Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

A new set of 1,2,4-triazine combined 1, 2, 3-triazole hybrids were designed computationally for predicting anti-diabetic potential. All the derivatives taken for study exhibited excellent anti-diabetic potential with significant IC values.

Methods

The present research includes the development of pharmacophore models, 3D QSAR, virtual screening, molecular docking, and evaluation of models based on certain criteria. The DHRRR_1 showed the best pharmacophore model with a survival score of 5.9937. The 3D QSAR analysis developed a model with the values of R2 = 0.9714 and Q2 = 0.7202. The binding pose and affinity of the most potent compound, 10c, in the active site of α-glucosidase was investigated using molecular docking analysis.

Results

It was observed that compound 10c demonstrated promising binding affinity with a score of -8.078 kcal/mol and exhibited binding interaction with the essential amino acids ASN301 and LEU227. There were five compounds (1-5) that showed significant binding affinity towards the target comprising active amino acids (ASH202, ASP333 and VAL335). The molecular dynamic study showed the stability of ligand-protein binding interactions.

Conclusion

The results of the present investigation can accelerate the optimization and reformation of the latest anti-diabetic agents that target the α-glucosidase.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808350303241230081711
2025-01-08
2025-10-28
Loading full text...

Full text loading...

References

  1. LongoM. BellastellaG. MaiorinoM.I. MeierJ.J. EspositoK. GiuglianoD. Diabetes and aging: From treatment goals to pharmacologic therapy.Front. Endocrinol.2019104510.3389/fendo.2019.00045 30833929
    [Google Scholar]
  2. ChaudhuryA. DuvoorC. Reddy DendiV.S. KraletiS. ChadaA. RavillaR. MarcoA. ShekhawatN.S. MontalesM.T. KuriakoseK. SasapuA. BeebeA. PatilN. MushamC.K. LohaniG.P. MirzaW. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management.Front. Endocrinol.20178610.3389/fendo.2017.00006 28167928
    [Google Scholar]
  3. FarwaU. RazaM.A. Heterocyclic compounds as a magic bullet for diabetes mellitus: A review.RSC Advances20221235229512297310.1039/D2RA02697J 36105949
    [Google Scholar]
  4. SinghL.P. A review of heterocyclic compounds for anti-diabetic activity. System. Revi. Pharm. 202213410.31858/0975‑8453.13.6.410‑413
    [Google Scholar]
  5. BhatN. KumarA. KumarP. PaiA. A comprehensive review on the antidiabetic activity of oxadiazole derivatives.Res. J. Pharm. Technol.20231662771277510.52711/0974‑360X.2023.00455
    [Google Scholar]
  6. IrajiA. Shareghi-BrojeniD. MojtabaviS. FaramarziM.A. AkbarzadehT. SaeediM. Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: A new class of α-glucosidase inhibitors.Sci. Rep.2022121864710.1038/s41598‑022‑11771‑y 35606520
    [Google Scholar]
  7. SaeediM. Mohammadi-KhanaposhtaniM. AsgariM.S. EghbalnejadN. ImanparastS. FaramarziM.A. LarijaniB. MahdaviM. AkbarzadehT. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors.Bioorg. Med. Chem.2019272311514810.1016/j.bmc.2019.115148 31679980
    [Google Scholar]
  8. KumarH. DhamejaM. KurellaS. UmaA. GuptaP. Synthesis, in-vitro α-glucosidase inhibition and molecular docking studies of 1,3,4-thiadiazole-5,6-diphenyl-1,2,4-triazine hybrids: Potential leads in the search of new antidiabetic drugs.J. Mol. Struct.2023127313433910.1016/j.molstruc.2022.134339
    [Google Scholar]
  9. SaeediM. HadjiakhondiA. NabaviS. ManayiA. Heterocyclic compounds: Effective α-amylase and α-glucosidase inhibitors.Curr. Top. Med. Chem.201617442844010.2174/1568026616666160824104655 27558678
    [Google Scholar]
  10. KhanS.A. AkhtarM.J. GogoiU. MeenakshiD.U. DasA. An overview of 1,2,3-triazole-containing hybrids and their potential anticholinesterase activities.Pharmaceuticals (Basel)202316217910.3390/ph16020179 37259329
    [Google Scholar]
  11. NehraN. TittalR.K. GhuleV.D. 1,2,3-triazoles of 8-hydroxyquinoline and HBT: Synthesis and studies (DNA binding, antimicrobial, molecular docking, ADME, and DFT).ACS Omega2021641270892710010.1021/acsomega.1c03668 34693129
    [Google Scholar]
  12. KhanY. IqbalS. ShahM. MaalikA. HussainR. KhanS. KhanI. PashameahR.A. AlzahraniE. FaroukA.E. AlahmdiM.I. Abd-RabbohH.S.M. New quinoline-based triazole hybrid analogs as effective inhibitors of α-amylase and α-glucosidase: Preparation, in vitro evaluation, and molecular docking along with in silico studies.Front Chem.20221099582010.3389/fchem.2022.995820 36186602
    [Google Scholar]
  13. AroojM. KimS. SakkiahS. CaoG.P. LeeY. LeeK.W. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design.PLoS One201384e6274010.1371/journal.pone.0062740 23638140
    [Google Scholar]
  14. NassabC.N. AroojM. ShehadiI.A. ParambathJ.B.M. KananS.M. MohamedA.A. Lysozyme and human serum albumin proteins as potential nitric oxide cardiovascular drug carriers: Theoretical and experimental investigation.J. Phys. Chem. B2021125287750776210.1021/acs.jpcb.1c04614 34232651
    [Google Scholar]
  15. AroojM. SakkiahS. CaoG.P. KimS. ArulalapperumalV. LeeK.W. Finding off‐targets, biological pathways, and target diseases for chymase inhibitors via structure‐based systems biology approach.Proteins20158371209122410.1002/prot.24677 25143259
    [Google Scholar]
  16. ThangapandianS. JohnS. AroojM. LeeK.W. Molecular dynamics simulation study and hybrid pharmacophore model development in human LTA4H inhibitor design.PLoS One201274e3459310.1371/journal.pone.0034593 22496831
    [Google Scholar]
  17. BhattacharyaS. AsatiV. MishraM. DasR. KashawV. KashawS.K. Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents.J. Mol. Struct.2021122712951110.1016/j.molstruc.2020.129511
    [Google Scholar]
  18. BhattacharyaS. AsatiV. AliA. AliA. GuptaG.D. In-silico studies for the development of novel RET inhibitors for cancer treatment.J. Mol. Struct.2022125113204010.1016/j.molstruc.2021.132040
    [Google Scholar]
  19. SaeediM. Mohammadi-KhanaposhtaniM. PourrabiaP. RazzaghiN. GhadimiR. ImanparastS. FaramarziM.A. BandarianF. EsfahaniE.N. SafaviM. RastegarH. LarijaniB. MahdaviM. AkbarzadehT. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study.Bioorg. Chem.20198316116910.1016/j.bioorg.2018.10.023 30366316
    [Google Scholar]
  20. WangG. PengZ. WangJ. LiX. LiJ. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors.Eur. J. Med. Chem.201712542342910.1016/j.ejmech.2016.09.067 27689725
    [Google Scholar]
  21. AzamM.A. ThathanJ. JupudiS. Pharmacophore modeling, atom based 3D-QSAR, molecular docking and molecular dynamics studies on Escherichia coli ParE inhibitors.Comput. Biol. Chem.20208410719710.1016/j.compbiolchem.2019.107197 31901788
    [Google Scholar]
  22. AzamM.A. ThathanJ. Pharmacophore generation, atom-based 3D-QSAR and molecular dynamics simulation analyses of pyridine-3-carboxamide-6-yl-urea analogues as potential gyrase B inhibitors.SAR QSAR Environ. Res.201728427529610.1080/1062936X.2017.1310131 28399673
    [Google Scholar]
  23. BholeR.P. BondeC.G. BondeS.C. ChikhaleR.V. WavhaleR.D. Pharmacophore model and atom-based 3D quantitative structure activity relationship (QSAR) of human immunodeficiency virus-1 (HIV-1) capsid assembly inhibitors.J. Biomol. Struct. Dyn.202139271872710.1080/07391102.2020.1715258 31928140
    [Google Scholar]
  24. ShenX. GaiZ. KatoK. YaoM. 3WY1 Crystal structure of alpha-glucosidase.Acta Crystallogr.2015D171382139110.2210/pdb3wy1/pdb
    [Google Scholar]
  25. Schrödinger Release 2017-4: LigPrep.New York, NYSchrödinger, LLC201712910.12691/ajps‑9‑1‑1
    [Google Scholar]
  26. SakkiahS. ThangapandianS. JohnS. KwonY.J. LeeK.W. 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors.Eur. J. Med. Chem.20104562132214010.1016/j.ejmech.2010.01.016 20206418
    [Google Scholar]
  27. ShahU.A. DeokarH.S. KadamS.S. KulkarniV.M. Pharmacophore generation and atom-based 3D-QSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors.Mol. Divers.201014355956810.1007/s11030‑009‑9183‑3 19669924
    [Google Scholar]
  28. ThereseP.J. ManvarD. KondepudiS. BattuM.B. SriramD. BasuA. YogeeswariP. Kaushik-BasuN. Multiple e-pharmacophore modeling, 3D-QSAR, and high-throughput virtual screening of hepatitis C virus NS5B polymerase inhibitors.J. Chem. Inf. Model.201454253955210.1021/ci400644r 24460140
    [Google Scholar]
  29. GuoH. WangY. HeQ. ZhangY. HuY. WangY. LinZ. In silico rational design and virtual screening of antixoidant tripeptides based on 3D-QSAR modeling.J. Mol. Struct.2019119322323010.1016/j.molstruc.2019.05.002
    [Google Scholar]
  30. ChuH. HeQ. WangJ. HuY. WangY. LinZ. In silico design novel dihydropyrimio[4, 5-d]pyrimidine derivatives as inhibitors for colony-stimulating factor-1 receptor based on 3D-QSAR, molecular docking and molecular dynamics simulation.J. Mol. Struct.2020122012861710.1016/j.molstruc.2020.128617
    [Google Scholar]
  31. ElrayessR. Abdel AzizY.M. ElgawishM.S. ElewaM. ElshihawyH.A. SaidM.M. Pharmacophore modeling, 3D‐QSAR, synthesis, and anti‐lung cancer evaluation of novel thieno[2,3‐d][1,2,3]triazines targeting EGFR.Arch. Pharm.20203532190010810.1002/ardp.201900108 31894866
    [Google Scholar]
  32. PalS. KumarV. KunduB. BhattacharyaD. PreethyN. ReddyM.P. TalukdarA. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors.Comput. Struct. Biotechnol. J.20191729131010.1016/j.csbj.2019.02.006 30867893
    [Google Scholar]
  33. LilkovaE. The PyMol Molecular Graphics System, Version, 2.New York, NYSchrödinger, LLC201732032610.4236/jbise.2018.1111026
    [Google Scholar]
  34. LuoJ. LaiT. GuoT. ChenF. ZhangL. DingW. ZhangY. Synthesis and acaricidal activities of scopoletin phenolic ether derivatives: QSAR, molecular docking study and in silico ADME predictions.Molecules201823599510.3390/molecules23050995 29695088
    [Google Scholar]
  35. PanigrahiD. MishraA. SahuS.K. Pharmacophore modelling, QSAR study, molecular docking and in silico ADME prediction of 1,2,3-triazole and pyrazolopyridones as DprE1 inhibitor antitubercular agents.SN Applied. Sciences20202592210.1007/s42452‑020‑2638‑y
    [Google Scholar]
  36. VermaG. KhanM.F. AkhtarW. AlamM.M. AkhterM. AlamO. HasanS.M. ShaquiquzzamanM. Pharmacophore modeling, 3D-QSAR, docking and ADME prediction of quinazoline based EGFR inhibitors.Arab. J. Chem.20191284815483910.1016/j.arabjc.2016.09.019
    [Google Scholar]
  37. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  38. DaouiO. ElkhattabiS. BakhouchM. BelaidiS. BhandareR.R. ShaikA.B. MaliS.N. ChtitaS. A multi-step screening of small molecules based on cyclohexane-1,3-dione as inhibitors of NSCLC by targeting c-met receptor tyrosine kinases: Discovery and optimization of lead molecules in drug designing.ACS Omega2023844294431910.1021/acsomega.2c07585 36743017
    [Google Scholar]
  39. AbchirO. DaouiO. NourH. YamariI. ElkhattabiS. ErrouguiA. ChtitaS. Cannabis constituents as potential candidates for alpha-amylase inhibitor.Sci. Am.202321e0174510.1016/j.sciaf.2023.e01745
    [Google Scholar]
  40. YamariI. AbchirO. MaliS.N. ErrouguiA. TalbiM. KoualiM.E. ChtitaS. The anti-SARS-CoV-2 activity of novel 9, 10-dihydrophenanthrene derivatives: An insight into molecular docking, ADMET analysis, and molecular dynamics simulation.Sci. Am.202321e0175410.1016/j.sciaf.2023.e01754 37332393
    [Google Scholar]
  41. AbchirO. YamariI. NourH. DaouiO. ElkhattabiS. ErrouguiA. ChtitaS. Structure-based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates for the Alpha-amylase inhibitors.Chem. Sele.2023826e20230109210.1002/slct.202301092
    [Google Scholar]
  42. AbchirO. NourH. DaouiO. YamariI. ElKhattabiS. El KoualiM. TalbiM. ErrouguiA. ChtitaS. Structure-based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates for the SARS-CoV-2 inhibitors.Nat. Prod. Res.2023221810.1080/14786419.2023.2281002 37966948
    [Google Scholar]
  43. KhedraouiM. NourH. YamariI. AbchirO. ErrouguiA. ChtitaS. Design of a new potent Alzheimer’s disease inhibitor based on QSAR, molecular docking and molecular dynamics investigations.Chemical Physics Impact2023710036110.1016/j.chphi.2023.100361
    [Google Scholar]
  44. YamariI. MouhibA. Es-SounniB. NejjariR. MazoirN. BakhouchM. MouzdahirA. BenharrefA. El KoualiM. ChtitaS. Oxidative functionalization of triterpenes isolated from Euphorbia resinifera latex: Semisynthesis, ADME-Tox, molecular docking, and molecular dynamics simulations.Chem. Phys. Impa.2023710037210.1016/j.chphi.2023.100372
    [Google Scholar]
  45. Schrödinger. Desmond Molecular Dynamics System, release 2020-3 (Academic version).In: Maestro Desmond Interoperability Tools.New York, NYD. E. Shaw Research202019
    [Google Scholar]
  46. RoosK. WuC. DammW. ReboulM. StevensonJ.M. LuC. DahlgrenM.K. MondalS. ChenW. WangL. AbelR. FriesnerR.A. HarderE.D. OPLS3e: Extending force field coverage for drug-like small molecules.J. Chem. Theory Comput.20191531863187410.1021/acs.jctc.8b01026 30768902
    [Google Scholar]
  47. KhanM.F. VermaG. AkhtarW. ShaquiquzzamanM. AkhterM. RizviM.A. AlamM.M. Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1,3,4-thiadiazole amides and sulfonamides as antitubulin agents.Arab. J. Chem.20191285000501810.1016/j.arabjc.2016.11.004
    [Google Scholar]
  48. AllecS.I. SunY. SunJ. ChangC.A. WongB.M. Heterogeneous CPU+ GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems.J. Chem. Theory Comput.20191552807281510.1021/acs.jctc.8b01239 30916958
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808350303241230081711
Loading
/content/journals/lddd/10.2174/0115701808350303241230081711
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Anti-diabetic; atom-based QSAR; docking; glucosidase inhibitors; pharmacophore; triazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test