Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Object

Benzoinum is a traditional Chinese medicine used to treat ischemic stroke. However, the mechanism of action of benzoinum for treating ischemic stroke still remains unclear. This study aims to elucidate the mechanism of benzoinum for treating ischemic stroke based on network pharmacology and molecular docking, which will explore its key targets and provide a basis and new treatment ideas for its clinical application.

Methods

Targets associated with ischemic stroke were retrieved from the Genecards database using the keywords “Ischemic stroke” and “Cerebral ischemia.” Network pharmacology analysis was conducted, and a network diagram encompassing drugs, components, targets, and diseases was constructed. The analysis was performed using the Intelligent Network Pharmacology Platform Unique for Traditional Chinese Medicine (INPUT). PPI enrichment analysis was utilized to identify key target genes; GO and KEGG enrichment analyses were carried out to ascertain the primary biological processes, molecular functions, cellular components, and pathways involved. A target network diagram was generated to identify the most enriched targets. The interaction between compounds and targets was determined molecular docking.

Results

A total of 65 active ingredients from benzoinum were identified as potentially effective for the treatment of ischemic stroke. Potential active substances, oleanolic acid, 2,3,5,7-Tetrahydroxyflavone, naphthalene, eucalyptol, and benzoic acid were ranked according to their degree values. In addition, 226 targets were found to be involved in the process. The PPI topology analysis revealed that the core targets included TP53, JUN, STAT3, AKT1, PIK3CA, RELA, MAPK1, MAPK3, TNF, and CXCL8. GO enrichment analysis yielded 6807 entries, with 5589 entries in BP, 385 entries in CC, and 833 entries in MF. KEGG enrichment analysis resulted in 290 entries, primarily related to lipid and atherosclerosis, PI3K-Akt pathway, chemical carcinogenesis receptor activation, IL-17 pathway, and TNF pathway. Molecular docking also demonstrated the interactions between the principal compounds and their respective targets.

Conclusion

Benzoinum appears to exert therapeutic effects on ischemic stroke through multiple components, targets, and pathways, with a primary association with its anti-inflammatory properties. However, further experimental validation is recommended to more accurately define its active constituents and mechanisms of action.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808319838241126095412
2024-11-29
2025-09-27
Loading full text...

Full text loading...

References

  1. PaulS. Candelario-JalilE. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies.Exp. Neurol.202133511351810.1016/j.expneurol.2020.11351833144066
    [Google Scholar]
  2. DirnaglU. IadecolaC. MoskowitzM.A. Pathobiology of ischaemic stroke: An integrated view.Trends Neurosci.199922939139710.1016/S0166‑2236(99)01401‑010441299
    [Google Scholar]
  3. WuS. WuB. LiuM. ChenZ. WangW. AndersonC.S. SandercockP. WangY. HuangY. CuiL. Stroke in China: Advances and challenges in epidemiology, prevention, and management.Lancet Neurol.201918439440510.1016/S1474‑4422(18)30500‑330878104
    [Google Scholar]
  4. GropenT.I. GaglianoP.J. BlakeC.A. SaccoR.L. KwiatkowskiT. RichmondN.J. LeiferD. LibmanR. AzharS. DaleyM.B. Quality improvement in acute stroke.Neurology2006671889310.1212/01.wnl.0000223622.13641.6d16832083
    [Google Scholar]
  5. AugerN. ParadisG. LowN. AyoubA. HeS. PotterB.J. Cannabis use disorder and the future risk of cardiovascular disease in parous women: A longitudinal cohort study.BMC Med.202018132810.1186/s12916‑020‑01804‑633208143
    [Google Scholar]
  6. ShahM.A. KangJ.B. KimM.O. KohP.O. Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke.J. Vet. Sci.2022236e8410.4142/jvs.2220036259103
    [Google Scholar]
  7. PutaalaJ. Ischemic stroke in young adults.Continuum (Minneap. Minn.)202026238641410.1212/CON.000000000000083332224758
    [Google Scholar]
  8. TancrediL. Martinelli BoneschiF. BragaM. SantilliI. ScaccabarozziC. LattuadaP. SessaM. FumagalliL. IurlaroS. NeromanteI. De LodoviciM.L. RoccatagliataD.V. GiacaloneG. ArnaboldiM. CrespiV. AgostoniE. ComiG.C. FerrareseC. SterziR. Stroke care in young patients.Stroke Res. Treat.201320131710.1155/2013/71538023533963
    [Google Scholar]
  9. ZhangS.S. LiR.Q. ChenZ. WangX.Y. DumontA.S. FanX. Immune cells: Potential carriers or agents for drug delivery to the central nervous system.Mil. Med. Res.20241111910.1186/s40779‑024‑00521‑y38549161
    [Google Scholar]
  10. SunF. JinK. UteshevV.V. A type-II positive allosteric modulator of α7 nAChRs reduces brain injury and improves neurological function after focal cerebral ischemia in rats.PLoS One201388e7358110.1371/journal.pone.007358123951360
    [Google Scholar]
  11. WangY. MaC.S. DuX. HeL. LiJ. WangG.H. WenD. DongJ.Z. PanJ.H. LipG.Y.H. Thromboembolic risks associated with paroxysmal and persistent atrial fibrillation in Asian patients: A report from the Chinese atrial fibrillation registry.BMC Cardiovasc. Disord.201919128310.1186/s12872‑019‑1260‑731810439
    [Google Scholar]
  12. YiX. XuC. HuangP. ZhangL. QingT. LiJ. WangC. ZengT. LuJ. HanZ. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea protects the blood-brain barrier against ischemic injury by upregulating tight junction protein expression, mitigating apoptosis and inflammation in vivo and in vitro model.Front. Pharmacol.202011119710.3389/fphar.2020.0119732848796
    [Google Scholar]
  13. XiongZ.G. XuT.L. The role of ASICs in cerebral ischemia.Wiley Interdiscip. Rev. Membr. Transp. Signal.20121565566210.1002/wmts.5723181201
    [Google Scholar]
  14. MoroniF. ChiarugiA. Post‐ischemic brain damage: Targeting PARP‐1 within the ischemic neurovascular units as a realistic avenue to stroke treatment.FEBS J.20092761364510.1111/j.1742‑4658.2008.06768.x19087198
    [Google Scholar]
  15. NieH. TangZ-P. WuX. LiJ-R. FuY. ChenD-Y. From static to dynamic: Live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy.Neural Regen. Res.202318102093210710.4103/1673‑5374.36909937056116
    [Google Scholar]
  16. Le RoyL. LetondorA. Le RouxC. AmaraA. TimsitS. Cellular and molecular mechanisms of R/S-roscovitine and CDKs related inhibition under both focal and global cerebral ischemia: A focus on neurovascular unit and immune cells.Cells202110110410.3390/cells1001010433429982
    [Google Scholar]
  17. MengQ. MiY. HouY. Research progress on the anti-ischemic stroke of traditional Chinese medicine based on the protective effect of various components of neurovascular unit.Chin. Herb. Med.2021521754455454
    [Google Scholar]
  18. XieQ. LuD. YuanJ. RenM. LiY. WangJ. MaR. WangJ. 1‐borneol promotes neurovascular unit protection in the subacute phase of transient middle cerebral artery occlusion rats: p38‐MAPK pathway activation, anti‐inflammatory, and anti‐apoptotic effect.Phytother. Res.20233794166418410.1002/ptr.787837310024
    [Google Scholar]
  19. LengW. Treatment of 108 cases of acute apoplexy with Suhexiang pill.China J. Pharma. Econ.20124132133
    [Google Scholar]
  20. WangY. HuanC. ShumeiW. FengW. Research progress on pharmacological action of benzoinum.Asia Pac Tradit Med.2015114849
    [Google Scholar]
  21. GuoX. WangJ. XieQ. FuY. ChenH. LiH.Y. FanY.M. GongD.Y. The effects of benzoin on the prevention and treatment of cerebral ischemia in rats.Pharmacol. Clin. Chin. Mater. Med.201935778210.13412/j.cnki.zyyl.2019.06.017
    [Google Scholar]
  22. WenJ. WangJ. ChenN. LuoS. XieQ. MaX. Protective effect of benzoin on a rat model of permanent middle cerebral artery embolization and its mechanism.Zhongguo Yaolixue Tongbao2016321216831687
    [Google Scholar]
  23. NiC. ZengN. XuF. GouL. LiuJ. WangJ. XiaH. Effects of aromatic resuscitation drugs on blood brain barrier in cerebral ischemia-reperfusion injury model rats.Zhongguo Zhongyao Zazhi201136182562256622256767
    [Google Scholar]
  24. HuangP. XiaH. JiaF. HuangX.Y. NingZ.J. TangJ.J. WangJ. Effect of benzoin compatibility with synthetic borneol on cerebral ischemia and hypoxia and blood-brain barrier permeability in mice.Pharmacol. Clin. Chinese Materia Medica.2013295757810.13412/j.cnki.zyyl.2013.05.027
    [Google Scholar]
  25. XieQ. MaR. GuoX. ChenH. WangJ. Benzoinum from Styrax tonkinensis (Pierre) Craib ex Hart exerts a NVU protective effect by inhibiting cell apoptosis in cerebral ischaemia rats.J. Ethnopharmacol.202126511335510.1016/j.jep.2020.11335532891816
    [Google Scholar]
  26. ChenH. RenM. LiH. XieQ. MaR. LiY. GuoX. WangJ. GongD. GaoT. Neuroprotection of benzoinum in cerebral ischemia model rats via the ACE-AngI-VEGF pathway.Life Sci.202026011841810.1016/j.lfs.2020.11841832931799
    [Google Scholar]
  27. LiX. TangQ. MengF. DuP. ChenW. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine.Comput. Struct. Biotechnol. J.2022201345135110.1016/j.csbj.2022.03.00635356545
    [Google Scholar]
  28. ChenW. LiuX. ZhangS. ChenS. Artificial intelligence for drug discovery: Resources, methods, and applications.Mol. Ther. Nucleic Acids20233169170210.1016/j.omtn.2023.02.01936923950
    [Google Scholar]
  29. LuZ. YangC. KongX. GaoZ. ZhangT. Research progress on the mechanism of action of traditional Chinese medicine in the treatment of cerebral ischemia and reperfusion injury.Zhongguo Shiyan Fangjixue Zazhi2021272423524210.13422/j.cnki.syfjx.20212405
    [Google Scholar]
  30. ZhangZ. LuT. LiS. ZhaoR. LiH. ZhangX. LiY. XiaY. NiG. Acupuncture extended the thrombolysis window by suppressing blood–brain barrier disruption and regulating autophagy–apoptosis balance after ischemic stroke.Brain Sci.202414439910.3390/brainsci1404039938672048
    [Google Scholar]
  31. LongX. LiuL. ZhaoQ. XuX. LiuP. ZhangG. LinJ. Comprehensive analysis of tripterine anti-ovarian cancer effects using weighted gene co-expression network analysis and molecular docking.Med. Sci. Monit.202127e93213910.12659/MSM.93213935022380
    [Google Scholar]
  32. BuX. BuB. ZhangG. BuR.C. TangF.B. QinB.J. MaiW. ZhongY.M. Network pharmacological analysis of Buyang Huanwu decoction for the protection of acute spinal cord injury. Mod. Trad. Chin. Med. Materia Medica - World Sci.Technol.20242602375389
    [Google Scholar]
  33. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  34. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in traditional Chinese medicine: A narrative review.J. Tradit. Chin. Med.202242347948610.19852/j.cnki.jtcm.20220408.00335610020
    [Google Scholar]
  35. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules20071338426205061
    [Google Scholar]
  36. QueW. WuZ. ChenM. ZhangB. YouC. LinH. ZhaoZ. LiuM. QiuH. ChengY. Molecular mechanism of Gelsemium elegans (Gardner and Champ.) benth.Front. Pharmacol.20221279293210.3389/fphar.2021.79293235046814
    [Google Scholar]
  37. LiuY. TanD. CuiH. WangJ. Ganoderic acid C2 exerts the pharmacological effects against cyclophosphamide-induced immunosuppression: A study involving molecular docking and experimental validation.Sci. Rep.20231311774510.1038/s41598‑023‑44394‑y37853057
    [Google Scholar]
  38. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  39. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  40. ZhengX. HuangL. XieG. Neuroprotective effect and mechanism of oleanolic acid on cerebral ischemia-reperfusion rats.Mod. Prat. Med.202133121551
    [Google Scholar]
  41. ZhaoF. PengC. LiH. ChenH. YangY. AiQ. ChenN. LiuF. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway.J. Ethnopharmacol.202331511656710.1016/j.jep.2023.11656737172921
    [Google Scholar]
  42. LinK. ZhangZ. ZhangZ. ZhuP. JiangX. WangY. DengQ. Lam YungK.K. ZhangS. Oleanolic acid alleviates cerebral ischemia/reperfusion injury via regulation of the GSK-3β/HO-1 signaling pathway.Pharmaceuticals (Basel)2021151110.3390/ph1501000135056059
    [Google Scholar]
  43. ShiY. SunL. JiX. ShiR. XuF. GuJ. Neuroprotective effects of oleanolic acid against cerebral ischemia-reperfusion injury in mice.Exp. Neurol.202134311378510.1016/j.expneurol.2021.11378534153323
    [Google Scholar]
  44. JinQ. LiJ. ChenG.Y. WuZ.Y. LiuX.Y. LiuY. ChenL. WuX.Y. LiuY. ZhaoX. SongY.H. Network and experimental pharmacology to decode the action of wendan decoction against generalized anxiety disorder.Drug Des. Devel. Ther.2022163297331410.2147/DDDT.S36787136193286
    [Google Scholar]
  45. WeiS. XiaoJ. JuF. LiuJ. HuZ. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine.Front. Pharmacol.202415135323410.3389/fphar.2024.135323438746009
    [Google Scholar]
  46. LiJ. DongS. QuanS. DingS. ZhouX. YuY. WuY. HuangW. ShiQ. LiQ. Nuciferine reduces inflammation induced by cerebral ischemia-reperfusion injury through the PI3K/Akt/NF-κB pathway.Phytomedicine202412515531210.1016/j.phymed.2023.15531238232541
    [Google Scholar]
  47. LiuT. WangW. LiX. ChenY. MuF. WenA. LiuM. DingY. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling.Phytother. Res.202337125509552810.1002/ptr.799437641491
    [Google Scholar]
  48. QuY. LiuY. ZhuY. ChenL. SunW. ZhuY. Epoxyeicosatrienoic acid inhibits the apoptosis of cerebral microvascular smooth muscle cells by oxygen glucose deprivation via targeting the JNK/c-Jun and mTOR signaling pathways.Mol. Cells2017401183784610.14348/molcells.2017.008429081082
    [Google Scholar]
  49. MengX. XieW. XuQ. LiangT. XuX. SunG. SunX. Neuroprotective effects of radix scrophulariae on cerebral ischemia and reperfusion injury via MAPK pathways.Molecules2018239240110.3390/molecules2309240130235876
    [Google Scholar]
  50. KoI.G. JinJ.J. HwangL. KimS.H. KimC.J. JeonJ.W. ChungJ.Y. HanJ.H. Adenosine A2A receptor agonist polydeoxyribonucleotide ameliorates short-term memory impairment by suppressing cerebral ischemia-induced inflammation via MAPK pathway.PLoS One2021163e024868910.1371/journal.pone.024868933735236
    [Google Scholar]
  51. HouK. XiaoZ. DaiH.L. p38 MAPK endogenous inhibition improves neurological deficits in global cerebral ischemia/reperfusion mice.Neural Plast.2022202211110.1155/2022/330032735811833
    [Google Scholar]
  52. FengC. WanH. ZhangY. YuL. ShaoC. HeY. WanH. JinW. Neuroprotective effect of danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway.Front. Pharmacol.20201129810.3389/fphar.2020.0029832218735
    [Google Scholar]
  53. ZhengT. JiangT. MaH. ZhuY. WangM. Targeting PI3K/Akt in cerebral ischemia reperfusion injury alleviation: From signaling networks to targeted therapy.Mol. Neurobiol.202461107930794910.1007/s12035‑024‑04039‑138441860
    [Google Scholar]
  54. SunS. ZhouJ. LiZ. WuY. WangH. ZhengQ. Adu-NtiF. FanJ. TianY. Progranulin promotes hippocampal neurogenesis and alleviates anxiety‐like behavior and cognitive impairment in adult mice subjected to cerebral ischemia.CNS Neurosci. Ther.202228577578710.1111/cns.1381035146924
    [Google Scholar]
  55. GugliandoloA. SilvestroS. SindonaC. BramantiP. MazzonE. MiRNA: Involvement of the MAPK pathway in ischemic stroke. A promising therapeutic target.Medicina (Kaunas)20215710105310.3390/medicina5710105334684090
    [Google Scholar]
  56. DuanX. SongN. MaK. TongY. YangL. The effects of protein-rich extract from Rhizoma Gastrodiae against cerebral ischemia/reperfusion injury via regulating MAPK and PI3K/AKT signaling pathway.Brain Res. Bull.202320311077210.1016/j.brainresbull.2023.11077237793596
    [Google Scholar]
  57. AokiY. DaiH. FurutaF. AkamatsuT. OshimaT. TakahashiN. GotoY. OkaA. ItohM. LOX-1 mediates inflammatory activation of microglial cells through the p38-MAPK/NF-κB pathways under hypoxic-ischemic conditions.Cell Commun. Signal.202321112610.1186/s12964‑023‑01048‑w37268943
    [Google Scholar]
  58. YaoZ. LiuN. ZhuX. WangL. ZhaoY. LiuQ. GaoC. LiJ. Subanesthetic isoflurane abates ROS-activated MAPK/NF-κB signaling to repress ischemia-induced microglia inflammation and brain injury.Aging (Albany NY)20201224261212613910.18632/aging.20234933373319
    [Google Scholar]
  59. ZhangY. ZhangZ. WangJ. ZhangX. ZhaoJ. BaiN. VijayalakshmiA. HuoQ. Scutellarin alleviates cerebral ischemia/reperfusion by suppressing oxidative stress and inflammatory responses via MAPK/NF‐κB pathways in rats.Environ. Toxicol.202237122889289610.1002/tox.2364536036213
    [Google Scholar]
  60. JiangH. FangJ. XingJ. WangL. WangQ. WangY. LiZ. LiuR. Tilianin mediates neuroprotection against ischemic injury by attenuating CaMKII-dependent mitochondrion-mediated apoptosis and MAPK/NF-κB signaling.Life Sci.201921623324510.1016/j.lfs.2018.11.03530472297
    [Google Scholar]
  61. JiangJ. LuoY. QinW. MaH. LiQ. ZhanJ. ZhangY. Electroacupuncture suppresses the NF-κB signaling pathway by upregulating cylindromatosis to alleviate inflammatory injury in cerebral ischemia/reperfusion rats.Front. Mol. Neurosci.20171036310.3389/fnmol.2017.0036329163038
    [Google Scholar]
  62. Sánchez-AlegríaK. Flores-LeónM. Avila-MuñozE. Rodríguez-CoronaN. AriasC. PI3K signaling in neurons: A central node for the control of multiple functions.Int. J. Mol. Sci.20181912372510.3390/ijms1912372530477115
    [Google Scholar]
  63. ZhangM. WangX.L. ShiH. MengL.Q. QuanH.F. YanL. YangH.F. PengX.D. Betaine inhibits NLRP3 Inflammasome hyperactivation and regulates microglial M1/M2 phenotypic differentiation, thereby attenuating lipopolysaccharide-induced depression-like behavior.J. Immunol. Res.2022202211410.1155/2022/931343636339940
    [Google Scholar]
  64. LvH. LiJ. CheY.Q. CXCL8 gene silencing promotes neuroglial cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF‐κB‐signaling pathway in mice with ischemic stroke.J. Cell. Physiol.201923457341735510.1002/jcp.2749330362547
    [Google Scholar]
  65. LiL. JiangW. YuB. LiangH. MaoS. HuX. FengY. XuJ. ChuL. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway.Biomed. Pharmacother.202316811565310.1016/j.biopha.2023.11565337812891
    [Google Scholar]
  66. HolbrookJ. Lara-ReynaS. Jarosz-GriffithsH. McDermottM. Tumour necrosis factor signalling in health and disease.F1000 Res.2019810.12688/f1000research.17023.130755793
    [Google Scholar]
  67. WuF. LiuZ. ZhouL. YeD. ZhuY. HuangK. WengY. XiongX. ZhanR. ShenJ. Systemic immune responses after ischemic stroke: From the center to the periphery.Front. Immunol.20221391166110.3389/fimmu.2022.91166136211352
    [Google Scholar]
  68. TsioufisP. TheofilisP. TsioufisK. TousoulisD. The impact of cytokines in coronary atherosclerotic plaque: Current therapeutic approaches.Int. J. Mol. Sci.202223241593710.3390/ijms23241593736555579
    [Google Scholar]
  69. RosenzweigH.L. MinamiM. LessovN.S. CosteS.C. StevensS.L. HenshallD.C. MellerR. SimonR.P. Stenzel-PooreM.P. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: A novel role for TNFalpha in LPS-ischemic tolerance.J. Cereb. Blood Flow Metab.200727101663167410.1038/sj.jcbfm.960046417327883
    [Google Scholar]
  70. KumariS. DhapolaR. SharmaP. NagarP. MedhiB. HariKrishnaReddy, D. The impact of cytokines in neuroinflammation-mediated stroke.Cytokine Growth Factor Rev.20247810511910.1016/j.cytogfr.2024.06.00239004599
    [Google Scholar]
  71. YangT. SunS. WangT. TongX. BiJ. WangY. SunZ. Piperlonguminine is neuroprotective in experimental rat stroke.Int. Immunopharmacol.201423244745110.1016/j.intimp.2014.09.01625257731
    [Google Scholar]
  72. MonacoC. NanchahalJ. TaylorP. FeldmannM. Anti-TNF therapy: Past, present and future.Int. Immunol.2015271556210.1093/intimm/dxu10225411043
    [Google Scholar]
  73. WebsterJ.D. VucicD. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues.Front. Cell Dev. Biol.2020836510.3389/fcell.2020.0036532671059
    [Google Scholar]
  74. ZhangQ. LiaoY. LiuZ. DaiY. LiY. LiY. TangY. Interleukin‐17 and ischaemic stroke.Immunology2021162217919310.1111/imm.1326532935861
    [Google Scholar]
  75. ZhuH. HuS. LiY. SunY. XiongX. HuX. ChenJ. QiuS. Interleukins and ischemic stroke.Front. Immunol.20221382844710.3389/fimmu.2022.82844735173738
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808319838241126095412
Loading
/content/journals/lddd/10.2174/0115701808319838241126095412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test