Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction

Marine organisms are a rich source of metabolites that can be considered functional foods and produce new medicines against metabolic syndrome, including hypertension, dyslipidemia, hyperglycemia, obesity, insulin resistance, and hyperinsulinemia.

Methods

A total of 609 publications were searching results, 283 were screened entirely, and 43 duplications were removed.

Results

These compounds, found in marine organisms such as algae, sponges, and mollusks, have vasodilatory properties, inhibit certain enzymes involved in blood pressure regulation, and exhibit anti-oxidant activity, making them promising candidates for developing hypertension treatments. Marine organisms showed an improvement in insulin sensitivity and blood glucose level regulation, suggesting their potential in developing novel therapies for diabetes management. Furthermore, some marine sources inhibit lipid accumulation, regulate metabolism, and suppress appetite, indicating their potential as therapeutic agents in combating obesity.

Conclusion

However, further studies on the pharmacological effects of marines should be performed to evaluate the potential of these compounds to produce novel drugs, but they hope this study paves and lights the way.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808344500250115114637
2025-01-20
2025-09-02
Loading full text...

Full text loading...

References

  1. MartinsB.T. Correia da SilvaM. PintoM. CidadeH. KijjoaA. Marine natural flavonoids: Chemistry and biological activities.Nat. Prod. Res.201933223260327210.1080/14786419.2018.1470514 29726719
    [Google Scholar]
  2. ZhaoL. LiJ. HuangX. WangG. LvX. MengW. ChenW. PangJ. LinY. SunH. WangG. DuY. Xyloketal B exerts antihypertensive effect in renovascular hypertensive rats viathe NO-sGC-cGMP pathway and calcium signaling.Acta Pharmacol. Sin.201839587588410.1038/aps.2018.12 29595193
    [Google Scholar]
  3. AlipourA. Baradaran RahimiV. AskariV.R. Promising influences of gingerols against metabolic syndrome: A mechanistic review.Biofactors2022485993100410.1002/biof.1892 36191294
    [Google Scholar]
  4. TajbakhshE. KhamesipourA. HosseiniS.R. KosariN. ShantiaeS. KhamesipourF. The effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis: A systematic review.Microb. Pathog.202116110523510.1016/j.micpath.2021.105235
    [Google Scholar]
  5. WijesingheW.A.J.P. KoS.C. JeonY.J. Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity.Nutr. Res. Pract.2011529310010.4162/nrp.2011.5.2.93 21556221
    [Google Scholar]
  6. MéndezL. DasilvaG. TaltavullN. RomeuM. MedinaI. Marine lipids on cardiovascular diseases and other chronic diseases induced by diet: An insight provided by proteomics and lipidomics.Mar. Drugs201715825810.3390/md15080258 28820493
    [Google Scholar]
  7. LiY. QinJ. ChengY. LvD. LiM. QiY. LanJ. ZhaoQ. LiZ. Marine sulfated polysaccharides: Preventive and therapeutic effects on metabolic syndrome: A review.Mar. Drugs2021191160810.3390/md19110608 34822479
    [Google Scholar]
  8. SafaeiR. SakhaeeK. SaberifarM. FadaeiM.S. EdalatJoo, S.; Fadaei, M.R.; Baradaran Rahimi, V.; Askari, V.R. Mechanistic insights into the xanthones present in Mangosteen fruit (Garcinia mangostana) and their applications in diabetes and related complications.J. Food Biochem.2023202312710.1155/2023/5334312
    [Google Scholar]
  9. Malaekeh-NikoueiA. Shokri-NaeiS. KarbasforoushanS. BahariH. Baradaran RahimiV. HeidariR. AskariV.R. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins.Biomed. Pharmacother.202316511526310.1016/j.biopha.2023.115263 37541178
    [Google Scholar]
  10. RakhshandehH. Rajabi KhasevanH. SavianoA. MahdinezhadM.R. Baradaran RahimiV. EhtiatiS. EtemadL. Ebrahimzadeh-bideskanA. MaioneF. AskariV.R. Protective effect of Portulaca oleracea on streptozotocin-induced type I diabetes-associated reproductive system dysfunction and inflammation.Molecules20222718607510.3390/molecules27186075 36144807
    [Google Scholar]
  11. WuS. LiuY. JiangP. XuY. ZhengW. SongS. AiC. Effect of sulfate group on sulfated polysaccharides-induced improvement of metabolic syndrome and gut microbiota dysbiosis in high fat diet-fed mice.Int. J. Biol. Macromol.20201642062207210.1016/j.ijbiomac.2020.08.010 32768480
    [Google Scholar]
  12. MayerC. CômeM. UlmannL. Chini ZittelliG. FaraloniC. NazihH. OuguerramK. ChénaisB. MimouniV. Preventive effects of the marine microalga Phaeodactylum tricornutum, used as a food supplement, on risk factors associated with metabolic syndrome in wistar rats.Nutrients2019115106910.3390/nu11051069 31091691
    [Google Scholar]
  13. NoubiapJ.J. NansseuJ.R. Lontchi-YimagouE. NkeckJ.R. NyagaU.F. NgouoA.T. TounougaD.N. TianyiF.L. FokaA.J. NdoadoumgueA.L. BignaJ.J. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis.Lancet Child Adolesc. Health20226315817010.1016/S2352‑4642(21)00374‑6 35051409
    [Google Scholar]
  14. YangH.W. FernandoK.H.N. OhJ.Y. LiX. JeonY.J. RyuB. Anti-obesity and anti-diabetic effects of Ishige okamurae.Mar. Drugs201917420210.3390/md17040202 30934943
    [Google Scholar]
  15. LeeH.G. LuY.A. LiX. HyunJ.M. KimH.S. LeeJ.J. KimT.H. KimH.M. KangM.C. JeonY.J. Anti-obesity effects of Grateloupia elliptica, a red seaweed, in mice with high-fat diet-induced obesity viasuppression of adipogenic factors in white adipose tissue and increased thermogenic factors in brown adipose tissue.Nutrients202012230810.3390/nu12020308 31991562
    [Google Scholar]
  16. SztretyeM. DienesB. GöncziM. CzirjákT. CsernochL. DuxL. SzentesiP. Keller-PintérA. Astaxanthin: A potential mitochondrial-targeted antioxidant treatment in diseases and with aging.Oxid. Med. Cell. Longev.2019201911410.1155/2019/3849692 31814873
    [Google Scholar]
  17. SaklayenM.G. The global epidemic of the metabolic syndrome.Curr. Hypertens. Rep.20182021210.1007/s11906‑018‑0812‑z 29480368
    [Google Scholar]
  18. LombardoY.B. HeinG. ChiccoA. Metabolic syndrome: Effects of n-3 PUFAs on a model of dyslipidemia, insulin resistance and adiposity.Lipids200742542743710.1007/s11745‑007‑3039‑3 17476547
    [Google Scholar]
  19. KumarS. MagnussonM. WardL. PaulN. BrownL. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.Nutrients2015742771278710.3390/nu7042771 25875119
    [Google Scholar]
  20. Grasa-LópezA. Miliar-GarcíaÁ. Quevedo-CoronaL. Paniagua-CastroN. Escalona-CardosoG. Reyes-MaldonadoE. Jaramillo-FloresM.E. Undaria pinnatifida and Fucoxanthin Ameliorate lipogenesis and markers of both inflammation and cardiovascular dysfunction in an animal model of diet-induced obesity.Mar. Drugs201614814810.3390/md14080148 27527189
    [Google Scholar]
  21. ShenT. XingG. ZhuJ. ZhangS. CaiY. LiD. XuG. XingE. RaoJ. ShiR. Effects of 12-week supplementation of marine Omega-3 PUFA-based formulation Omega3Q10 in older adults with prehypertension and/or elevated blood cholesterol.Lipids Health Dis.201716125310.1186/s12944‑017‑0617‑0 29282085
    [Google Scholar]
  22. JugéM. GrimaudN. BiardJ.F. SauviatM.P. NabilM. VerbistJ.F. PetitJ.Y. Cardiovascular effects of lepadiformine, an alkaloid isolated from the ascidians Clavelina lepadiformis (Müller) and C. moluccensis (Sluiter).Toxicon20013981231123710.1016/S0041‑0101(01)00079‑4 11306135
    [Google Scholar]
  23. GrimsgaardS. BønaaK.H. HansenJ.B. MyhreE.S.P. Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on hemodynamics in humans.Am. J. Clin. Nutr.1998681525910.1093/ajcn/68.1.52 9665096
    [Google Scholar]
  24. Gomez-GutierrezC.M. Guerra-RivasG. Soria-MercadoI.E. Ayala-SánchezN.E. Marine edible algae as disease preventers.Adv. Food Nutr. Res.201164293910.1016/B978‑0‑12‑387669‑0.00003‑X 22054936
    [Google Scholar]
  25. SunS. XuX. SunX. ZhangX. ChenX. XuN. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis.Mar. Drugs201917317910.3390/md17030179 30893907
    [Google Scholar]
  26. PujiastutiD.Y. Ghoyatul AminM.N. AlamsjahM.A. HsuJ.L. Marine Organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: A review.Molecules20192414254110.3390/molecules24142541 31336853
    [Google Scholar]
  27. HeoS. ParkE. LeeK. JeonY. Antioxidant activities of enzymatic extracts from brown seaweeds.Bioresour. Technol.200596141613162310.1016/j.biortech.2004.07.013 15978995
    [Google Scholar]
  28. RadackK. DeckC. The effects of omega-3 polyunsaturated fatty acids on blood pressure: A methodologic analysis of the evidence.J. Am. Coll. Nutr.19898537638510.1080/07315724.1989.10720312 2607068
    [Google Scholar]
  29. AbdelhamidA.S. BrownT.J. BrainardJ.S. BiswasP. ThorpeG.C. MooreH.J. DeaneK.H. AlAbdulghafoorF.K. SummerbellC.D. WorthingtonH.V. SongF. HooperL. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease.Cochrane Database Syst. Rev.20181111CD003177 30521670
    [Google Scholar]
  30. WenY.T. DaiJ.H. GaoQ. Effects of Omega-3 fatty acid on major cardiovascular events and mortality in patients with coronary heart disease: A meta-analysis of randomized controlled trials.Nutr. Metab. Cardiovasc. Dis.201424547047510.1016/j.numecd.2013.12.004 24472636
    [Google Scholar]
  31. BjerregaardP. PedersenH.S. MulvadG. The associations of a marine diet with plasma lipids, blood glucose, blood pressure and obesity among the Inuit in Greenland.Eur. J. Clin. Nutr.200054973273710.1038/sj.ejcn.1601088 11002386
    [Google Scholar]
  32. LevinsonP.D. losiphidis, A.H.; Saritelli, A.L.; Herbert, P.N.; Steiner, M. Effects of n-3 fatty acids in essential hypertension.Am. J. Hypertens.1990310_Pt_175476010.1093/ajh/3.10.754 2222942
    [Google Scholar]
  33. TaltavullN. Muñoz-CortésM. LluísL. JovéM. FortuñoÀ. Molinar-ToribioE. TorresJ.L. PazosM. MedinaI. NoguésM.R. Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome.Lipids Health Dis.20141313110.1186/1476‑511X‑13‑31 24512213
    [Google Scholar]
  34. ElliottW.J. Systemic hypertension.Curr. Probl. Cardiol.200732420125910.1016/j.cpcardiol.2007.01.002 17398315
    [Google Scholar]
  35. GacekM. Individual differences as predictors of dietary patterns among menopausal women with arterial hypertension.Przegl. Menopauz.20142210110810.5114/pm.2014.42711 26327838
    [Google Scholar]
  36. LinY.H. ChenC.A. TsaiJ.S. ChenG.W. Preparation and identification of novel antihypertensive peptides from the in vitro gastrointestinal digestion of marine cobia skin hydrolysates.Nutrients2019116135110.3390/nu11061351
    [Google Scholar]
  37. HeH.L. LiuD. MaC.B. Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins.Appl. Biochem. Biotechnol.2013169373874910.1007/s12010‑012‑0024‑y 23271625
    [Google Scholar]
  38. KimS.K. NgoD.H. VoT.S. Marine fish-derived bioactive peptides as potential antihypertensive agents.Adv. Food Nutr. Res.20126524926010.1016/B978‑0‑12‑416003‑3.00016‑0 22361192
    [Google Scholar]
  39. EdelsteinováS. KyselovičJ. KlimešI. ŠebökováE. KovácsováB. KristekF. MitkováA. VránaA. ŠvecP. Effects of marine fish oil on blood pressure and vascular reactivity in the hereditary hypertriglyceridemic rat.Ann. N. Y. Acad. Sci.1993683135335610.1111/j.1749‑6632.1993.tb35731.x 8352462
    [Google Scholar]
  40. SamsonovM.A. PogozhevaA.V. Marine fish oil in the prevention and treatment of cardiovascular diseases.Vestn. Ross. Akad. Med. Nauk1996124349 9102080
    [Google Scholar]
  41. ThangaratinamS. LangenveldJ. MolB.W. KhanK.S. Prediction and primary prevention of pre-eclampsia.Best Pract. Res. Clin. Obstet. Gynaecol.201125441943310.1016/j.bpobgyn.2011.02.008 21454131
    [Google Scholar]
  42. ZhuC.F. LiG.Z. PengH.B. ZhangF. ChenY. LiY. Effect of marine collagen peptides on markers of metabolic nuclear receptors in type 2 diabetic patients with/without hypertension.Biomed. Environ. Sci.201023211312010.1016/S0895‑3988(10)60040‑2 20514986
    [Google Scholar]
  43. ZhuC.F. LiG.Z. PengH.B. LiY. ZhangF. ChenY. Therapeutic effects of marine collagen peptides on Chinese patients with type 2 diabetes mellitus and primary hypertension.Am. J. Med. Sci.2010340536036610.1097/MAJ.0b013e3181edfcf2 20739874
    [Google Scholar]
  44. ParkB.G. ShinW.S. OhS. ParkG.M. KimN.I. LeeS. A novel antihypertension agent, sargachromenol D from marine brown algae, Sargassum siliquastrum, exerts dual action as an L-type Ca2+ channel blocker and endothelin A/B2 receptor antagonist.Bioorg. Med. Chem.201725174649465510.1016/j.bmc.2017.07.002 28720331
    [Google Scholar]
  45. GirardJ. MarionC. LiutkusM. BoucardM. RechencqE. VidalJ. RossiJ. Hypotensive constituents of marine algae; 1. Pharmacological studies of laminine.Planta Med.198854319319610.1055/s‑2006‑962401 3174853
    [Google Scholar]
  46. LuY.A. JiangY. YangH.W. HwangJ. JeonY.J. RyuB. Diphlorethohydroxycarmalol isolated from Ishige okamurae exerts vasodilatory effects viacalcium signaling and PI3K/Akt/eNOS pathway.Int. J. Mol. Sci.2021224161010.3390/ijms22041610 33562632
    [Google Scholar]
  47. RubioloJ.A. LenceE. González-BelloC. RoelM. Gil-LongoJ. Campos-ToimilM. TernonE. ThomasO.P. González-CantalapiedraA. López-AlonsoH. VieytesM.R. BotanaL.M. Crambescin C1 acts as a possible substrate of iNOS and eNOS increasing nitric oxide production and inducing in vivo hypotensive effect.Front. Pharmacol.20211269463910.3389/fphar.2021.694639 34322022
    [Google Scholar]
  48. LuY.A. JeJ.G. HwangJ. JeonY.J. RyuB. Ecklonia cava extract and its derivative dieckol promote vasodilation by modulating calcium signaling and PI3K/AKT/eNOS pathway in in vitro and in vivo models.Biomedicines20219443810.3390/biomedicines9040438 33921856
    [Google Scholar]
  49. WijesekaraI. KimS.K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry.Mar. Drugs2010841080109310.3390/md8041080 20479968
    [Google Scholar]
  50. SalmaW. FranekovaV. LundT. HöperA. LudvigsenS. LundJ. AasumE. YtrehusK. BelkeD.D. LarsenT.S. Dietary Calanus oil antagonizes angiotensin II-induced hypertension and tissue wasting in diet-induced obese mice.Prostaglandins Leukot. Essent. Fatty Acids2016108132110.1016/j.plefa.2016.03.006 27154360
    [Google Scholar]
  51. VenkatramanK.L. MehtaA. Health Benefits and pharmacological effects of Porphyra species.Plant Foods Hum. Nutr.2019741101710.1007/s11130‑018‑0707‑9 30543042
    [Google Scholar]
  52. EchaveJ. OteroP. Garcia-OliveiraP. MunekataP.E.S. PateiroM. LorenzoJ.M. Simal-GandaraJ. PrietoM.A. Seaweed-derived proteins and peptides: Promising marine bioactives.Antioxidants202211117610.3390/antiox11010176 35052680
    [Google Scholar]
  53. LiJ. LiuZ. ZhaoY. ZhuX. YuR. DongS. WuH. Novel natural Angiotensin Converting Enzyme (ACE)-Inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline and a study of their structure–activity relationship.Mar. Drugs201816827110.3390/md16080271 30081563
    [Google Scholar]
  54. DoyleA.E. Hypertension and vascular disease.Am. J. Hypertens.199142_Pt_2103S106S10.1093/ajh/4.2.103S 2021454
    [Google Scholar]
  55. NgoD.H. VoT.S. NgoD.N. WijesekaraI. KimS.K. Biological activities and potential health benefits of bioactive peptides derived from marine organisms.Int. J. Biol. Macromol.201251437838310.1016/j.ijbiomac.2012.06.001 22683669
    [Google Scholar]
  56. ChinJ.P. GustA.P. NestelP.J. DartA.M. Marine oils dose-dependently inhibit vasoconstriction of forearm resistance vessels in humans.Hypertension1993211222810.1161/01.HYP.21.1.22 8418020
    [Google Scholar]
  57. HartwegJ. FarmerA.J. HolmanR.R. NeilH.A.W. Meta-analysis of the effects of n-3 polyunsaturated fatty acids on haematological and thrombogenic factors in type 2 diabetes.Diabetologia200750225025810.1007/s00125‑006‑0486‑y 17119918
    [Google Scholar]
  58. MoriT.A. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease.Fitoterapia2017123515810.1016/j.fitote.2017.09.015 28964873
    [Google Scholar]
  59. NestelP.J. Dietary fat and blood pressure.Curr. Hypertens. Rep.20192121710.1007/s11906‑019‑0918‑y 30747320
    [Google Scholar]
  60. StanleyW.C. CoxJ.W. AsemuG. O’ConnellK.A. DabkowskiE.R. XuW. RibeiroR.F.Jr ShekarK.C. HoagS.W. RastogiS. SabbahH.N. DaneaultC. des RosiersC. Evaluation of docosahexaenoic acid in a dog model of hypertension induced left ventricular hypertrophy.J. Cardiovasc. Transl. Res.2013661000101010.1007/s12265‑013‑9511‑y 24065618
    [Google Scholar]
  61. González-HedströmD. de la Fuente-FernándezM. PriegoT. MartínA.I. AmorS. López-CalderónA. Inarejos-GarcíaA.M. García-VillalónÁ.L. GranadoM. Addition of olive leaf extract to a mixture of algae and extra virgin olive oils decreases fatty acid oxidation and synergically attenuates age-induced hypertension, sarcopenia and insulin resistance in rats.Antioxidants2021107106610.3390/antiox10071066 34356299
    [Google Scholar]
  62. Gómez-GuzmánM. Rodríguez-NogalesA. AlgieriF. GálvezJ. Potential role of seaweed polyphenols in cardiovascular-associated disorders.Mar. Drugs201816825010.3390/md16080250 30060542
    [Google Scholar]
  63. LeeS.Y. HurS.J. Antihypertensive peptides from animal products, marine organisms, and plants.Food Chem.201722850651710.1016/j.foodchem.2017.02.039 28317757
    [Google Scholar]
  64. BhakuniD.S. DhawanB.N. GargH.S. GoelA.K. MehrotraB.N. SrimalR.C. SrivastavaM.N. Bioactivity of marine organisms: Part VI--Screening of some marine flora from Indian coasts.Indian J. Exp. Biol.1992306512517 1506034
    [Google Scholar]
  65. FestaM. SansoneC. BrunetC. CrocettaF. Di PaolaL. LombardoM. BrunoA. NoonanD.M. AlbiniA. Cardiovascular active peptides of marine origin with ACE inhibitory activities: Potential role as anti-hypertensive drugs and in prevention of SARS-CoV-2 infection.Int. J. Mol. Sci.20202121836410.3390/ijms21218364 33171852
    [Google Scholar]
  66. MakkarF. ChakrabortyK. Antioxidative sulphated polygalactans from marine macroalgae as angiotensin-I converting enzyme inhibitors.Nat. Prod. Res.201832172100210610.1080/14786419.2017.1363756 28814101
    [Google Scholar]
  67. ChenY.Y. JiW. DuJ.R. YuD.K. HeY. YuC.X. LiD.S. ZhaoC. QiaoK. Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats.Biomed. Pharmacother.201064429129510.1016/j.biopha.2009.09.004 19932586
    [Google Scholar]
  68. SenevirathneM. KimS.K. Development of bioactive peptides from fish proteins and their health promoting ability.Adv. Food Nutr. Res.20126523524810.1016/B978‑0‑12‑416003‑3.00015‑9 22361191
    [Google Scholar]
  69. BailesB.K. Diabetes mellitus and its chronic complications.AORN J.200276226528210.1016/S0001‑2092(06)61065‑X 12194653
    [Google Scholar]
  70. ChelliahR. WeiS. DaliriE.B.M. ElahiF. YeonS.J. TyagiA. LiuS. MadarI.H. SultanG. OhD.H. The role of bioactive peptides in diabetes and obesity.Foods2021109222010.3390/foods10092220 34574330
    [Google Scholar]
  71. MaedaH. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: A review.J. Oleo Sci.201564212513210.5650/jos.ess14226 25748372
    [Google Scholar]
  72. AkbarzadehS. GholampourH. FarzadiniaP. DaneshiA. RamavandiB. MoazzeniA. KeshavarzM. BargahiA. Anti-diabetic effects of Sargassum oligocystum on streptozotocin-induced diabetic rat.Iran. J. Basic Med. Sci.2018213342346 29511502
    [Google Scholar]
  73. Baradaran RahimiV. AskariV.R. HosseinzadehH. Promising influences of Scutellaria baicalensis and its two active constituents, baicalin, and baicalein, against metabolic syndrome: A review.Phytother. Res.20213573558357410.1002/ptr.7046 33590943
    [Google Scholar]
  74. MayerC. CômeM. UlmannL. MartinI. ZittelliG.C. FaraloniC. OuguerramK. ChénaisB. MimouniV. The potential of the marine microalga Diacronema lutheri in the prevention of obesity and metabolic syndrome in high-fat-fed wistar rats.Molecules20222713424610.3390/molecules27134246 35807489
    [Google Scholar]
  75. du PreezR. MagnussonM. MajzoubM.E. ThomasT. PraegerC. GlassonC.R.K. PanchalS.K. BrownL. Brown seaweed Sargassum siliquosum as an intervention for diet-induced obesity in male wistar rats.Nutrients2021136175410.3390/nu13061754 34064139
    [Google Scholar]
  76. GammoneM. D’OrazioN. Anti-obesity activity of the marine carotenoid fucoxanthin.Mar. Drugs20151342196221410.3390/md13042196 25871295
    [Google Scholar]
  77. YaqoobZ. ArshadM.S. ImranM. MunirH. QaisraniT.B. KhalidW. AsgharZ. SuleriaH.A.R. Mechanistic role of astaxanthin derived from shrimp against certain metabolic disorders.Food Sci. Nutr.2022101122010.1002/fsn3.2623 35035906
    [Google Scholar]
  78. de CastroG.S. CalderP.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids.Clin. Nutr.2018371375510.1016/j.clnu.2017.01.006 28139281
    [Google Scholar]
  79. KwonT.H. WuY.X. KimJ.S. WooJ.H. ParkK.T. KwonO.J. SeoH.J. KimT. ParkN.H. 6,6′‐Bieckol inhibits adipocyte differentiation through downregulation of adipogenesis and lipogenesis in 3T3‐L1 cells.J. Sci. Food Agric.20159591830183710.1002/jsfa.6881 25142414
    [Google Scholar]
  80. YahyazadehR. RahimiV.B. YahyazadehA. AskariV.R. A mechanistic review on protective effects of Mangosteen and its Xanthones against hazardous materials and toxins.Curr. Neuropharmacol.202422121986201510.2174/1570159X22666240212142655 38486389
    [Google Scholar]
  81. CudennecB. CaradecT. CatiauL. RavallecR. Upgrading of sea by-products: Potential nutraceutical applications.Adv. Food Nutr. Res.20126547949410.1016/B978‑0‑12‑416003‑3.00031‑7 22361207
    [Google Scholar]
  82. KulaE. Kocadag KocazorbazE. MoulahoumH. AlpatS. ZihniogluF. Extraction and characterization of novel multifunctional peptides from Trachinus Draco (greater weever) myofibrillar proteins with ACE/DPP4 inhibitory, antioxidant, and metal chelating activities.J. Food Biochem.2020445e1317910.1111/jfbc.13179 32153045
    [Google Scholar]
  83. HartwegJ. FarmerA.J. HolmanR.R. NeilA. Potential impact of omega-3 treatment on cardiovascular disease in type 2 diabetes.Curr. Opin. Lipidol.2009201303810.1097/MOL.0b013e328321b3be 19133409
    [Google Scholar]
  84. AroraK. KumarP. BoseD. LiX. KulshresthaS. Potential applications of algae in biochemical and bioenergy sector.Biotech2021116296
    [Google Scholar]
  85. HaimeurA. UlmannL. MimouniV. GuénoF. Pineau-VincentF. MeskiniN. TremblinG. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats.Lipids Health Dis.201211114710.1186/1476‑511X‑11‑147 23110391
    [Google Scholar]
  86. BahramiY. ZhangW.M.M. FrancoC. Distribution of saponins in the sea cucumber Holothuria lessoni; the body wall versus the viscera, and their biological activities.Mar. Drugs2018161142310.3390/md16110423 30388793
    [Google Scholar]
  87. LeeC.C. AdlerA.I. Recent findings on the effects of marine-derived n-3 polyunsaturated fatty acids on urinary albumin excretion and renal function.Curr. Atheroscler. Rep.201214653554110.1007/s11883‑012‑0279‑3 22886495
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808344500250115114637
Loading
/content/journals/lddd/10.2174/0115701808344500250115114637
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): algae; hypertension; insulin resistance; marines; Metabolic syndrome; mollusks
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test