Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Hepatic cancer, an aggressive tumour that often develops along with cirrhosis and chronic liver disease like infections with the hepatitis B and hepatitis C viruses, while non-alcoholic steatohepatitis, is linked to metabolic syndrome or diabetes mellitus. It is the third most prevalent cause of cancer-related mortality globally and ranks fifth in cancer incidence. According to GLOBOCON, the prevalence is expected to rise by 55.0% and the fatalities by 56.4% in the near future.

Objective

The present review offered natural plant-based substances and compounds having curative effects on liver cancer, along with novel drug delivery systems and nanocarrier-based therapies.

Methods

The literature has been taken from PubMed, Google Scholar, SciFinder, Springer Nature, Bentham Science, PLOS one, or other internet sites.

Results

Treatment for heterogeneous malignancy is multidimensional, and care guidelines differ depending on the specialty and location. Several nutritional herbal remedies and their active phytoconstituents may have an abundance of impacts on the management of liver cancer, including preventing the growth and spread of tumor cells, shielding the body from liver carcinogens, boosting the effects of chemotherapy and immunomodulating the body.

Conclusion

The treatment of liver cancer involves multidisciplinary and multimodel therapy. The literature is a compilation of extract, compounds, and novel approaches like nanoparticles, microsphere, liposomes, niosomes, phytosomes and microparticles. These approaches not only manage cancer but also boost the immunity of the individuals.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808334721241111073635
2024-11-14
2025-08-16
Loading full text...

Full text loading...

References

  1. UpadhyayA. Cancer: An unknown territory; rethinking before going ahead.Genes Dis.20218565566110.1016/j.gendis.2020.09.002
    [Google Scholar]
  2. BurrellR.A. McGranahanN. BartekJ. SwantonC. The causes and consequences of genetic heterogeneity in cancer evolution.Nature2013501746733834510.1038/nature12625
    [Google Scholar]
  3. Ben-DavidU. BeroukhimR. GolubT.R. Genomic evolution of cancer models: Perils and opportunities.Nat. Rev. Cancer20191929710910.1038/s41568‑018‑0095‑3
    [Google Scholar]
  4. DiamandisE.P. Oncogenes and tumor suppressor genes: New biochemical tests.Crit. Rev. Clin. Lab. Sci.1992293-426930510.3109/10408369209114603
    [Google Scholar]
  5. FerlayJ. ColombetM. SoerjomataramI. DybaT. RandiG. BettioM. GavinA. VisserO. BrayF. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018.Eur. J. Cancer201810335638710.1016/j.ejca.2018.07.005
    [Google Scholar]
  6. El-SeragH.B. RudolphK.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis.Gastroenterology200713272557257610.1053/j.gastro.2007.04.061
    [Google Scholar]
  7. ParkinD.M. The global health burden of infection‐associated cancers in the year 2002.Int. J. Cancer2006118123030304410.1002/ijc.21731
    [Google Scholar]
  8. AlbertsC.J. CliffordG.M. GeorgesD. NegroF. LesiO.A. HutinY.J.F. de MartelC. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: A systematic review.Lancet Gastroenterol. Hepatol.20227872473510.1016/S2468‑1253(22)00050‑4
    [Google Scholar]
  9. ChoiS. KimB.K. YonD.K. LeeS.W. LeeH.G. ChangH.H. ParkS. KoyanagiA. JacobL. DragiotiE. RaduaJ. ShinJ.I. KimS.U. SmithL. Global burden of primary liver cancer and its association with underlying aetiologies, sociodemographic status, and sex differences from 1990–2019: A DALY-based analysis of the global burden of disease 2019 study.Clin. Mol. Hepatol.202329243345210.3350/cmh.2022.0316
    [Google Scholar]
  10. El-SeragH.B. Hepatocellular carcinoma.N. Engl. J. Med.2011365121118112710.1056/NEJMra1001683
    [Google Scholar]
  11. DengZ. XuX.Y. YunitaF. ZhouQ. WuY.R. HuY.X. WangZ.Q. TianX.F. Synergistic anti-liver cancer effects of curcumin and total ginsenosides.World J. Gastrointest. Oncol.202012101091110310.4251/wjgo.v12.i10.1091
    [Google Scholar]
  12. ChowA.K.M. YauS.W.L. NgL. Novel molecular targets in hepatocellular carcinoma.World J. Clin. Oncol.202011858960510.5306/wjco.v11.i8.589
    [Google Scholar]
  13. JonesN.P. SchulzeA. Targeting cancer metabolism – aiming at a tumour’s sweet-spot.Drug Discov. Today2012175-623224110.1016/j.drudis.2011.12.017
    [Google Scholar]
  14. HuangX.F. LinY.Y. KongL.Y. Steroids from the roots of Asparagus officinalis and their cytotoxic activity.J. Integr. Plant Biol.200850671772210.1111/j.1744‑7909.2008.00651.x
    [Google Scholar]
  15. GullN. ArshadF. NaikooG.A. HassanI.U. PedramM.Z. AhmadA. AljabaliA.A.A. MishraV. SatijaS. CharbeN. NegiP. GoyalR. Serrano-ArocaÁ. Al ZoubiM.S. El-TananiM. TambuwalaM.M. Recent advances in anticancer activity of novel plant extracts and compounds from Curcuma longa in Hepatocellular Carcinoma.J. Gastrointest. Cancer202354236839010.1007/s12029‑022‑00809‑z
    [Google Scholar]
  16. ZhouY. LiY. ZhouT. ZhengJ. LiS. LiH.B. Dietary natural products for prevention and treatment of liver cancer.Nutrients20168315610.3390/nu8030156
    [Google Scholar]
  17. RawatD. ShrivastavaS. NaikR.A. ChhonkerS.K. MehrotraA. KoiriR.K. An overview of natural plant products in the treatment of Hepatocellular Carcinoma.Anticancer. Agents Med. Chem.201918131838185910.2174/1871520618666180604085612
    [Google Scholar]
  18. Doran BrubakerS. WardJ.W. HiebertL. MorganR.L. Developing an evidence base for the delivery of hepatitis B virus birth dose vaccination: An evidence map and critical appraisal of systematic reviews and guidelines.Clin. Liver Dis. (Hoboken)202117537538110.1002/cld.1103
    [Google Scholar]
  19. DikshitR. GuptaP.C. RamasundarahettigeC. GajalakshmiV. AleksandrowiczL. BadweR. KumarR. RoyS. SuraweeraW. BrayF. MallathM. SinghP.K. SinhaD.N. ShetA.S. GelbandH. JhaP. Cancer mortality in India: A nationally representative survey.Lancet201237998281807181610.1016/S0140‑6736(12)60358‑4
    [Google Scholar]
  20. PaulS.B. SreenivasV. GulatiM.S. MadanK. GuptaA.K. MukhopadhyayS. PandaS.K. AcharyaS.K. Acharya, Incidence of hepatocellular carcinoma among Indian patients with cirrhosis of liver: An experience from a tertiary care center in northern India.Indian J. Gastroenterol.2007266274278
    [Google Scholar]
  21. GalbraithJ.W. FrancoR.A. DonnellyJ.P. RodgersJ.B. MorganJ.M. VilesA.F. OvertonE.T. SaagM.S. WangH.E. Unrecognized chronic hepatitis C virus infection among baby boomers in the emergency department.Hepatology201561377678210.1002/hep.27410
    [Google Scholar]
  22. LavanchyD. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures.J. Viral Hepat.20041129710710.1046/j.1365‑2893.2003.00487.x
    [Google Scholar]
  23. American Cancer Society Facts & Figures 2021.Atlanta, GAAmerican Cancer Society2021
    [Google Scholar]
  24. RumgayH. ArnoldM. FerlayJ. LesiO. CabasagC.J. VignatJ. LaversanneM. McGlynnK.A. SoerjomataramI. Global burden of primary liver cancer in 2020 and predictions to 2040.J. Hepatol.20227761598160610.1016/j.jhep.2022.08.021
    [Google Scholar]
  25. TuratiF. GaleoneC. RotaM. PelucchiC. NegriE. BagnardiV. CorraoG. BoffettaP. La VecchiaC. Alcohol and liver cancer: A systematic review and meta-analysis of prospective studies.Ann. Oncol.20142581526153510.1093/annonc/mdu020
    [Google Scholar]
  26. OgbuU.C. ArahO.A. World Health Organization.Int Encycl Public Heal201610.1016/B978‑0‑12‑803678‑5.00499‑9
    [Google Scholar]
  27. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  28. AschaM.S. HanounehI.A. LopezR. TamimiT.A.R. FeldsteinA.F. ZeinN.N. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis.Hepatology20105161972197810.1002/hep.23527
    [Google Scholar]
  29. ChangM.H. YouS.L. ChenC.J. LiuC.J. LeeC.M. LinS.M. ChuH.C. WuT.C. YangS.S. KuoH.S. ChenD.S. Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: A 20-year follow-up study.J. Natl. Cancer Inst.2009101191348135510.1093/jnci/djp288
    [Google Scholar]
  30. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.001
    [Google Scholar]
  31. HamaguchiT. IizukaN. TsunedomiR. HamamotoY. MiyamotoT. IidaM. TokuhisaY. SakamotoK. TakashimaM. TamesaT. OkaM. Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma.Int. J. Oncol.200833725731
    [Google Scholar]
  32. ThorgeirssonS.S. GrishamJ.W. Molecular pathogenesis of human hepatocellular carcinoma.Nat. Genet.200231433934610.1038/ng0802‑339
    [Google Scholar]
  33. SchulzeK. ImbeaudS. LetouzéE. AlexandrovL.B. CalderaroJ. RebouissouS. CouchyG. MeillerC. ShindeJ. SoysouvanhF. CalatayudA.L. PinyolR. PelletierL. BalabaudC. LaurentA. BlancJ.F. MazzaferroV. CalvoF. VillanuevaA. NaultJ.C. Bioulac-SageP. StrattonM.R. LlovetJ.M. Zucman-RossiJ. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.Nat. Genet.201547550551110.1038/ng.3252
    [Google Scholar]
  34. FurutaM. TanakaH. ShiraishiY. UchidaT. ImamuraM. FujimotoA. FujitaM. Sasaki-OkuA. MaejimaK. NakanoK. KawakamiY. ArihiroK. AikataH. UenoM. HayamiS. AriizumiS-I. YamamotoM. GotohK. OhdanH. YamaueH. MiyanoS. ChayamaK. NakagawaH. Characterization of HBV integration patterns and timing in liver cancer and HBV-infected livers.Oncotarget2018938250752508810.18632/oncotarget.25308
    [Google Scholar]
  35. VillanuevaA. LueddeT. The transition from inflammation to cancer in the liver.Clin. Liver Dis. (Hoboken)201684899310.1002/cld.578
    [Google Scholar]
  36. KremsdorfD. SoussanP. Paterlini-BrechotP. BrechotC. Hepatitis B virus-related hepatocellular carcinoma: Paradigms for viral-related human carcinogenesis.Oncogene200625273823383310.1038/sj.onc.1209559
    [Google Scholar]
  37. GaoF. LiangH. LuH. WangJ. XiaM. YuanZ. YaoY. WangT. TanX. LaurenceA. XuH. YuJ. XiaoW. ChenW. ZhouM. ZhangX. ChenQ. ChenX. Global analysis of DNA methylation in hepatocellular carcinoma by a liquid hybridization capture-based bisulfite sequencing approach.Clin. Epigenetics2015718610.1186/s13148‑015‑0121‑1
    [Google Scholar]
  38. FaraziP.A. DePinhoR.A. Hepatocellular carcinoma pathogenesis: From genes to environment.Nat. Rev. Cancer20066967468710.1038/nrc1934
    [Google Scholar]
  39. ZhangX. ZhengQ. YueX. YuanZ. LingJ. YuanY. LiangY. SunA. LiuY. LiH. XuK. HeF. WangJ. WuJ. ZhaoC. TianC. ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation.J. Exp. Clin. Cancer Res.20224117910.1186/s13046‑022‑02288‑3
    [Google Scholar]
  40. GnanapradeepanK. BasuS. BarnoudT. Budina-KolometsA. KungC.P. MurphyM.E. The p53 tumor suppressor in the control of metabolism and Ferroptosis.Front. Endocrinol. (Lausanne)2018912410.3389/fendo.2018.00124
    [Google Scholar]
  41. TümenD. HeumannP. GülowK. DemirciC.N. CosmaL.S. MüllerM. KandulskiA. Pathogenesis and current treatment strategies of Hepatocellular Carcinoma.Biomedicines20221012320210.3390/biomedicines10123202
    [Google Scholar]
  42. GhanaatiH. AlavianS.M. JafarianA. DaryaniN.E. Nassiri-ToosiM. JalaliA.H. ShakibaM. Imaging and imaging-guided interventions in the diagnosis and management of Hepatocellular Carcinoma (HCC)-review of evidence.Iran. J. Radiol.20129416717710.5812/iranjradiol.8242
    [Google Scholar]
  43. ChoiB.I. KimA.Y. LeeJ.Y. KimK.W. LeeK.H. KimT.K. HanJ.K. Hepatocellular carcinoma.J. Ultrasound Med.2002211778410.7863/jum.2002.21.1.77
    [Google Scholar]
  44. KoitoK. NamienoT. MoritaK. Differential diagnosis of small hepatocellular carcinoma and adenomatous hyperplasia with power Doppler sonography.AJR Am. J. Roentgenol.1998170115716110.2214/ajr.170.1.9423624
    [Google Scholar]
  45. BialeckiE.S. Di BisceglieA.M. Diagnosis of hepatocellular carcinoma.HPB (Oxford)200571263410.1080/13651820410024049
    [Google Scholar]
  46. BrancatelliG. BaronR.L. PetersonM.S. MarshW. Helical CT screening for hepatocellular carcinoma in patients with cirrhosis: Frequency and causes of false-positive interpretation.AJR Am. J. Roentgenol.200318041007101410.2214/ajr.180.4.1801007
    [Google Scholar]
  47. OliverJ.H.III BaronR.L. FederleM.P. RocketteH.E. Jr Detecting hepatocellular carcinoma: value of unenhanced or arterial phase CT imaging or both used in conjunction with conventional portal venous phase contrast-enhanced CT imaging.AJR Am. J. Roentgenol.19961671717710.2214/ajr.167.1.8659425
    [Google Scholar]
  48. SzklarukJ. SilvermanP.M. CharnsangavejC. Imaging in the diagnosis, staging, treatment, and surveillance of hepatocellular carcinoma.AJR Am. J. Roentgenol.2003180244145410.2214/ajr.180.2.1800441
    [Google Scholar]
  49. KrinskyG.A. LeeV.S. TheiseN.D. WeinrebJ.C. RofskyN.M. DifloT. TepermanL.W. Hepatocellular carcinoma and dysplastic nodules in patients with cirrhosis: Prospective diagnosis with MR imaging and explantation correlation.Radiology2001219244545410.1148/radiology.219.2.r01ma40445
    [Google Scholar]
  50. YuJ.S. KimM.J. Hepatocellular carcinoma: Contrast-enhanced MRI.Abdom. Imaging200227215716710.1007/s00261‑001‑0092‑x
    [Google Scholar]
  51. BruixJ. CastellsA. CalvetX. FeuF. BruC. SoleC. Diarrhea as a presenting symptom of hepatocellular carcinoma.Dig. Dis. Sci.19903568168510.1007/BF01540166
    [Google Scholar]
  52. McIntireK.R. VogelC.L. PrimackA. WaldmannT.A. KyalwaziS.K. Effect of surgical and chemotherapeutic treatment on alpha‐fetoprotein levels in patients with hepatocellular carcinoma.Cancer19763767768310.1002/1097‑0142(197602)37:2<677::AID‑CNCR2820370211>3.0.CO;2‑T
    [Google Scholar]
  53. BorzioM. BorzioF. MacchiR. CroceA.M. BrunoS. FerrariA. ServidaE. The evaluation of fine-needle procedures for the diagnosis of focal liver lesions in cirrhosis.J. Hepatol.199420111712110.1016/S0168‑8278(05)80477‑5
    [Google Scholar]
  54. RobbinsS.S. KumarV. Basic pathology, (4th).WB Saunders1987598
    [Google Scholar]
  55. ParkC. ChoiS.I. KimH. YooH.S. LeeY.B. Distribution of lipiodol in Hepatocellular CarcinomaLiver199010727810.1111/j.1600‑0676.1990.tb00439.x
    [Google Scholar]
  56. LeeM.S. RyooB.Y. HsuC.H. NumataK. SteinS. VerretW. HackS.P. SpahnJ. LiuB. AbdullahH. WangY. HeA.R. LeeK-H. BangY-J. BendellJ. ChaoY. ChenJ-S. ChungH.C. DavisS.L. DevA. GaneE. GeorgeB. HeA.R. HochsterH. HsuC-H. IkedaM. LeeJ. LeeM. MahipalA. ManjiG. MorimotoM. NumataK. PishvaianM. QinS. RyanD. RyooB-Y. SasahiraN. SteinS. StricklerJ. TebbuttN. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study.Lancet Oncol.202021680882010.1016/S1470‑2045(20)30156‑X
    [Google Scholar]
  57. TohyamaO. MatsuiJ. KodamaK. Hata-SugiN. KimuraT. OkamotoK. MinoshimaY. IwataM. FunahashiY. Antitumor activity of Lenvatinib (E7080): An angiogenesis inhibitor that targets multiple Receptor Tyrosine kinases in preclinical human thyroid cancer models.J. Thyroid Res.2014201411310.1155/2014/638747
    [Google Scholar]
  58. AoM. XiaoX. AoY.Z. Observation on effect and adverse reactions of thalidomide combined with kanglite injections in treating primary liver cancer.Doctor20173791010.19604/j.cnki.dys.2017.07.005
    [Google Scholar]
  59. YangJ. LiX. XueY. WangN. LiuW. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice.Int. J. Biol. Macromol.20146427628010.1016/j.ijbiomac.2013.11.033
    [Google Scholar]
  60. RamosS. AlíaM. BravoL. GoyaL. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2).J. Agric. Food Chem.20055341271128010.1021/jf0490798
    [Google Scholar]
  61. RaviF. TavaniA. BosettiC. BoffettaP. VecchiaL.C. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: A systematic review and meta-analysis of prospective studies.Eur. J. Cancer Prev.2017265368377
    [Google Scholar]
  62. ChatterjeeS.J. OvadjeP. MousaM. HammC. PandeyS. The efficacy of dandelion root extract in inducing apoptosis in drug resistant human melanoma cells.Evid. Based Complement. Alternat. Med.20112011112904510.1155/2011/129045
    [Google Scholar]
  63. FengL.L. LiuB.X. ZhongJ.Y. SunL.B. YuH.S. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models.Asian Pac. J. Cancer Prev.201415273774110.7314/APJCP.2014.15.2.737
    [Google Scholar]
  64. JoJ.Y. Gonzalez de MejiaE. LilaM.A. Effects of grape cell culture extracts on human topoisomerase II catalytic activity and characterization of active fractions.J. Agric. Food Chem.20055372489249810.1021/jf048524w
    [Google Scholar]
  65. SreepriyaM. BaliG. Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats.Fitoterapia200576654955510.1016/j.fitote.2005.04.014
    [Google Scholar]
  66. FriedmanM. LevinC.E. LeeS.U. KimH.J. LeeI.S. ByunJ.O. KozukueN. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells.J. Agric. Food Chem.200957135727573310.1021/jf900364j
    [Google Scholar]
  67. JiangS. ChenY. WangM. YinY. PanY. GuB. YuG. LiY. WongB.H.C. LiangY. SunH. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N -acetylglucosamine.Biochem. J.2012443236937810.1042/BJ20112061
    [Google Scholar]
  68. LiuQ. ZhaoS. MengF. WangH. SunL. LiG. Nrf2 down-regulation by camptothecin favors inhibiting invasion, metastasis and angiogenesis in hepatocellular carcinoma.Front. Oncol.20211110.3389/fonc.2021.661157
    [Google Scholar]
  69. LiuQ.D. BaiT.Y. WangY.F. YaoY. Effect of combined use of quercetin and rosmarinic acid on proliferation and apoptosis of HepG2 cells in vitro.Anhui Med Pharmaceut.2020240917051707
    [Google Scholar]
  70. DaiM. ChenN. LiJ. TanL. LiX. WenJ. LeiL. GuoD. In vitro and in vivo anti-metastatic effect of the alkaliod matrine from Sophora flavecens on hepatocellular carcinoma and its mechanisms.Phytomedicine20218715358010.1016/j.phymed.2021.153580
    [Google Scholar]
  71. ChenY.Y. Effect of EGCG derivative Y6 on anti-angiogenesis and synergistic attenuated daunorubicin anti-hepatocarcinoma and its mechanism in vivo.Guangxi Med University2018
    [Google Scholar]
  72. HeX. LiuR.H. Cranberry phytochemicals: Isolation, structure elucidation, and their antiproliferative and antioxidant activities.J. Agric. Food Chem.200654197069707410.1021/jf061058l
    [Google Scholar]
  73. LinS. ZhuangJ. ZhuL. JiangZ. Matrine inhibits cell growth, migration, invasion and promotes autophagy in hepatocellular carcinoma by regulation of circ_0027345/miR-345-5p/HOXD3 axis.Cancer Cell Int.202020124610.1186/s12935‑020‑01293‑w
    [Google Scholar]
  74. BaiJ. WuJ. TangR. SunC. JiJ. YinZ. MaG. YangW. Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR2 and miR-34a.Invest. New Drugs202038222924510.1007/s10637‑019‑00777‑5
    [Google Scholar]
  75. JinZ.L. YanW. QuM. GeC.Z. ChenX. ZhangS.F. Cinchonine activates endoplasmic reticulum stress-induced apoptosis in human liver cancer cells.Exp. Ther. Med.20181565046505010.3892/etm.2018.6005
    [Google Scholar]
  76. PanL. FengF. WuJ. LiL. XuH. YangL. XuK. WangC. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma.Food Funct.20211223120361204610.1039/D1FO02111G
    [Google Scholar]
  77. NgK.T.P. GuoD.Y. ChengQ. GengW. LingC.C. LiC.X. LiuX.B. MaY.Y. LoC.M. PoonR.T.P. FanS.T. ManK. A garlic derivative, Sallylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma.PLoS One201272e3165510.1371/journal.pone.0031655
    [Google Scholar]
  78. WuC.H. HoY.S. TsaiC.Y. WangY.J. TsengH. WeiP.L. LeeC.H. LiuR.S. LinS.Y. In vitro and in vivo study of phloretin‐induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter.Int. J. Cancer200912492210221910.1002/ijc.24189
    [Google Scholar]
  79. EdrisA. Anti-cancer properties of Nigella spp. essential oils and their major constituents, thymoquinone and β-elemene.Curr. Clin. Pharmacol.200941434610.2174/157488409787236137
    [Google Scholar]
  80. LiH. DuG. YangL. PangL. ZhanY. The antitumor effects of britanin on hepatocellular carcinoma cells and its real-time evaluation by in vivo Bioluminescence imaging.Anticancer. Agents Med. Chem.20202091147115610.2174/1871520620666200227092623
    [Google Scholar]
  81. RoyG. GuanS. LiuH. ZhangL. rotundic acid induces DNA damage and cell death in hepatocellular Carcinoma through AKT/mTOR and MAPK pathways.Front. Oncol.2019954510.3389/fonc.2019.00545
    [Google Scholar]
  82. LiuT. MaH. ShiW. DuanJ. WangY. ZhangC. LiC. LinJ. LiS. LvJ. LinL. Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma.Int. J. Oncol.201751255556210.3892/ijo.2017.4035
    [Google Scholar]
  83. Badr El-DinN.K. AliD.A. OthmanR. FrenchS.W. GhoneumM. Chemopreventive role of arabinoxylan rice bran, MGN-3/Biobran, on liver carcinogenesis in rats.Biomed. Pharmacother.202012611006410.1016/j.biopha.2020.110064
    [Google Scholar]
  84. SongJ. ZhaoZ. FanX. ChenM. ChengX. ZhangD. WuF. YingX. JiJ. Shikonin potentiates the effect of arsenic trioxide against human hepatocellular carcinoma in vitro and in vivo.Oncotarget20167437050470515
    [Google Scholar]
  85. BasuA. NampornT. RuenraroengsakP. Critical review in designing plant-based anticancer nanoparticles against Hepatocellular Carcinoma.Pharmaceutics2023156161110.3390/pharmaceutics15061611
    [Google Scholar]
  86. LeeE.J. AnD. NguyenC.T.T. PatilB.S. KimJ. YooK.S. Betalain and betaine composition of greenhouse- or field-produced beetroot (Beta vulgaris L.) and inhibition of HepG2 cell proliferation.J. Agric. Food Chem.20146261324133110.1021/jf404648u
    [Google Scholar]
  87. HwangE.S. LeeH.J. Induction of quinone reductase by allylisothiocyanate (AITC) and the N-acetylcysteine conjugate of AITC in Hepa1c1c7 mouse hepatoma cells.Biofactors200626171510.1002/biof.5520260102
    [Google Scholar]
  88. ZhangX. DaiF. ChenJ. XieX. XuH. BaiC. QiaoW. ShenW. Antitumor effect of curcumin liposome after transcatheter arterial embolization in VX2 rabbits.Cancer Biol. Ther.201920564265210.1080/15384047.2018.1550567
    [Google Scholar]
  89. ZhaoX. ChenQ. LiY. TangH. LiuW. YangX. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice.Eur. J. Pharm. Biopharm.20159393273610.1016/j.ejpb.2015.03.003
    [Google Scholar]
  90. YangW. ZhangY. WangJ. LiH. YangH. Glycyrrhetinic acid-cyclodextrin grafted pullulan nanoparticles loaded doxorubicin as a liver targeted delivery carrier.Int. J. Biol. Macromol.202221678979810.1016/j.ijbiomac.2022.07.182
    [Google Scholar]
  91. GuhagarkarS.A. GaikwadR.V. SamadA. MalsheV.C. DevarajanP.V. Polyethylene sebacate–doxorubicin nanoparticles for hepatic targeting.Int. J. Pharm.20104011-211312210.1016/j.ijpharm.2010.09.012
    [Google Scholar]
  92. ShanmugasundaramT. RadhakrishnanM. GopikrishnanV. KadirveluK. BalagurunathanR. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: In vitro and in vivo perspectives.Nanoscale2017943167731679010.1039/C7NR04979J
    [Google Scholar]
  93. YinD. HuX. CaiM. WangK. PengH. BaiJ. XvY. FuT. DongX. NiJ. YinX. Preparation, characterization, and in vitro release of curcumin-loaded IRMOF-10 nanoparticles and investigation of their pro-apoptotic effects on human Hepatoma HepG2 cells.Molecules20222712394010.3390/molecules27123940
    [Google Scholar]
  94. ZhangY. ChenT. YuanP. TianR. HuW. TangY. JiaY. ZhangL. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells.Carbohydr. Polym.2015133313810.1016/j.carbpol.2015.06.102
    [Google Scholar]
  95. MaryT.A. ShanthiK. VimalaK. SoundarapandianK. PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism.RSC Advances2016627229362294910.1039/C5RA25109E
    [Google Scholar]
  96. PandeyP. RahmanM. BhattP.C. BegS. PaulB. HafeezA. Al-AbbasiF.A. NadeemM.S. BaothmanO. AnwarF. KumarV. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin.Nanomedicine (Lond.)201813884987010.2217/nnm‑2017‑0306
    [Google Scholar]
  97. XiaY. YouP. XuF. LiuJ. XingF. Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro.Nanoscale Res. Lett.201510134910.1186/s11671‑015‑1051‑8
    [Google Scholar]
  98. HashemA.H. SalemS.S. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity.Biotechnol. J.2022172210043210.1002/biot.202100432
    [Google Scholar]
  99. HanafyN. DiniL. CittiC. CannazzaG. LeporattiS. Inihibition of glycolysis by using a micro/nano-lipid bromopyruvic chitosan carrier as a promising tool to improve treatment of Hepatocellular Carcinoma.Nanomaterials (Basel)2018813410.3390/nano8010034
    [Google Scholar]
  100. ZuoJ. TongL. DuL. YangM. JinY. Biomimetic nanoassemblies of 1- O -octodecyl-2-conjugated linoleoyl-sn-glycero-3-phosphatidyl gemcitabine with phospholipase A 2 -triggered degradation for the treatment of cancer.Colloids Surf. B Biointerfaces201715246747410.1016/j.colsurfb.2017.02.001
    [Google Scholar]
  101. HuX. ZhangJ. DengL. HuH. HuJ. ZhengG. Galactose-modified PH-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of Tanshinone IIA.AAPS PharmSciTech20212239610.1208/s12249‑021‑01973‑4
    [Google Scholar]
  102. TuY.S. SunD.M. ZhangJ.J. JiangZ.Q. ChenY.X. ZengX.H. HuangD.E. YaoN. Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity.J. Microencapsul.201431430731610.3109/02652048.2013.843727
    [Google Scholar]
  103. ZhuH. ZhouW. WanY. LuJ. GeK. JiaC. Delivery of Adriamycin loaded niosomes for liver cancer treatment.J. Biomed. Nanotechnol.20221871763176910.1166/jbn.2022.3390
    [Google Scholar]
  104. DineshJ. Quercetin and Silymarin loaded Niosomal formulation with synergistic effect on Hep G2 cell lines.Lat. Am. J. Pharm.2023423
    [Google Scholar]
  105. Ergi̇nA.D. OltuluÇ. TürkerN.P. Demi̇rbolatG.M. In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: Fabrication, characterization and cell culture studies.Turk. J. Med. Sci.202353487288210.55730/1300‑0144.5651
    [Google Scholar]
  106. Pérez-LópezA. Martín-SabrosoC. Gómez-LázaroL. Torres-SuárezA.I. Aparicio-BlancoJ. Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation.Acta Biomater.202214911510.1016/j.actbio.2022.07.019
    [Google Scholar]
  107. MizukamiY. MoriyaA. TakahashiY. ShimizuK. KonishiS. TakakuraY. NishikawaM. Incorporation of Gelatin Microspheres into HepG2 human Hepatocyte Spheroids for functional improvement through improved oxygen supply to spheroid core.Biol. Pharm. Bull.20204381220122510.1248/bpb.b20‑00141
    [Google Scholar]
  108. WangH. ZhangY. TianZ. MaJ. KangM. DingC. MingD. Preparation of β-CD-Ellagic acid Microspheres and their effects on HepG2 Cell proliferation.Molecules20172212217510.3390/molecules22122175
    [Google Scholar]
  109. LiX. HeG. SuF. ChuZ. XuL. ZhangY. ZhouJ. DingY. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma.Asian J. Pharm. Sci.202015673975110.1016/j.ajps.2020.01.001
    [Google Scholar]
  110. ChoiJ.W. ParkJ.H. BaekS.Y. KimD.D. KimH.C. ChoH.J. Doxorubicin-loaded poly(lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor.Colloids Surf. B Biointerfaces201513230531210.1016/j.colsurfb.2015.05.037
    [Google Scholar]
  111. LeeS.Y. ChoiJ.W. LeeJ.Y. KimD.D. KimH.C. ChoH.J. Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor.Drug Deliv.20182511472148310.1080/10717544.2018.1480673
    [Google Scholar]
  112. ChoiJ.W. ParkJ.H. ChoH.R. ChungJ.W. KimD.D. KimH.C. ChoH.J. Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor.Sci. Rep.20177155410.1038/s41598‑017‑00709‑4
    [Google Scholar]
  113. ChenJ. WhiteS.B. HarrisK.R. LiW. YapJ.W.T. KimD.H. LewandowskiR.J. SheaL.D. LarsonA.C. Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model.Biomaterials20156129930610.1016/j.biomaterials.2015.05.010
    [Google Scholar]
  114. GuanX. GaoM. XuH. ZhangC. LiuH. LvL. DengS. GaoD. TianY. Quercetin-loaded poly (lactic-co-glycolic acid)- D -α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer.Drug Deliv.20162393307331810.1080/10717544.2016.1176087
    [Google Scholar]
  115. WahabR. KhanF. KaushikN. KaushikN.K. NguyenL.N. ChoiE.H. SiddiquiM.A. FarshoriN.N. SaquibQ. AhmadJ. Al-KhedhairyA.A. L-cysteine embedded core-shell ZnO microspheres composed of nanoclusters enhances anticancer activity against liver and breast cancer cells.Toxicol. In Vitro20228510546010.1016/j.tiv.2022.105460
    [Google Scholar]
  116. HeT. WangW. ChenB. WangJ. LiangQ. ChenB. 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity.Carbohydr. Polym.202023611609410.1016/j.carbpol.2020.116094
    [Google Scholar]
  117. ChenM. LiR. LuX. DaiY. ChenT. XingY. XueL. DuanZ. ZhouW. LiJ. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols.Food Chem.202339813395310.1016/j.foodchem.2022.133953
    [Google Scholar]
  118. YueY. YangY. ShiL. WangZ. Basic research Suppression of human hepatocellular cancer cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis.Arch. Med. Sci.2015485686210.5114/aoms.2015.53306
    [Google Scholar]
  119. LiY. Wu, J.; Lu, Q.; Liu, X.; Wen, J.; Qi, X.; Liu, J.; Lian, B.; Zhang, B.; Sun, H.; Tian, G. GA&HA-Modified Liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of Hepatocellular Carcinoma.Int. J. Nanomedicine2022172559257510.2147/IJN.S366180
    [Google Scholar]
  120. WangX. DengL. CaiL. ZhangX. ZhengH. DengC. DuanX. ZhaoX. WeiY. ChenL. Preparation, characterization, pharmacokinetics, and bioactivity of honokiol‐in‐hydroxypropyl‐β‐cyclodextrin‐in‐liposome.J. Pharm. Sci.201110083357336410.1002/jps.22534
    [Google Scholar]
  121. ElmowafyM. ViitalaT. IbrahimH.M. Abu-ElyazidS.K. SamyA. KassemA. YliperttulaM. Silymarin loaded liposomes for hepatic targeting: In vitro evaluation and HepG2 drug uptake.Eur. J. Pharm. Sci.201350216117110.1016/j.ejps.2013.06.012
    [Google Scholar]
  122. DinhC.T. VuH.T. PhanQ.T.H. NguyenL.P. TranT.Q. Van TranD. QuyN.N. PhamD.T.N. NguyenD.T. Synthesis of glycyrrhetinic acid-modified liposomes to deliver Murrayafoline A for treatment of hepatocellular carcinoma.J. Mater. Sci. Mater. Med.202233107210.1007/s10856‑022‑06692‑1
    [Google Scholar]
  123. YinX. XiaoY. HanL. ZhangB. WangT. SuZ. ZhangN. Ceramide-Fabricated Co-loaded liposomes for the synergistic treatment of Hepatocellular Carcinoma.AAPS PharmSciTech20181952133214310.1208/s12249‑018‑1005‑4
    [Google Scholar]
  124. SriramanS.K. PanJ. SarisozenC. LutherE. TorchilinV. Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: In Vitro Evaluation on HeLa, A2780-ADR, and H69-AR Cells.Mol. Pharm.201613242843710.1021/acs.molpharmaceut.5b00663
    [Google Scholar]
  125. LeeR.J. LeeR.J. Zhang; Yung; Li; Zhou, C.; Lee, L. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma.Int. J. Nanomedicine201275465547410.2147/IJN.S33965
    [Google Scholar]
  126. JiangJ.W. ChenX.M. ChenX.H. ZhengS.S. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway.World J. Gastroenterol.201117313605361310.3748/wjg.v17.i31.3605
    [Google Scholar]
  127. WangB. XuQ. ZhouC. LinY. Liposomes co-loaded with ursolic acid and ginsenoside Rg3 in the treatment of hepatocellular carcinoma.Acta Biochim. Pol.202168471171510.18388/abp.2020_5608
    [Google Scholar]
  128. QuagliarielloV. MasaroneM. ArmeniaE. GiudiceA. BarbarisiM. CaragliaM. BarbarisiA. PersicoM. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells.Oncol. Rep.20184131476148610.3892/or.2018.6932
    [Google Scholar]
  129. CamilleriJ.P. WilliamsA.S. AmosN. Douglas-JonesA.G. LoveW.G. WilliamsB.D. The effect of free and liposome-encapsulated clodronate on the hepatic mononuclear phagocyte system in the rat.Clin. Exp. Immunol.200899226927510.1111/j.1365‑2249.1995.tb05544.x
    [Google Scholar]
  130. Abdel-MegeedR.M. Abd El-AlimS.H. ArafaA.F. MatloubA.A. FarragA.E.R.H. DarwishA.B. Abdel- Hamid, A-H.Z.; Kadry, M.O. Crosslink among phosphatidylinositol-3 kinase/Akt, PTEN and STAT-5A signaling pathways post liposomal galactomannan hepatocellular carcinoma therapy.Toxicol. Rep.202071531154110.1016/j.toxrep.2020.10.018
    [Google Scholar]
  131. ZhangX. LinC.C. ChanW.K.N. LiuK.L. YangZ.J. ZhangH.Q. Augmented anticancer effects of cantharidin with liposomal encapsulation: In vitro and in vivo evaluation.Molecules2017227105210.3390/molecules22071052
    [Google Scholar]
  132. NeamatallahT. MalebariA.M. AlamoudiA.J. NazreenS. AlamM.M. Bin-MelaihH.H. AbuzinadahO.A. Badr-EldinS.M. AlhassaniG. MakkiL. NasrullahM.Z. Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells.Drug Deliv.2023301217420910.1080/10717544.2023.2174209
    [Google Scholar]
  133. KomeilI.A. El-RefaieW.M. GowayedM.A. El-GanainyS.O. El AchyS.N. HuttunenK.M. AbdallahO.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma.Int. J. Pharm.202160112056410.1016/j.ijpharm.2021.120564
    [Google Scholar]
  134. HouZ. LiY. HuangY. ZhouC. LinJ. WangY. CuiF. ZhouS. JiaM. YeS. ZhangQ. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery.Mol. Pharm.20131019010110.1021/mp300489p
    [Google Scholar]
  135. TengC.F. YuC.H. ChangH.Y. HsiehW.C. WuT.H. LinJ.H. WuH.C. JengL.B. SuI.J. Chemopreventive effect of Phytosomal Curcumin on hepatitis B virus-related Hepatocellular Carcinoma in a transgenic mouse model.Sci. Rep.2019911033810.1038/s41598‑019‑46891‑5
    [Google Scholar]
  136. La GrangeL. WangM. WatkinsR. OrtizD. SanchezM.E. KonstJ. LeeC. ReyesE. Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver.J. Ethnopharmacol.1999651536110.1016/S0378‑8741(98)00144‑5
    [Google Scholar]
  137. IntraJ. SalemA.K. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells.J. Drug Target.201119639340810.3109/1061186X.2010.504263
    [Google Scholar]
  138. ZhangH. ZhangW. JiangL. ChenY. Recent advances in systemic therapy for hepatocellular carcinoma.Biomark. Res.2022101310.1186/s40364‑021‑00350‑4
    [Google Scholar]
  139. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.01614
    [Google Scholar]
  140. WuH. WangM.D. LiangL. XingH. ZhangC.W. ShenF. HuangD.S. YangT. Nanotechnology for hepatocellular carcinoma: From surveillance, diagnosis to management.Small2021176200523610.1002/smll.202005236
    [Google Scholar]
  141. Farasati FarB. IsfahaniA.A. NasiriyanE. PourmolaeiA. MahmoudvandG. Karimi RouzbahaniA. Namiq AminM. Naimi-JamalM.R. An updated review on advances in hydrogel-based nanoparticles for liver cancer treatment.Livers20233216118910.3390/livers3020012
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808334721241111073635
Loading
/content/journals/lddd/10.2174/0115701808334721241111073635
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test