Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Multi-target drugs are gaining attention for treating chronic diseases. Phillygenin (CHO), a compound in , demonstrates strong anti-inflammatory, antifibrotic, anticancer, antioxidant, and antimicrobial properties. Its polar functional groups allow for structural modifications, offering the potential for novel drug discovery and development.

Objective

This review provides an overview of Phillygenin as a scaffold for multi-target drug development against chronic disease and disorders. It examines the molecular mechanisms behind its therapeutic effects, focusing on targets like NF-κB, PI3K/AKT, MAPK, Nrf2-ARE, P2X7R/NLRP3, Ca2+-calcineurin-TFEB, JAK/STAT, Notch1, TGF-β/Smads, and AMPK/ERK/NF-κB.

Methods

A review of the literature on Phillygenin was conducted to explore its therapeutic applications. The study examined Phillygenin's molecular mechanisms and potential targets to highlight its multi-targeting capabilities.

Results

Phillygenin shows promise in managing chronic diseases by targeting multiple cellular pathways, including NF-κB, PI3K/AKT, MAPK, Nrf2-ARE, P2X7R/NLRP3, Ca2+-calcineurin-TFEB, JAK/STAT, Notch1, TGF-β/Smads, and AMPK/ERK/NF-κB. Its versatility and natural origin make it a valuable scaffold for developing multi-target therapeutics.

Conclusion

Exploring Phillygenin as a framework for multi-target drugs offers the potential to boost efficacy and reduce side effects. Further research and clinical trials are needed to confirm Phillygenin's therapeutic potential.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808359518250120102541
2025-01-21
2025-10-29
Loading full text...

Full text loading...

References

  1. Medina-FrancoJ.L. GiulianottiM.A. WelmakerG.S. HoughtenR.A. Shifting from the single to the multitarget paradigm in drug discovery.Drug Discov. Today2013189-1049550110.1016/j.drudis.2013.01.008 23340113
    [Google Scholar]
  2. ZiębaA. StępnickiP. MatosiukD. KaczorA.A. What are the challenges with multi-targeted drug design for complex diseases?Expert Opin. Drug Discov.202217767368310.1080/17460441.2022.2072827 35549603
    [Google Scholar]
  3. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  4. BonR.S. WaldmannH. Bioactivity-guided navigation of chemical space.Acc. Chem. Res.20104381103111410.1021/ar100014h 20481515
    [Google Scholar]
  5. KaiserM. WetzelS. KumarK. WaldmannH. Biology-inspired synthesis of compound libraries.Cell. Mol. Life Sci.2008657-81186120110.1007/s00018‑007‑7492‑1 18193390
    [Google Scholar]
  6. WangS. FangK. DongG. ChenS. LiuN. MiaoZ. YaoJ. LiJ. ZhangW. ShengC. Scaffold diversity inspired by the natural product evodiamine: Discovery of highly potent and multitargeting antitumor agents.J. Med. Chem.2015581666786696
    [Google Scholar]
  7. MusahR.A. EspinozaE.O. CodyR.B. LesiakA.D. ChristensenE.D. MooreH.E. MalekniaS. DrijfhoutF.P. A high throughput ambient mass spectrometric approach to species identification and classification from chemical fingerprint signatures.Sci. Rep.2015511152010.1038/srep11520 26156000
    [Google Scholar]
  8. DongZ. LuX. TongX. DongY. TangL. LiuM. Forsythiae fructus: A review on its phytochemistry, quality control, pharmacology and pharmacokinetics.Molecules2017229146610.3390/molecules22091466 28869577
    [Google Scholar]
  9. HuK. GuanW. BiY. ZhangW. LiL. ZhangB. LiuQ. SongY. LiX. DuanZ. ZhengQ. YangZ. LiangJ. HanM. RuanL. WuC. ZhangY. JiaZ. ZhongN. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial.Phytomedicine20218515324210.1016/j.phymed.2020.153242 33867046
    [Google Scholar]
  10. MaD. YangL. YanB. SunG. Capillary electrophoresis fingerprints combined with chemometric methods to evaluate the quality consistency and predict the antioxidant activity of Yinqiaojiedu tablet.J. Sep. Sci.20174081796180410.1002/jssc.201601155 28195399
    [Google Scholar]
  11. ZhangY. OuyangL. MaiX. WangH. LiuS. ZengH. ChenT. LiJ. Use of UHPLC-QTOF-MS/MS with combination of in silico approach for distributions and metabolites profile of flavonoids after oral administration of Niuhuang Shangqing tablets in rats.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20191114-1115557010.1016/j.jchromb.2019.03.021 30928832
    [Google Scholar]
  12. ShenB. DengL. LiuY. LiR. ShenC. LiuX. LiY. YuanH. Effects of novel Fufang Biejia Ruangan Tablets with sheep placenta as substitute for Hominis Placenta on CCl4-induced liver fibrosis.Chin. Herb. Med.2021141104110 36120135
    [Google Scholar]
  13. XueH.H. LiJ.J. LiS.F. GuoJ. YanR.P. ChenT.G. ShiX.H. WangJ.D. ZhangL.W. Phillygenin attenuated colon inflammation and improved intestinal mucosal barrier in DSS-induced colitis mice via TLR4/Src mediated MAPK and NF-κB signaling pathways.Int. J. Mol. Sci.2023243223810.3390/ijms24032238 36768559
    [Google Scholar]
  14. LimH. LeeJ.G. LeeS.H. KimY.S. KimH.P. Anti-inflammatory activity of phylligenin, a lignan from the fruits of Forsythia koreana, and its cellular mechanism of action.J. Ethnopharmacol.2008118111311710.1016/j.jep.2008.03.016 18467047
    [Google Scholar]
  15. KimD.S. ZhangT. ParkS. Protective effects of Forsythiae fructus and Cassiae semen water extract against memory deficits through the gut-microbiome-brain axis in an Alzheimer’s disease model.Pharm. Biol.202260121222410.1080/13880209.2022.2025860 35076339
    [Google Scholar]
  16. WangC. MaC. FuK. GongL.H. ZhangY.F. ZhouH.L. LiY.X. Phillygenin attenuates carbon tetrachloride-induced liver fibrosis via modulating inflammation and gut microbiota.Front. Pharmacol.20211275692410.3389/fphar.2021.756924 34621179
    [Google Scholar]
  17. YeY.L. ChangH.S. TsengY.F. ShiL.S. Suppression of IL‐8 release by sweet olive ethanolic extract and compounds in widr colon adenocarcinoma cells.J. Food Sci.20178281792179810.1111/1750‑3841.13786 28671329
    [Google Scholar]
  18. SongW. WuJ. YuL. PengZ. Evaluation of the pharmacokinetics and hepatoprotective effects of phillygenin in mouse.BioMed Res. Int.2018201811010.1155/2018/7964318 30211228
    [Google Scholar]
  19. LiR.J. QinC. HuangG.R. LiaoL.J. MoX.Q. HuangY.Q. Phillygenin inhibits Helicobacter pylori by preventing biofilm formation and inducing ATP leakage.Front. Microbiol.20221386362410.3389/fmicb.2022.863624 35572695
    [Google Scholar]
  20. FengH. ZhangJ. ZhangK. WangX. ZhangK. GuoZ. HanS. WangL. QiuZ. WangG. LiJ. Phillygenin activates PKR/eIF2α pathway and induces stress granule to exert anti-avian infectious bronchitis virus.Int. Immunopharmacol.202210810876410.1016/j.intimp.2022.108764 35421804
    [Google Scholar]
  21. GuoJ. TangJ.K. WangB.F. YanW.R. LiT. GuoX.J. ZhangL. WangT. SunQ.Y. ZhangL.W. Phillygenin from Forsythia suspensa leaves exhibits analgesic potential and anti‐inflammatory activity in carrageenan‐induced paw edema in mice.J. Food Biochem.20224612e1446010.1111/jfbc.14460 36200742
    [Google Scholar]
  22. DuB. ZhangL. SunY. ZhangG. YaoJ. JiangM. PanL. SunC. Phillygenin exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.Immunopharmacol. Immunotoxicol.2019411768510.1080/08923973.2018.1547742 30721636
    [Google Scholar]
  23. SungY.Y. YoonT. JangS. KimH.K. Forsythia suspensa suppresses house dust mite extract-induced atopic dermatitis in nc/nga mice.PLoS One20161112e016768710.1371/journal.pone.0167687 27936051
    [Google Scholar]
  24. LiuW. LuY. ChuS. JiangM. BaiG. Phillygenin, a lignan compound, inhibits hypertension by reducing PLCβ3-dependent Ca2+ oscillation.J. Funct. Foods20196010343210.1016/j.jff.2019.103432
    [Google Scholar]
  25. ZhouM. TangY. LiaoL. LiuM. DengY. ZhaoX. LiY. Phillygenin inhibited LPS-induced RAW 264.7 cell inflammation by NF-κB pathway.Eur. J. Pharmacol.202189917404310.1016/j.ejphar.2021.174043 33745957
    [Google Scholar]
  26. ZhouS. WenH. HanX. LiH. Phillygenin protects against osteoarthritis by repressing inflammation via PI3K/Akt/NF-κB signaling: In vitro and vivo studies.J. Funct. Foods20218010445610.1016/j.jff.2021.104456
    [Google Scholar]
  27. ZhangP. JinY. XiaW. WangX. ZhouZ. Phillygenin inhibits inflammation in chondrocytes via the Nrf2/NF-κB axis and ameliorates osteoarthritis in mice.J. Orthop. Translat.20234111110.1016/j.jot.2023.03.002 37197096
    [Google Scholar]
  28. DingX. LuD. FanJ. A natural product phillygenin suppresses osteosarcoma growth and metastasis by regulating the SHP-1/JAK2/STAT3 signaling.Biosci. Biotechnol. Biochem.202185230731410.1093/bbb/zbaa007 33604629
    [Google Scholar]
  29. WangC. ZhangS. LiY. GongL. YaoC. FuK. LiY. Phillygenin inhibits TGF-β1-induced hepatic stellate cell activation and inflammation: Regulation of the Bax/Bcl-2 and Wnt/β-catenin pathways.Inflammation20244741403142210.1007/s10753‑024‑01984‑w
    [Google Scholar]
  30. MaC. WangC. ZhangY. LiY. FuK. GongL. ZhouH. LiY. Phillygenin inhibited M1 macrophage polarization and reduced hepatic stellate cell activation by inhibiting macrophage exosomal miR-125b-5p.Biomed. Pharmacother.2023159114264
    [Google Scholar]
  31. WuS. ZhangY. ZhangY. ChenL. XuX. DangY. TiX. Phillygenin regulates proliferation and apoptosis of non-small cell lung cancer through by AMPK/ERK/NF-κB axis.Pharmazie20207510512515 33305728
    [Google Scholar]
  32. ZhouC. LuM. ChengJ. RohaniE.R. HamezahH.S. HanR. TongX. Review on the pharmacological properties of phillyrin.Molecules20222712367010.3390/molecules27123670 35744798
    [Google Scholar]
  33. ZhangS. SunF. ZhuJ. QiJ. WangW. LiuZ. LiW. LiuC. LiuX. WangN. SongX. ZhangD. QiD. WangX. Phillyrin ameliorates influenza a virus-induced pulmonary inflammation by antagonizing CXCR2 and inhibiting NLRP3 inflammasome activation.Virol. J.202320126210.1186/s12985‑023‑02219‑4 37957672
    [Google Scholar]
  34. ChenS. ZhangS. WuH. ZhangD. YouG. YouJ. ZhengN. Protective effect of phillyrin against cerebral ischemia/reperfusion injury in rats and oxidative stress-induced cell apoptosis and autophagy in neurons.Bioengineered20221337940795010.1080/21655979.2022.2042142 35291908
    [Google Scholar]
  35. QuQ. LiY. DongQ. LiS. DuH. WangZ. GongX. ZhangW. LvW. ChaoL. LiuM. TangX. GuoS. Comparative evaluation of Forsythiae Fructus from different harvest seasons and regions by hplc/nir analysis and anti-inflammatory and antioxidant assays.Front. Pharmacol.20211273757610.3389/fphar.2021.737576 34899295
    [Google Scholar]
  36. DuY. YouL. NiB. SaiN. WangW. SunM. XuR. YaoY. ZhangZ. QuC. YinX. NiJ. Phillyrin mitigates apoptosis and oxidative stress in hydrogen peroxide-treated RPE cells through activation of the Nrf2 signaling pathway.Oxid. Med. Cell. Longev.2020202011610.1155/2020/2684672 33101585
    [Google Scholar]
  37. Xue-jianG. Bin-chunL. YiZ. Jing-taoW. Li-weiZ. Screening and immobilization of the strains for transforming phillyrin into phillygenin from human intestinal flora.Nat. Prod. Res. Dev.2021331220902098
    [Google Scholar]
  38. WangC. WuR. ZhangS. GongL. FuK. YaoC. PengC. LiY. A comprehensive review on pharmacological, toxicity, and pharmacokinetic properties of phillygenin: Current landscape and future perspectives.Biomed. Pharmacother.202316611541010.1016/j.biopha.2023.115410 37659207
    [Google Scholar]
  39. WangL. YanW. TianY. XueH. TangJ. ZhangL. Self-microemulsifying drug delivery system of phillygenin: Formulation development, characterization and pharmacokinetic evaluation.Pharmaceutics202012213010.3390/pharmaceutics12020130 32028742
    [Google Scholar]
  40. DokaniaS. JoshiA.K. Self-microemulsifying drug delivery system (SMEDDS) – Challenges and road ahead.Drug Deliv.201522667569010.3109/10717544.2014.896058 24670091
    [Google Scholar]
  41. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature07201 18650913
    [Google Scholar]
  42. D’ArcyM.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.11137 30958602
    [Google Scholar]
  43. BlanderJ.M. The many ways tissue phagocytes respond to dying cells.Immunol. Rev.2017277115817310.1111/imr.12537 28462530
    [Google Scholar]
  44. CampanaL. EsserH. HuchM. ForbesS. Liver regeneration and inflammation: From fundamental science to clinical applications.Nat. Rev. Mol. Cell Biol.202122960862410.1038/s41580‑021‑00373‑7 34079104
    [Google Scholar]
  45. FreireM.O. Van DykeT.E. Natural resolution of inflammation.Periodontol. 2000201363114916410.1111/prd.12034 23931059
    [Google Scholar]
  46. BakerR.G. HaydenM.S. GhoshS. NF-κB, inflammation, and metabolic disease.Cell Metab.2011131112210.1016/j.cmet.2010.12.008 21195345
    [Google Scholar]
  47. SunS.C. The non-canonical NF-κB pathway in immunity and inflammation.Nat. Rev. Immunol.201717954555810.1038/nri.2017.52 28580957
    [Google Scholar]
  48. LinY. YangP. Phillygenin inhibits the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulation of MMP8.Mol. Med. Rep.202124577510.3892/mmr.2021.12415 34490481
    [Google Scholar]
  49. TasneemS. LiuB. LiB. ChoudharyM.I. WangW. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents.Pharmacol. Res.201913912614010.1016/j.phrs.2018.11.001 30395947
    [Google Scholar]
  50. SekiE. BrennerD.A. KarinM. A liver full of JNK: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches.Gastroenterology2012143230732010.1053/j.gastro.2012.06.004 22705006
    [Google Scholar]
  51. LiuZ. TianY. JiangY. ChenS. LiuT. MoyerM.P. QinH. ZhouX. Protective effects of Let-7b on the expression of occludin by targeting P38 MAPK in preventing intestinal barrier dysfunction.Cell. Physiol. Biochem.2018451343355
    [Google Scholar]
  52. FengH. HeL. WangZ. PiB. LiuZ. Phillygenin protects the intestinal barrier from dysfunction via let-7b signaling pathway and regulation of intestinal microbiota.J. Healthc. Eng.202220221710.1155/2022/4769709 35340247
    [Google Scholar]
  53. ManningB.D. CantleyL.C. AKT/PKB signaling: Navigating downstream.Cell200712971261127410.1016/j.cell.2007.06.009 17604717
    [Google Scholar]
  54. BrazilD.P. ParkJ. HemmingsB.A. PKB binding proteins. Getting in on the Akt.Cell2002111329330310.1016/S0092‑8674(02)01083‑8 12419241
    [Google Scholar]
  55. ManningB.D. TokerA. AKT/PKB signaling: Navigating the network.Cell2017169338140510.1016/j.cell.2017.04.001 28431241
    [Google Scholar]
  56. HoxhajG. ManningB.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism.Nat. Rev. Cancer2020202748810.1038/s41568‑019‑0216‑7 31686003
    [Google Scholar]
  57. LoRussoP.M. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors.J. Clin. Oncol.201634313803381510.1200/JCO.2014.59.0018 27621407
    [Google Scholar]
  58. LiuW. ChuG. ChangN. MaX. JiangM. BaiG. Phillygenin attenuates inflammatory responses and influences glucose metabolic parameters by inhibiting Akt activity.RSC Advances2017764404184042610.1039/C7RA06302D
    [Google Scholar]
  59. LiZ. HuangZ. ZhangH. LuJ. TianY. WeiY. YangY. BaiL. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF‐ κ B/NLRP3 crosstalk.Oxid. Med. Cell. Longev.202120211886836110.1155/2021/8868361 33532039
    [Google Scholar]
  60. TangZ-P. DengH. ZhangY. LiG-G. YuH-H. BaiS. GuoG.Y. GuoW-L. MaY. WangJ-H. LiuN. PanC. P2X7 receptor activation aggravates NADPH oxidase 2-induced oxidative stress after intracerebral hemorrhage.Neural Regen. Res.20211681582159110.4103/1673‑5374.303036 33433488
    [Google Scholar]
  61. LeesonH.C. KashermanM.A. Chan-LingT. LovelaceM.D. BrownlieJ.C. ToppinenK.M. GuB.J. WeibleM.W.II P2X7 receptors regulate phagocytosis and proliferation in adult hippocampal and SVZ neural progenitor cells: Implications for inflammation in neurogenesis.Stem Cells201836111764177710.1002/stem.2894 30068016
    [Google Scholar]
  62. LiR. WangJ. LiR. ZhuF. XuW. ZhaG. HeG. CaoH. WangY. YangJ. ATP/P2X7-NLRP3 axis of dendritic cells participates in the regulation of airway inflammation and hyper-responsiveness in asthma by mediating HMGB1 expression and secretion.Exp. Cell Res.2018366111510.1016/j.yexcr.2018.03.002 29545090
    [Google Scholar]
  63. ZhangQ. HuF. GuoF. ZhouQ. XiangH. ShangD. Emodin attenuates adenosine triphosphate induced pancreatic ductal cell injury in vitrovia the inhibition of the P2X7/NLRP3 signaling pathway.Oncol. Rep.20194241589159710.3892/or.2019.7270 31524270
    [Google Scholar]
  64. XuH. XiongC. HeL. WuB. PengL. ChengY. JiangF. TanL. TangL. TuY. YangY. LiuC. GaoY. LiG. ZhangC. LiuS. XuC. WuH. LiG. LiangS. Trans-resveratrol attenuates high fatty acid-induced P2X7 receptor expression and IL-6 release in PC12 cells: Possible role of P38 MAPK pathway.Inflammation201538132733710.1007/s10753‑014‑0036‑6 25348860
    [Google Scholar]
  65. ZhouW. YanX. ZhaiY. LiuH. GuanL. QiaoY. JiangJ. PengL. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy.Phytomedicine202210315423510.1016/j.phymed.2022.154235 35716542
    [Google Scholar]
  66. WangJ. NiS. ZhengK. ZhaoY. ZhangP. ChangH. Phillygenin alleviates arthritis through the inhibition of the NLRP3 inflammasome and ferroptosis by AMPK.Crit. Rev. Immunol.2024445597010.1615/CritRevImmunol.2024051467 38618729
    [Google Scholar]
  67. KumarH. JoM.J. ChoiH. MuttigiM.S. ShonS. KimB.J. LeeS.H. HanI.B. Matrix metalloproteinase-8 inhibition prevents disruption of blood–spinal cord barrier and attenuates inflammation in rat model of spinal cord injury.Mol. Neurobiol.20185532577259010.1007/s12035‑017‑0509‑3 28421532
    [Google Scholar]
  68. BassiouniW. AliM.A.M. SchulzR. Multifunctional intracellular matrix metalloproteinases: Implications in disease.FEBS J.2021288247162718210.1111/febs.15701 33405316
    [Google Scholar]
  69. TreftsE. GannonM. WassermanD.H. The liver.Curr. Biol.20172721R1147R115110.1016/j.cub.2017.09.019 29112863
    [Google Scholar]
  70. BajajJ.S. Alcohol, liver disease and the gut microbiota.Nat. Rev. Gastroenterol. Hepatol.201916423524610.1038/s41575‑018‑0099‑1 30643227
    [Google Scholar]
  71. SunY. ChangJ. LiuX. LiuC. Mortality trends of liver diseases in mainland China over three decades: An age-period-cohort analysis.BMJ Open2019911e02979310.1136/bmjopen‑2019‑029793 31712333
    [Google Scholar]
  72. BécotA. Pardossi-PiquardR. BourgeoisA. DuplanE. XiaoQ. DiwanA. LeeJ.M. LauritzenI. CheclerF. The transcription factor EB reduces the intraneuronal accumulation of the beta-secretase-derived APP fragment C99 in cellular and mouse Alzheimer’s disease models.Cells202095120410.3390/cells9051204 32408680
    [Google Scholar]
  73. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.201824790892210.1038/s41591‑018‑0104‑9 29967350
    [Google Scholar]
  74. YanS. Role of TFEB in autophagy and the pathogenesis of liver diseases.Biomolecules202212567210.3390/biom12050672 35625599
    [Google Scholar]
  75. WangC. MaC. FuK. LiuY. GongL. PengC. LiY. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism.J. Ethnopharmacol.202229611547810.1016/j.jep.2022.115478 35716920
    [Google Scholar]
  76. ThielM.J. SchaeferC.J. LeschM.E. MobleyJ.L. DudleyD.T. TecleH. BarrettS.D. SchrierD.J. FloryC.M. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: Potential proinflammatory mechanisms.Arthritis Rheum.200756103347335710.1002/art.22869 17907188
    [Google Scholar]
  77. ChangL. KarinM. Mammalian MAP kinase signalling cascades.Nature20014106824374010.1038/35065000 11242034
    [Google Scholar]
  78. HuN. WangC. DaiX. ZhouM. GongL. YuL. PengC. LiY. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway.J. Ethnopharmacol.202024811236110.1016/j.jep.2019.112361 31683033
    [Google Scholar]
  79. WangC. LiuY. GongL. XueX. FuK. MaC. LiY. Phillygenin ameliorates carbon tetrachloride-induced liver fibrosis: Suppression of inflammation and Wnt/β-catenin signaling pathway.Inflammation20234641543156010.1007/s10753‑023‑01826‑1 37219693
    [Google Scholar]
  80. LiH. ChenM. YangZ. WangQ. WangJ. JinD. YangX. ChenF. ZhouX. LuoK. Phillygenin, a MELK inhibitor, inhibits cell survival and epithelial–mesenchymal transition in pancreatic cancer cells.OncoTargets Ther.2020132833284210.2147/OTT.S238958 32308417
    [Google Scholar]
  81. KangW. WangJ. In vitro antioxidant properties and in vivo lowering blood lipid of Forsythia suspense leaves.Med. Chem. Res.201019761762810.1007/s00044‑009‑9217‑5
    [Google Scholar]
  82. LuT. PiaoX.L. ZhangQ. WangD. PiaoX.S. KimS.W. Protective effects of Forsythia suspensa extract against oxidative stress induced by diquat in rats.Food Chem. Toxicol.201048276477010.1016/j.fct.2009.12.018 20036301
    [Google Scholar]
  83. HungC.Y. TsaiY.C. LiK.Y. Phenolic antioxidants isolated from the flowers of Osmanthus fragrans.Molecules2012179107241073710.3390/molecules170910724 22960867
    [Google Scholar]
  84. ChenC.C. ChenH.Y. ShiaoM.S. LinY.L. KuoY.H. OuJ.C. Inhibition of low density lipoprotein oxidation by tetrahydrofurofuran lignans from Forsythia suspensa and Magnolia coco.Planta Med.199965870971110.1055/s‑1999‑14093 10630110
    [Google Scholar]
  85. ŞehirliÖ. TozanA. OmurtagG.Z. CetinelS. ContukG. GedikN. ŞenerG. Protective effect of resveratrol against naphthalene-induced oxidative stress in mice.Ecotoxicol. Environ. Saf.200871130130810.1016/j.ecoenv.2007.08.023 18261796
    [Google Scholar]
  86. FengQ. XiaW.K. WangX.Z. SongH.Y. YaoJ.C. Protective effects of phillygenin against CCl4 induced hepatic injury in rat.Zhongguo Yaolixue Tongbao201531426430
    [Google Scholar]
  87. LiR.J. XuJ. WangX. LiaoL. WeiX. XieP. XuW. XuZ. XieS. JiangY. HuangL. WangL. HuangG. HuangY.Q. Therapeutic effect of demethylated hydroxylated phillygenin derivative on Helicobacter pylori infection.Front. Microbiol.202314107160310.3389/fmicb.2023.1071603 37275170
    [Google Scholar]
  88. MichalakB. FilipekA. ChomickiP. PyzaM. WoźniakM. Żyżyńska-GranicaB. PiwowarskiJ.P. KicelA. OlszewskaM.A. KissA.K. Lignans from Forsythia x Intermedia leaves and flowers attenuate the pro-inflammatory function of leukocytes and their interaction with endothelial cells.Front. Pharmacol.2018940110.3389/fphar.2018.00401 29740324
    [Google Scholar]
  89. GuoJ. YanW.R. TangJ.K. JinX. XueH.H. WangT. ZhangL.W. SunQ.Y. LiangZ.X. Dietary phillygenin supplementation ameliorates aflatoxin B1-induced oxidative stress, inflammation, and apoptosis in chicken liver.Ecotoxicol. Environ. Saf.202223611348110.1016/j.ecoenv.2022.113481 35405527
    [Google Scholar]
  90. Sung HoonL.E.E. Inhibitory effects of phylligenin on the proliferation of cultured rat neural progenitor cells.Biomol. Ther. 20101814855
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808359518250120102541
Loading
/content/journals/lddd/10.2174/0115701808359518250120102541
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; hepatoprotection; inflammation; lignin; multi-target; Phillygenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test