Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

For a long period, traditional medicine has held a crucial role in maintaining cardiovascular homeostasis. However, very few scientific studies have investigated and reported information on the mechanism by which these plants act through their active ingredients. Presently, there is consideration for utilizing computer-assisted methods to incorporate predictive and dependable data in addition to experimental findings.

Objective

The objective of this review article was to furnish information on medicinal plant extracts that have undergone experimental testing to assess their cardioprotective properties

Methods

Thus, eleven phytomolecules have been chosen based on their bioactivity scores and their belonging to medicinal plants frequently used in traditional medicine. Molecular docking analyses were carried out using Autodock Vina v1.5.7, and were performed to research the molecular pathway attributed to the effects of phytoconstituents extracted from medicinal plants known for their therapeutic effects against cardiovascular alterations. Computer ADME/toxicity studies were also performed to estimate the physiological and pharmacological signification of each phytomolecule.

Results

The results showed that selected phytomolecules exert considerable therapeutic potential on different cardiovascular levels through activation, inhibition, and modulation of cellular factor's expressions, all leading to cardiac muscle protection against stressful attacks. ADMET analysis showed that all phytomolecules selected responded to drug-likeness according to Lipinski's rule of five and the possibility of developing medicines, taking into account the dose used for each phytoconstituent.

Conclusion

Our study demonstrated that various medicinal plants possess significant therapeutic potential at multiple cardiovascular levels through a series of vital processes, including activation, inhibition, and modulation of diverse cellular component expression.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808323052241203113831
2024-12-13
2025-10-28
Loading full text...

Full text loading...

References

  1. McPheeP.G. SinghS. MorrisonK.M. Childhood obesity and cardiovascular disease risk: Working toward solutions.Can. J. Cardiol.20203691352136110.1016/j.cjca.2020.06.020 32622878
    [Google Scholar]
  2. FuchsF.D. WheltonP.K. High blood pressure and cardiovascular disease.Hypertension202075228529210.1161/HYPERTENSIONAHA.119.14240 31865786
    [Google Scholar]
  3. FudimM. AshurN. JonesA.D. AmbrosyA.P. BartB.A. ButlerJ. ChenH.H. GreeneS.J. ReddyY. RedfieldM.M. SharmaA. HernandezA.F. FelkerG.M. BorlaugB.A. MentzR.J. Implications of peripheral oedema in heart failure with preserved ejection fraction: A heart failure network analysis.ESC Heart Fail.20218166266910.1002/ehf2.13159 33300277
    [Google Scholar]
  4. Chávez-CastilloM. OrtegaÁ. DuranP. PirelaD. MarquinaM. CanoC. SalazarJ. GonzalezM.C. BermúdezV. Rojas-QuinteroJ. VelascoM. Phytotherapy for cardiovascular disease: A bench-to-bedside approach.Curr. Pharm. Des.202026354410442910.2174/1381612826666200420160422 32310044
    [Google Scholar]
  5. SüntarI. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants.Phytochem. Rev.20201951199120910.1007/s11101‑019‑09629‑9
    [Google Scholar]
  6. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  7. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  8. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  9. LiW. GuanY. ShiL. ChenY. HuangH. ZhenH. Identification of angiotensin-converting enzyme inhibitory peptides from peanut meal (Arachis hypogaea Linn) fermented by Lactobacillus pentosus using MALDI-TOF–MS and LC–MS/MS.Food Front.20245282083210.1002/fft2.352
    [Google Scholar]
  10. SeeligerD. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6
    [Google Scholar]
  11. PawarS.S. RohaneS.H. Review on discovery studio: An important tool for molecular docking.Asian J. Res. Chem2021141868810.5958/0974‑4150.2021.00014.6
    [Google Scholar]
  12. KimS. BoltonE.E. PubChem: A large‐scale public chemical database for drug discovery. In: Open Access Databases and Datasets for Drug Discovery. DainaA. PrzewosnyM. ZoeteV. Wiley202410.1002/9783527830497.ch2
    [Google Scholar]
  13. KadiM. BerraouaanA. DriouechM. ZiyyatA. MekhfiH. BnouhamM. Computational evaluation of bioactive compounds from Dysphania ambrosioides leaves.Chem. Biodivers.2024213e20230152710.1002/cbdv.202301527
    [Google Scholar]
  14. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.201774271710.1038/srep42717
    [Google Scholar]
  15. KumarM. KasalaE.R. BodduluruL.N. KumarV. LahkarM. Molecular and biochemical evidence on the protective effects of quercetin in isoproterenol‐induced acute myocardial injury in rats.J. Biochem. Mol. Toxicol.20173111810.1002/jbt.21832 27527349
    [Google Scholar]
  16. ChengY. ChaoJ. DaiD. DaiY. ZhuD. LiuB. AQP4‐knockout aggravation of isoprenaline‐induced myocardial injury is mediated by p66Shc and endoplasmic reticulum stress.Clin. Exp. Pharmacol. Physiol.201744111106111510.1111/1440‑1681.12812 28688153
    [Google Scholar]
  17. ZuoZ. JiM-Y. ZhaoK. SuZ-P. LiP. HouD-R. CD47 deficiency attenuates isoproterenol‐induced cardiac remodeling in mice.Oxid. Med. Cell. Longev.20192019712176310.1155/2019/7121763
    [Google Scholar]
  18. KalkanF. ParlakpinarH. DisliO.M. TanriverdiL.H. OzhanO. PolatA. CetinA. VardiN. OtluY.O. AcetA. Protective and therapeutic effects of dexpanthenol on isoproterenol‐induced cardiac damage in rats.J. Cell. Biochem.201811997479748910.1002/jcb.27058 29775243
    [Google Scholar]
  19. ZhangJ. KnaptonA. LipshultzS.E. WeaverJ.L. HermanE.H. Isoproterenol-induced cardiotoxicity in sprague-dawley rats: Correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury.Toxicol. Pathol.200836227727810.1177/0192623307313010 18349426
    [Google Scholar]
  20. ZhangS. LiuX. Bawa-KhalfeT. LuL.S. LyuY.L. LiuL.F. YehE.T.H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity.Nat. Med.201218111639164210.1038/nm.2919 23104132
    [Google Scholar]
  21. TallajJ.A. FrancoV. RayburnB.K. PinderskiL. BenzaR.L. PamboukianS. FoleyB. BourgeR.C. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure.J. Heart Lung Transplant.200524122196220110.1016/j.healun.2004.12.108 16364871
    [Google Scholar]
  22. ChristiansenS. AutschbachR. Doxorubicin in experimental and clinical heart failure.Eur. J. Cardiothorac. Surg.200630461161610.1016/j.ejcts.2006.06.024 16901709
    [Google Scholar]
  23. MitryM.A. EdwardsJ.G. Doxorubicin induced heart failure: Phenotype and molecular mechanism.Int. J. Cardiol. Heart Vasc.201610172410.1016/j.ijcha.2015.11.004
    [Google Scholar]
  24. JamallI.S. Crispin SmithJ. Effects of cadmium on glutathione peroxidase, superoxide dismutase, and lipid peroxidation in the rat heart: A possible mechanism of cadmium cardiotoxicity.Toxicol. Appl. Pharmacol.1985801334210.1016/0041‑008X(85)90098‑5 4024106
    [Google Scholar]
  25. GuptaR. ShuklaR.K. ChandravanshiL.P. SrivastavaP. DhuriyaY.K. ShankerJ. SinghM.P. PantA.B. KhannaV.K. Protective role of quercetin in cadmium-induced cholinergic dysfunctions in rat brain by modulating mitochondrial integrity and MAP kinase signaling.Mol. Neurobiol.20175464560458310.1007/s12035‑016‑9950‑y 27389774
    [Google Scholar]
  26. KimH.S. KimY.J. SeoY.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention.J. Cancer Prev.201520423224010.15430/JCP.2015.20.4.232 26734585
    [Google Scholar]
  27. MessnerB. BernhardD. Cadmium and cardiovascular diseases: Cell biology, pathophysiology, and epidemiological relevance.Biometals201023581182210.1007/s10534‑010‑9314‑4 20213268
    [Google Scholar]
  28. Tellez-PlazaM. GuallarE. HowardB.V. UmansJ.G. FrancesconiK.A. GoesslerW. SilbergeldE.K. DevereuxR.B. Navas-AcienA. Cadmium exposure and incident cardiovascular disease.Epidemiology201324342142910.1097/EDE.0b013e31828b0631 23514838
    [Google Scholar]
  29. LimayeD.A. ShaikhZ.A. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes.Toxicol. Appl. Pharmacol.19991541596610.1006/taap.1998.8575 9882592
    [Google Scholar]
  30. AntzelevitchC. BurashnikovA. Overview of basic mechanisms of cardiac arrhythmia.Card. Electrophysiol. Clin.201131234510.1016/j.ccep.2010.10.012 21892379
    [Google Scholar]
  31. BodhankarS.L. BhattL.K. NandakumarK. Experimental animal models to induce cardiac arrhythmias.Indian J. Pharmacol.200537634810.4103/0253‑7613.19070
    [Google Scholar]
  32. BornG. CuatrcasasP. BerkenH. Handbook of Experimental Pharmacology; Springer,2009
    [Google Scholar]
  33. DianatM. AminiN. BadaviM. FarboodY. Ellagic acid improved arrhythmias induced by CaCL2 in the rat stress model.Avicenna J. Phytomed.201552120127 25949953
    [Google Scholar]
  34. BrachoH. OrkandR.K. Effect of calcium on excitatory neuromuscular transmission in the crayfish.J. Physiol.19702061617110.1113/jphysiol.1970.sp008997 5498460
    [Google Scholar]
  35. SharmaR.K. SharmaA.K. MohanG. Evaluation of cardioprotective activity of aqueous and ethanolic extract of bauhinia variegata in cacl2 induced arrhythmia in albino rats.J. Appl. Pharm. Sci.201337169173
    [Google Scholar]
  36. LiuS.Q. TefftB.J. ZhangD. RobertsD. SchusterD.J. WuA. Cardioprotective mechanisms activated in response to myocardial ischemia.Mol. Cell. Biomech.201184319338 22338709
    [Google Scholar]
  37. ShahS.M.A. AkramM. RiazM. MunirN. RasoolG. Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach.Dose Response201917210.1177/1559325819852243 31205459
    [Google Scholar]
  38. MisraM.K. SarwatM. BhakuniP. TutejaR. TutejaN. Oxidative stress and ischemic myocardial syndromes.Med. Sci. Monit.20091510RA209RA219 19789524
    [Google Scholar]
  39. ZhangW. YaoM.N. TangH.F. TianX.R. WangM.C. JiL.J. XiM.M. Triterpenoid saponins with anti-myocardial ischemia activity from the whole plants of Clematis tangutica.Planta Med.201379867367910.1055/s‑0032‑1328541 23670628
    [Google Scholar]
  40. DuJ.R. LongF.Y. ChenC. Research progress on natural triterpenoid saponins in the chemoprevention and chemotherapy of cancer.Enzymes2014369513010.1016/B978‑0‑12‑802215‑3.00006‑9 27102701
    [Google Scholar]
  41. ElekofehintiO.O. Saponins: Anti-diabetic principles from medicinal plants – A review.Pathophysiology20152229510310.1016/j.pathophys.2015.02.001 25753168
    [Google Scholar]
  42. VatnerS.F. PachonR.E. VatnerD.E. Inhibition of adenylyl cyclase type 5 increases longevity and healthful aging through oxidative stress protection.Oxid. Med. Cell. Longev.2015201511310.1155/2015/250310 25945149
    [Google Scholar]
  43. VatnerS.F. ParkM. YanL. LeeG.J. LaiL. IwatsuboK. IshikawaY. PessinJ. VatnerD.E. Adenylyl cyclase type 5 in cardiac disease, metabolism, and aging.Am. J. Physiol. Heart Circ. Physiol.20133051H1H810.1152/ajpheart.00080.2013 23624627
    [Google Scholar]
  44. LaiL. YanL. GaoS. HuC.L. GeH. DavidowA. ParkM. BravoC. IwatsuboK. IshikawaY. AuwerxJ. SinclairD.A. VatnerS.F. VatnerD.E. Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway.Circulation2013127161692170110.1161/CIRCULATIONAHA.112.001212 23536361
    [Google Scholar]
  45. ZhaoZ. BabuG.J. WenH. FefelovaN. GordanR. SuiX. YanL. VatnerD.E. VatnerS.F. XieL.H. Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart.Am. J. Physiol. Heart Circ. Physiol.20153083H240H24910.1152/ajpheart.00630.2014 25485900
    [Google Scholar]
  46. BaldusS. MüllerleileK. ChumleyP. StevenD. RudolphV. LundG.K. StaudeH.J. StorkA. KösterR. KählerJ. WeissC. MünzelT. MeinertzT. FreemanB.A. HeitzerT. Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy.Free Radic. Biol. Med.20064181282128810.1016/j.freeradbiomed.2006.07.010 17015175
    [Google Scholar]
  47. DoehnerW. AnkerS.D. Xanthine oxidase inhibition for chronic heart failure: is allopurinol the next therapeutic advance in heart failure?Heart200591670770910.1136/hrt.2004.057190 15894755
    [Google Scholar]
  48. AssaidiA. DibI. TitsM. AngenotL. BellahcenS. BouananiN. Chenopodium ambrosioides induces an endothelium-dependent relaxation of rat isolated aorta.J. Integr. Med.201917211512410.1016/j.joim.2019.01.006
    [Google Scholar]
  49. CampbellD.L. StamlerJ.S. StraussH.C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols.J. Gen. Physiol.1996108427729310.1085/jgp.108.4.277 8894977
    [Google Scholar]
  50. SorescuD. GriendlingK.K. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure.Congest. Heart Fail.20028313214010.1111/j.1527‑5299.2002.00717.x 12045381
    [Google Scholar]
  51. TamarizL. HareJ.M. Xanthine oxidase inhibitors in heart failure: Where do we go from here?Circulation2015131201741174410.1161/CIRCULATIONAHA.115.016379 25986446
    [Google Scholar]
  52. BredemeierM. LopesL.M. EisenreichM.A. HickmannS. BongiornoG.K. d’AvilaR. MorschA.L.B. da Silva SteinF. CamposG.G.D. Xanthine oxidase inhibitors for prevention of cardiovascular events: A systematic review and meta-analysis of randomized controlled trials.BMC Cardiovasc. Disord.20181812410.1186/s12872‑018‑0757‑9 29415653
    [Google Scholar]
  53. AryanL. YounessiD. ZargariM. BanerjeeS. AgopianJ. RahmanS. BornaR. RuffenachG. UmarS. EghbaliM. The role of estrogen receptors in cardiovascular disease.Int. J. Mol. Sci.20202112431410.3390/ijms21124314 32560398
    [Google Scholar]
  54. MahmoodzadehS. DworatzekE. The Role of 17β-estradiol and estrogen receptors in regulation of ca2+ channels and mitochondrial function in cardiomyocytes.Front. Endocrinol. (Lausanne)20191031010.3389/fendo.2019.00310 31156557
    [Google Scholar]
  55. YangX.P. ReckelhoffJ.F. Estrogen, hormonal replacement therapy and cardiovascular disease.Curr. Opin. Nephrol. Hypertens.201120213313810.1097/MNH.0b013e3283431921 21178615
    [Google Scholar]
  56. IorgaA. CunninghamC.M. MoazeniS. RuffenachG. UmarS. EghbaliM. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy.Biol. Sex Differ.2017813310.1186/s13293‑017‑0152‑8 29065927
    [Google Scholar]
  57. MurphyE. Estrogen signaling and cardiovascular disease.Circ. Res.2011109668769610.1161/CIRCRESAHA.110.236687 21885836
    [Google Scholar]
  58. GauthierC. TavernierG. CharpentierF. LanginD. Le MarecH. Functional beta3-adrenoceptor in the human heart.J. Clin. Invest.199698255656210.1172/JCI118823 8755668
    [Google Scholar]
  59. ZhuW. WooA.Y.H. ZhangY. CaoC.M. XiaoR.P. β-adrenergic receptor subtype signaling in the heart: From bench to the bedside.Curr. Top. Membr.20116719120410.1016/B978‑0‑12‑384921‑2.00009‑4 21771491
    [Google Scholar]
  60. WachterS.B. GilbertE.M. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application.Cardiology2012122210411210.1159/000339271 22759389
    [Google Scholar]
  61. XiaoR-P. JiX. LakattaE.G. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes.Mol. Pharmacol.199547232232910.1124/mol.54.2.322 7870040
    [Google Scholar]
  62. DaakaY. LuttrellL.M. LefkowitzR.J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A.Nature19973906655889110.1038/36362 9363896
    [Google Scholar]
  63. PostG.R. BrownJ.H. G protein‐coupled receptors and signaling pathways regulating growth responses.FASEB J.199610774174910.1096/fasebj.10.7.8635691 8635691
    [Google Scholar]
  64. LohseM.J. EngelhardtS. EschenhagenT. What is the role of beta-adrenergic signaling in heart failure?Circ. Res.2003931089690610.1161/01.RES.0000102042.83024.CA 14615493
    [Google Scholar]
  65. BristowM.R. GinsburgR. UmansV. FowlerM. MinobeW. RasmussenR. ZeraP. MenloveR. ShahP. JamiesonS. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure.Circ. Res.198659329730910.1161/01.RES.59.3.297 2876788
    [Google Scholar]
  66. RengoG. LymperopoulosA. ZincarelliC. DonniacuoM. SoltysS. RabinowitzJ.E. KochW.J. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure.Circulation20091191899810.1161/CIRCULATIONAHA.108.803999 19103992
    [Google Scholar]
  67. BristowM.R. β-adrenergic receptor blockade in chronic heart failure.Circulation2000101555856910.1161/01.CIR.101.5.558 10662755
    [Google Scholar]
  68. UrsuO. RayanA. GoldblumA. OpreaT.I. Understanding drug‐likeness.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111576078110.1002/wcms.52
    [Google Scholar]
  69. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  70. MartinY.C. A bioavailability score.J. Med. Chem.20054893164317010.1021/jm0492002 15857122
    [Google Scholar]
  71. LiX. ZhangY. LiH. ZhaoY. Modeling of the hERG K+ channel blockage using online chemical database and modeling environment (OCHEM).Mol. Inform.20173612170007410.1002/minf.201700074 28857516
    [Google Scholar]
  72. LiW. HuangH. ZhangY. FanT. LiuX. XingW. NiuX. Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway.Eur. J. Pharmacol.20137151-3627110.1016/j.ejphar.2013.06.017 23810685
    [Google Scholar]
  73. ChenW. LuY. ChenG. HuangS. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer.Anticancer. Agents Med. Chem.201313797998710.2174/18715206113139990115
    [Google Scholar]
  74. NieC. WangB. WangB. LvN. YuR. ZhangE. Protopine triggers apoptosis via the intrinsic pathway and regulation of ROS/PI3K/Akt signalling pathway in liver carcinoma.Cancer Cell Int.202121139610.1186/s12935‑021‑02105‑5 34315493
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808323052241203113831
Loading
/content/journals/lddd/10.2174/0115701808323052241203113831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test