. RochaA.P.M. CarvalhoL.C.R.M. SousaM.A.V. MadeiraS.V.F. SousaP.J.C. TanoT. Schini-KerthV.B. ResendeA.C. Soares de MouraR. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (Açaí) extracts in mesenteric vascular bed of the rat.Vascul. Pharmacol.20074629710410.1016/j.vph.2006.08.41117049314
    [Google Scholar]
  65. PakdeechoteP. PrachaneyP. BerkbanW. KukongviriyapanU. KukongviriyapanV. KhrisanapantW. PhirawatthakulY. Vascular and antioxidant effects of an aqueous Mentha cordifolia extract in experimental N(G)-nitro-L-arginine methyl ester-induced hypertension.Z. Naturforsch. C J. Biosci.2014691-2354510.5560/znc.2012‑021224772821
    [Google Scholar]
  66. HasimunP. MulyaniY. YuliantiI. Antihypertensive activity and acute toxicity of turmeric (Curcuma longa L.) in L-NAME-induced hypertension animals.Curr. Res. Biosci. Biotech.20224124625010.5614/crbb.2022.4.1/B2AMBRI1
    [Google Scholar]
  67. ChenB.L. ChenY.Q. MaB.H. YuS.F. LiL.Y. ZengQ.X. ZhouY.T. WuY.F. LiuW. WanJ.B. YangY. LiC.W. Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL‐4Rα‐Jak1‐STAT6 and Jagged1/Jagged2 ‐Notch1/Notch2 pathways in asthmatic mice.Clin. Exp. Allergy201848111494150810.1111/cea.1325830137697
    [Google Scholar]
  68. SambanthamurthiR. TanY. SundramK. AbeywardenaM. SambandanT.G. RhaC. SinskeyA.J. SubramaniamK. LeowS.S. HayesK.C. Basri WahidM. Oil palm vegetation liquor: A new source of phenolic bioactives.Br. J. Nutr.2011106111655166310.1017/S000711451100212121736792
    [Google Scholar]
  69. JaffriJ.M. MohamedS. RohimiN. AhmadI.N. NoordinM.M. ManapY.A. Antihypertensive and cardiovascular effects of catechin-rich oil palm (Elaeis guineensis) leaf extract in nitric oxide-deficient rats.J. Med. Food2011147-877578310.1089/jmf.2010.117021631357
    [Google Scholar]
  70. De França-NetoA. Essential oil of Croton argyrophylloides: Toxicological aspects and vasorelaxant activity in rats.Nat. Prod. Commun.20127101397140010.1177/1934578X1200701040
    [Google Scholar]
  71. BaccelliC. MartinsenA. MorelN. Quetin-LeclercqJ. Vasorelaxant activity of essential oils from Croton zambesicus and some of their constituents.Planta Med.201076141506151110.1055/s‑0030‑124982020422508
    [Google Scholar]
  72. YorsinS. KanokwiroonK. RadenahmadN. JansakulC. Effects of Kaempferia parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat.J. Ethnopharmacol.201415616217410.1016/j.jep.2014.08.02025169213
    [Google Scholar]
  73. MekjaruskulC. JayM. SripanidkulchaiB. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats.Drug Metab. Dispos.201240122342235310.1124/dmd.112.04714222961680
    [Google Scholar]
  74. Tep-areenanP. SawasdeeP. RandallM. Possible mechanisms of vasorelaxation for 5,7‐dimethoxyflavone from Kaempferia parviflora in the rat aorta.Phytother. Res.201024101520152510.1002/ptr.316420878704
    [Google Scholar]
  75. TakirS. AltunI.H. SezgiB. Süzgeç-SelçukS. MatA. Uydeş-DoǧanB.S. Vasorelaxant and blood pressure lowering effects of alchemilla vulgaris: A comparative study of methanol and aqueous extracts.Pharmacogn. Mag.2015114116316910.4103/0973‑1296.14973325709228
    [Google Scholar]
  76. GodfraindT. MillerR.C. Actions of prostaglandin F2 alpha and noradrenaline on calcium exchange and contraction in rat mesenteric arteries and their sensitivity to calcium entry blockers.Br. J. Pharmacol.198275122923610.1111/j.1476‑5381.1982.tb08777.x6951620
    [Google Scholar]
  77. TakırS. SezgiB. Süzgeç-SelçukS. Eroğlu-ÖzkanE. BeukelmanK.J. MatA. Uydeş-DoğanB.S. Endothelium-dependent vasorelaxant effect of Alchemilla vulgaris methanol extract: A comparison with the aqueous extract in rat aorta.Nat. Prod. Res.201428232182218510.1080/14786419.2014.92635224938755
    [Google Scholar]
  78. Pérez-VizcaínoF. IbarraM. CogolludoA.L. DuarteJ. Zaragozá-ArnáezF. MorenoL. López-LópezG. TamargoJ. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries.J. Pharmacol. Exp. Ther.20023021667210.1124/jpet.302.1.6612065701
    [Google Scholar]
  79. PaloziR.A.C. Roles of nitric oxide and prostaglandins in the sustained antihypertensive effects of acanthospermum hispidum dc. on ovariectomized rats with renovascular hypertension.Evid. Based Complement. Alternat. Med.20172017249248310.1155/2017/249248329234376
    [Google Scholar]
  80. LiG. WangX. YangH. ZhangP. WuF. LiY. ZhouY. ZhangX. MaH. ZhangW. LiJ. α-Linolenic acid but not linolenic acid protects against hypertension: Critical role of SIRT3 and autophagic flux.Cell Death Dis.20201128310.1038/s41419‑020‑2277‑732015327
    [Google Scholar]
  81. OyagbemiA.A. OmobowaleT.O. AdejumobiO.A. OwolabiA.M. OgunpoluB.S. FalayiO.O. HassanF.O. OgunmiluyiI.O. AsenugaE.R. Ola-DaviesO.E. SoetanK.O. SabaA.B. AdedapoA.A. NkadimengS.M. McGawL.J. OguntibejuO.O. YakubuM.A. Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/angiotensin converting enzyme (ACE)/kidney injury molecule (Kim-1) signaling pathway.Eur. J. Pharmacol.202088017314210.1016/j.ejphar.2020.17314232422184
    [Google Scholar]
  82. WangZ. WangS. ZhaoJ. YuC. HuY. TuY. YangZ. ZhengJ. WangY. GaoY. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of renin-angiotensin system components in rats.Int. J. Med. Sci.201916564465310.7150/ijms.3107531217731
    [Google Scholar]
  83. WisutthathumS. ChootipK. MartinH. IngkaninanK. TemkitthawonP. TotosonP. DemougeotC. Vasorelaxant and hypotensive effects of an ethanolic extract of Eulophia macrobulbon and its main compound 1-(4′-hydroxybenzyl)-4, 8-dimethoxyphenanthrene-2, 7-diol.Front. Pharmacol.2018948410.3389/fphar.2018.0048429872393
    [Google Scholar]
  84. ChalopinM. TesseA. MartínezM.C. RognanD. ArnalJ.F. AndriantsitohainaR. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium.PLoS One201051e855410.1371/journal.pone.000855420049322
    [Google Scholar]
  85. Gasparotto JuniorA. dos Reis PiornedoR. AssreuyJ. Da Silva-SantosJ.E. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats.Eur. J. Pharmacol.201678832833410.1016/j.ejphar.2016.08.00627497881
    [Google Scholar]
  86. HouX. LiuY. NiuL. CuiL. ZhangM. Enhancement of voltage-gated K+ channels and depression of voltage-gated Ca2+ channels are involved in quercetin-induced vasorelaxation in rat coronary artery.Planta Med.201480646547210.1055/s‑0034‑136832024710898
    [Google Scholar]
  87. MahobiyaA. SinghT.U. RungsungS. KumarT. ChandrasekaranG. ParidaS. KumarD. Kaempferol-induces vasorelaxation via endothelium-independent pathways in rat isolated pulmonary artery.Pharmacol. Rep.201870586387410.1016/j.pharep.2018.03.00630092416
    [Google Scholar]
  88. XiaoH.B. Jun-Fang; Lu, X.Y.; Chen, X.; Chao-Tan; Sun, Z.L. Protective effects of kaempferol against endothelial damage by an improvement in nitric oxide production and a decrease in asymmetric dimethylarginine level.Eur. J. Pharmacol.20096161-321322210.1016/j.ejphar.2009.06.02219549512
    [Google Scholar]
  89. AlsayedA.M.A. ZhangB.L. BredelouxP. Boudesocque-DelayeL. YuA. PeineauN. Enguehard-GueiffierC. AhmedE.M. PasqualinC. MaupoilV. Aqueous fraction from Hibiscus sabdariffa relaxes mesenteric arteries of normotensive and hypertensive rats through calcium current reduction and possibly potassium channels modulation.Nutrients2020126178210.3390/nu1206178232549326
    [Google Scholar]
  90. Beltrán-DebónR. Alonso-VillaverdeC. AragonèsG. Rodríguez-MedinaI. RullA. MicolV. Segura-CarreteroA. Fernández-GutiérrezA. CampsJ. JovenJ. The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans.Phytomedicine2010173-418619110.1016/j.phymed.2009.08.00619765963
    [Google Scholar]
  91. PengC.H. ChyauC.C. ChanK.C. ChanT.H. WangC.J. HuangC.N. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance.J. Agric. Food Chem.201159189901990910.1021/jf202237921870884
    [Google Scholar]
  92. AekthammaratD. TangsucharitP. PannangpetchP. SriwantanaT. SibmoohN. Moringa oleifera leaf extract enhances endothelial nitric oxide production leading to relaxation of resistance artery and lowering of arterial blood pressure.Biomed. Pharmacother.202013011060510.1016/j.biopha.2020.11060532781358
    [Google Scholar]
  93. KumolosasiE. CheongM.L.C. Ahmad SalwanizamN.A. Muhammad EshamN.S.A. AyobQ.A. RamasamyR. GovindanH. Md RedzuanA. JasamaiM. Drug-herb interactions: Selected antihypertensive drugs with Moringa oleifera leaves extract.Sains Malays.20225141143115410.17576/jsm‑2022‑5104‑16
    [Google Scholar]
  94. ToloueiS.E.L. TirloniC.A.S. PaloziR.A.C. SchaedlerM.I. GuarnierL.P. SilvaA.O. de AlmeidaV.P. BudelJ.M. SouzaR.I.C. dos SantosA.C. dos SantosV.S. SilvaD.B. DalsenterP.R. Gasparotto JuniorA. Celosia argentea L. (Amaranthaceae) a vasodilator species from the Brazilian Cerrado: An ethnopharmacological report.J. Ethnopharmacol.201922911512610.1016/j.jep.2018.09.02730248350
    [Google Scholar]
  95. de Paula VasconcelosP.C. TirloniC.A.S. PaloziR.A.C. LeitãoM.M. CarneiroM.T.S. SchaedlerM.I. SilvaA.O. SouzaR.I.C. SalvadorM.J. JuniorA.G. KassuyaC.A.L. Diuretic herb Gomphrena celosioides Mart. (Amaranthaceae) promotes sustained arterial pressure reduction and protection from cardiac remodeling on rats with renovascular hypertension.J. Ethnopharmacol.201822412613310.1016/j.jep.2018.05.03629842964
    [Google Scholar]
  96. RiveraD.G. BalmasedaI.H. LeónA.Á. HernándezB.C. MontielL.M. GarridoG.G. HernándezR.D. CuzzocreaS. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin.J. Pharm. Pharmacol.200658338539210.1211/jpp.58.3.001416536907
    [Google Scholar]
  97. RunnieI. SallehM.N. MohamedS. HeadR.J. AbeywardenaM.Y. Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed.J. Ethnopharmacol.2004922-331131610.1016/j.jep.2004.03.01915138017
    [Google Scholar]
  98. da C.; Herculano, E.; Silva, J.; Paulino, E.; Bernardino, A.; Araújo-Júnior, J.; Sant’ana, A.; Salvador, M.; Ribeiro, Ê. Hypotensive, vasorelaxant and antihypertensive activities of the hexane extract of Anacardium occidentale Linn.Arch. Biol. Sci.201870345946810.2298/ABS171109006C
    [Google Scholar]
  99. GünaydınK. ErimF.J.J.o.C.A. Determination of khellin and visnagin in Ammi visnaga fruits by capillary electrophoresis.J. Chromatogr. A20029541-229129410.1016/s0021‑9673(02)00168‑112058914
    [Google Scholar]
  100. OliveiraM. Cardiovascular effects of the Aspidosperma macrocarpum leaves ethanol extract in rats.Pharmacologyonline20121102107
    [Google Scholar]
  101. KimN.D. KangS.Y. ParkJ.H. Schini-KerthV.B. Ginsenoside Rg3 mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: Role of K+ channels.Eur. J. Pharmacol.19993671414910.1016/S0014‑2999(98)00898‑X10082263
    [Google Scholar]
  102. SanadaS. Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro,-Rb1,-Rb2,-Rc and-Rd.J. Ginseng Res.197422242142810.1016/j.jgr.2014.12.005
    [Google Scholar]
  103. TanC.H. GhazaliH.M. KuntomA. TanC-P. AriffinA.A. Extraction and physicochemical properties of low free fatty acid crude palm oil.Food Chem.2009113264565010.1016/j.foodchem.2008.07.052
    [Google Scholar]
  104. ManeesaiP. PrasarttongP. BunbuphaS. KukongviriyapanU. KukongviriyapanV. TangsucharitP. PrachaneyP. PakdeechoteP. Synergistic antihypertensive effect of Carthamus tinctorius L. extract and captopril in L-NAME-induced hypertensive rats via restoration of eNOS and AT1R expression.Nutrients20168312210.3390/nu803012226938552
    [Google Scholar]
  105. Fatehi-HassanabadZ. JafarzadehM. TarhiniA. FatehiM. The antihypertensive and vasodilator effects of aqueous extract from Berberis vulgaris fruit on hypertensive rats.Phytother. Res.200519322222510.1002/ptr.166115934023
    [Google Scholar]
  106. ChongsaW. KanokwiroonK. JansakulC. Effects of 6 weeks oral administration of Phyllanthus acidus leaf water extract on the vascular functions of middle-aged male rats.J. Ethnopharmacol.2015176798910.1016/j.jep.2015.10.03026498492
    [Google Scholar]
  107. ChdaA. El KabbaouiM. FrescoP. SilvaD. GonçalvesJ. OliveiraA.P. AndradeP.B. ValentãoP. TaziA. El AbidaK. BencheikhR. Centaurium erythraea extracts exert vascular effects through endothelium-and fibroblast-dependent pathways.Planta Med.202086212113110.1055/a‑1023‑891831645066
    [Google Scholar]
  108. KangD.G. Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats.Life Sci.2004751518011816
    [Google Scholar]
  109. PiresA.F. MadeiraS.V.F. SoaresP.M.G. MontenegroC.M. SouzaE.P. ResendeA.C. Soares de MouraR. AssreuyA.M.S. CriddleD.N. The role of endothelium in the vasorelaxant effects of the essential oil of Ocimum gratissimum in aorta and mesenteric vascular bed of rats.Can. J. Physiol. Pharmacol.201290101380138510.1139/y2012‑09522716233
    [Google Scholar]
  110. KanneH. PrasannaV. BurteN.P. GujjulaR. Extraction and elemental analysis of Coleus forskohlii extract.Pharmacognosy Res.20157323724110.4103/0974‑8490.15796626130934
    [Google Scholar]
  111. NirmalN.P. RajputM.S. PrasadR.G.S.V. AhmadM. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review.Asian Pac. J. Trop. Med.20158642143010.1016/j.apjtm.2015.05.01426194825
    [Google Scholar]
  112. SchaedlerM.I. PaloziR.A.C. TirloniC.A.S. SilvaA.O. AraújoV.O. LourençoE.L.B. de SouzaL.M. LíveroF.A.R. Gasparotto JuniorA. Redox regulation and NO/cGMP plus K+ channel activation contributes to cardiorenal protection induced by Cuphea carthagenensis (Jacq.) J.F. Macbr. in ovariectomized hypertensive rats.Phytomedicine20185171910.1016/j.phymed.2018.05.01130466630
    [Google Scholar]
  113. TirloniC.A.S. PaloziR.A.C. SchaedlerM.I. GuarnierL.P. SilvaA.O. MarquesM.A. GasparottoF.M. LourençoE.L.B. de SouzaL.M. Gasparotto JuniorA. Influence of Luehea divaricata Mart. extracts on peripheral vascular resistance and the role of nitric oxide and both Ca+2-sensitive and Kir6.1 ATP-sensitive K+ channels in the vasodilatory effects of isovitexin on isolated perfused mesenteric beds.Phytomedicine201956748210.1016/j.phymed.2018.08.01430668356
    [Google Scholar]
  114. SeneM. DioufI. ToureM. Vasoactive properties of Ceiba pentandra in porcine coronary artery and different conductance and resistance vessels from rats: Arole of nitric oxide.Natl. J. Physiol. Pharm. Pharmacol.2019910110.5455/njppp.2019.9.0308007082019
    [Google Scholar]
  115. AekthammaratD. PannangpetchP. TangsucharitP. Moringa oleifera leaf extract induces vasorelaxation via endothelium-dependent hyperpolarization and calcium channel blockade in mesenteric arterial beds isolated from L-NAME hypertensive rats.Clin. Exp. Hypertens.202042649050110.1080/10641963.2020.171464031965874
    [Google Scholar]
  116. BahraniA.H.M. Effect of the administration of Psidium guava leaves on blood glucose, lipid profiles and sensitivity of the vascular mesenteric bed to Phenylephrine in streptozotocin-induced diabetic rats.J. Diabe. Melli.201220113814510.4236/jdm.2012.21023
    [Google Scholar]
  117. Hashim FauzyF. Piper sarmentosum leaves aqueous extract attenuates vascular endothelial dysfunction in spontaneously hypertensive rats.Evid. Based Complement. Alternat. Med.20192019719859210.1155/2019/719859231485247
    [Google Scholar]
  118. De MenezesI.A.C. MoreiraÍ.J.A. De PaulaJ.W.A. BlankA.F. AntoniolliA.R. Quintans-JúniorL.J. SantosM.R.V. Cardiovascular effects induced by Cymbopogon winterianus essential oil in rats: Involvement of calcium channels and vagal pathway.J. Pharm. Pharmacol.201062221522110.1211/jpp.62.02.000920487201
    [Google Scholar]
  119. BaischA.L.M. UrbanH. RuizA.N. Endothelium-dependent vasorelaxing activity of aqueous extracts of lyophilized seeds of Casimiroa edulis (AECe) on rat mesenteric arterial bed.J. Ethnopharmacol.2004952-316316710.1016/j.jep.2004.06.01815507330
    [Google Scholar]
  120. SohrabipourS. KharazmiF. SoltaniN. KamalinejadM. Effect of the administration of Solanum nigrum fruit on blood glucose, lipid profiles, and sensitivity of the vascular mesenteric bed to phenylephrine in streptozotocin-induced diabetic rats.Med. Sci. Monit. Basic Res.20131913314010.12659/MSMBR.88389223660828
    [Google Scholar]
  121. ToloueiS.E.L. PaloziR.A.C. TirloniC.A.S. MarquesA.A.M. SchaedlerM.I. GuarnierL.P. SilvaA.O. De AlmeidaV.P. Manfron BudelJ. SouzaR.I.C. dos SantosA.C. SilvaD.B. LourençoE.L.B. DalsenterP.R. Gasparotto JuniorA. Ethnopharmacological approaches to Talinum paniculatum (Jacq.) Gaertn. - Exploring cardiorenal effects from the Brazilian Cerrado.J. Ethnopharmacol.201923811187310.1016/j.jep.2019.11187330986519
    [Google Scholar]
  122. MachadoC.D. KliderL.M. TirloniC.A.S. MarquesA.A.M. LorençoneB.R. BatistaL.P. RomãoP.V.M. PaloziR.A.C. GuarnierL.P. SouzaR.I.C. dos SantosA.C. SilvaD.B. RamanV. GasparottoA. BudelJ.M. Ethnopharmacological investigations of the leaves of Cecropia pachystachya Trécul (Urticaceae): A native Brazilian tree species.J. Ethnopharmacol.202127011374010.1016/j.jep.2020.11374033388429
    [Google Scholar]
  123. MarquesA.A.M. LorençoneB.R. RomãoP.V.M. GuarnierL.P. PaloziR.A.C. MorenoK.G.T. TirloniC.A.S. dos SantosA.C. SouzaR.I.C. KliderL.M. LourençoE.L.B. ToloueiS.E.L. BudelJ.M. KhanS.I. SilvaD.B. Gasparotto JuniorA. Ethnopharmacological investigation of the cardiovascular effects of the ethanol-soluble fraction of Aloysia polystachya (Griseb.) Moldenke leaves in spontaneously hypertensive rats.J. Ethnopharmacol.202127411407710.1016/j.jep.2021.11407733789140
    [Google Scholar]
  124. OkS. JeongW.S. Optimization of extraction conditions for the 6-shogaol-rich extract from ginger (Zingiber officinale Roscoe).Prev. Nutr. Food Sci.201217216617110.3746/pnf.2012.17.2.16624471079
    [Google Scholar]
  125. de MouraR.S. EmilianoA.F. de CarvalhoL.C.R.M. SouzaM.A.V. GuedesD.C. TanoT. ResendeA.C. Antihypertensive and endothelium-dependent vasodilator effects of Alpinia zerumbet, a medicinal plant.J. Cardiovasc. Pharmacol.200546328829410.1097/01.fjc.0000175239.26326.4716116333
    [Google Scholar]
  126. MenezesI.A.C. Cardiovascular effects and acute toxicity of the aqueous extract of Costus spicatus leaves (Zingiberaceae).Biol. General Exper.200771913
    [Google Scholar]
  127. AdaramoyeO.A. MedeirosI.A. Involvement of Na+-Ca2+ exchanger in the endothelium-independent vasorelaxation induced by Curcuma longa L. in isolated rat superior mesenteric arteries.J. Smooth Muscle Res.200844515115810.1540/jsmr.44.15119122379
    [Google Scholar]
  128. PopuriA.K. PagalaB. Extraction of curcumin from turmeric roots.Int. J. Innov. Res. Stud.20132289299
    [Google Scholar]
  129. PakdeechoteP. Curcumin decreases vascular responses to sympathetic nerve stimulation in mesenteric vascular beds of normotensive and hypertensive rats. Srinagar.Med. J.2014293243249
    [Google Scholar]
  130. HaamC.E. ByeonS. ChoiS.J. LimS. ChoiS.K. LeeY.H. Vasodilatory effect of Alpinia officinarum extract in rat mesenteric arteries.Molecules2022279271110.3390/molecules2709271135566064
    [Google Scholar]
  131. GibbonsS. OriowoM.J.P.R. Antihypertensive effect of an aqueous extract of Zygophyllum coccineum L. in rats.200115545245510.1002/ptr.83611507744
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808329640241115110836
Loading
/content/journals/lddd/10.2174/0115701808329640241115110836
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test