Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Lysine-specific histone demethylase 1 (LSD1) is a well-known anti-cancer target for drug discovery. Novel reversible inhibitors of LSD1 are desirable to be developed.

Objective

This study aimed to build reliable predictive models to evaluate the antineoplastic efficacy of compounds and reveal the structural foundation underlying the inhibitory activity of LSD1.

Methods

Multiple artificial intelligence algorithms were utilized in the development of quantitative structure-activity relationship (QSAR) models. A dataset comprising 915 compounds with well-defined IC values against LSD1 was assembled for analysis. The structures of these compounds were described by different descriptor packages. Principal component analysis (PCA) was performed to explore the chemical space distribution of each dataset. Y-randomization test and applicability domain (AD) analysis were deployed to validate the reliability of models.

Results

For regression models, a consensus model was constructed by integrating the predictions of four top-performing individual models (SVM_ECFP4, RFR_PyDescriptor, RFR_RDKIT, and TRANSNNI), resulting in enhanced predictive performance as compared to the individual models. The consensus model achieved a determination coefficient (2, for the test set) value of 0.82. For classification models, the consensus model was derived from the amalgamation of three individual models (ASNN_RDKIT, ASNN_ECFP4, and RFR_ECFP4), and the overall prediction accuracy of the model was 0.96 for external validation.

Conclusion

The reliable models could be used to identify highly active LSD1 inhibitors for the purpose of efficient virtual screening. In addition, the important molecular properties and structural fragments derived from this work can provide guidance for the structural optimization of novel LSD1 inhibitors.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808309008240919050151
2024-10-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/lddd/21/18/LDDD-21-18-09.html?itemId=/content/journals/lddd/10.2174/0115701808309008240919050151&mimeType=html&fmt=ahah

References

  1. NiwaH. UmeharaT. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases.Epigenetics201712534035210.1080/15592294.2017.129003228277979
    [Google Scholar]
  2. KarakaidosP. VerigosJ. MagklaraA. LSD1/KDM1A, a gate-keeper of cancer stemness and a promising therapeutic target.Cancers (Basel)20191112182110.3390/cancers1112182131756917
    [Google Scholar]
  3. SornaV. TheisenE.R. StephensB. WarnerS.L. BearssD.J. VankayalapatiH. SharmaS. High-throughput virtual screening identifies novel N′-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors.J. Med. Chem.201356239496950810.1021/jm400870h24237195
    [Google Scholar]
  4. StewartC.A. ByersL.A. Altering the course of small cell lung cancer: Targeting cancer stem cells via LSD1 inhibition.Cancer Cell20152814610.1016/j.ccell.2015.06.01126175409
    [Google Scholar]
  5. CongS. HouL. LuoH. HuaY. LiX. WangF. ZhangL. ZhangZ. LiN. Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through LSD1 activity inhibition.Int. J. Sci.201984273210.18483/ijSci.1986
    [Google Scholar]
  6. ChenL. JiangZ. YangL. FangY. LuS. AkakuruO.U. HuangS. LiJ. MaS. WuA. HPDA/Zn as a CREB inhibitor for ultrasound imaging and stabilization of atherosclerosis plaque.Chin. J. Chem.202341219920610.1002/cjoc.202200406
    [Google Scholar]
  7. ZhaoC. TangX. ChenX. JiangZ. Multifaceted carbonized metal–organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy.ACS Nano20241827178521786810.1021/acsnano.4c0402238939981
    [Google Scholar]
  8. YuY. WangL. NiS. LiD. LiuJ. ChuH.Y. ZhangN. SunM. LiN. RenQ. ZhuoZ. ZhongC. XieD. LiY. ZhangZ.K. ZhangH. LiM. ZhangZ. ChenL. PanX. XiaW. ZhangS. LuA. ZhangB.T. ZhangG. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation.Nat. Commun.2022131424110.1038/s41467‑022‑31997‑835869074
    [Google Scholar]
  9. FengF. WuJ. ChiQ. WangS. LiuW. YangL. SongG. PanL. XuK. WangC. Lactylome analysis unveils lactylation‐dependent mechanisms of stemness remodeling in the liver cancer stem cells.Adv. Sci. (Weinh.)2024240597510.1002/advs.20240597539099416
    [Google Scholar]
  10. SunT. LvJ. ZhaoX. LiW. ZhangZ. NieL. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging.Photoacoustics20233410056910.1016/j.pacs.2023.10056938046637
    [Google Scholar]
  11. WangY. LiD. LvZ. FengB. LiT. WengX. Efficacy and safety of gutong patch compared with NSAIDs for knee osteoarthritis: A real-world multicenter, prospective cohort study in China.Pharmacol. Res.202319710695410.1016/j.phrs.2023.10695437832860
    [Google Scholar]
  12. McAllisterT.E. EnglandK.S. HopkinsonR.J. BrennanP.E. KawamuraA. SchofieldC.J. Recent progress in histone demethylase inhibitors.J. Med. Chem.20165941308132910.1021/acs.jmedchem.5b0175826710088
    [Google Scholar]
  13. DaiX.J. LiuY. XiongX.P. XueL.P. ZhengY.C. LiuH.M. Tranylcypromine based lysine-specific demethylase 1 inhibitor: Summary and perspective.J. Med. Chem.20206323141971421510.1021/acs.jmedchem.0c0091932931269
    [Google Scholar]
  14. NiwaH. SatoS. HandaN. SengokuT. UmeharaT. YokoyamaS. Development and structural evaluation of N ‐alkylated trans ‐2‐phenylcyclopropylamine‐based LSD1 inhibitors.ChemMedChem202015978779310.1002/cmdc.20200001432166890
    [Google Scholar]
  15. ShiY. LanF. MatsonC. MulliganP. WhetstineJ.R. ColeP.A. CaseroR.A. ShiY. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell2004119794195310.1016/j.cell.2004.12.01215620353
    [Google Scholar]
  16. ZhengY.C. YuB. ChenZ.S. LiuY. LiuH.M. TCPs: Privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy.Epigenomics20168565166610.2217/epi‑2015‑000227102879
    [Google Scholar]
  17. AntonijoanR.M. Ferrero-CafieroJ.M. CoimbraJ. PuntesM. Martínez-ColomerJ. ArévaloM.I. MascaróC. MolineroC. BuesaC. MaesT. First-in-human randomized trial to assess safety, tolerability, pharmacokinetics and pharmacodynamics of the KDM1A inhibitor vafidemstat.CNS Drugs202135333134410.1007/s40263‑021‑00797‑x33755924
    [Google Scholar]
  18. DaiX.J. LiuY. XueL.P. XiongX.P. ZhouY. ZhengY.C. LiuH.M. Reversible lysine specific demethylase 1 (LSD1) inhibitors: A promising wrench to impair LSD1.J. Med. Chem.20216452466248810.1021/acs.jmedchem.0c0217633619958
    [Google Scholar]
  19. WangD. WuZ. ShenC. BaoL. LuoH. WangZ. YaoH. KongD-X. LuoC. HouT. Learning with uncertainty to accelerate the discovery of histone lysine-specific demethylase 1A (KDM1A/LSD1) inhibitors.Brief. Bioinform.2023241bbac59210.1093/bib/bbac592
    [Google Scholar]
  20. SartoriL. MercurioC. AmigoniF. CappaA. FagáG. FattoriR. LegnaghiE. CiossaniG. MatteviA. MeroniG. MorettiL. CecatielloV. PasqualatoS. RomussiA. ThalerF. TrifiróP. VillaM. VultaggioS. BotrugnoO.A. DessantiP. MinucciS. ZagarríE. CarettoniD. IuzzolinoL. VarasiM. VianelloP. Thieno[3, 2-b] pyrrole-5-carboxamides as new reversible inhibitors of histone lysine demethylase KDM1A/LSD1. Part 1: High-throughput screening and preliminary exploration.J. Med. Chem.20176051673169210.1021/acs.jmedchem.6b0101828186755
    [Google Scholar]
  21. LiZ. DingL. LiZ. WangZ. SuoF. ShenD. ZhaoT. SunX. WangJ. LiuY. MaL. ZhaoB. GengP. YuB. ZhengY. LiuH. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A).Acta Pharm. Sin. B20199479480810.1016/j.apsb.2019.01.00131384539
    [Google Scholar]
  22. LiZ.H. MaJ.L. LiuG.Z. ZhangX.H. QinT.T. RenW.H. ZhaoT.Q. ChenX.H. ZhangZ.Q. [1,2,3]Triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors.Eur. J. Med. Chem.202018711198910.1016/j.ejmech.2019.11198931881456
    [Google Scholar]
  23. RomussiA. CappaA. VianelloP. BrambillascaS. CeraM.R. Dal ZuffoR. FagàG. FattoriR. MorettiL. TrifiròP. VillaM. VultaggioS. CecatielloV. PasqualatoS. DondioG. SoC.W.E. MinucciS. SartoriL. VarasiM. MercurioC. Discovery of reversible inhibitors of KDM1A efficacious in acute myeloid leukemia models.ACS Med. Chem. Lett.202011575475910.1021/acsmedchemlett.9b0060432435381
    [Google Scholar]
  24. WangX. ZhangC. ZhangX. YanJ. WangJ. JiangQ. ZhaoL. ZhaoD. ChengM. Design, synthesis and biological evaluation of tetrahydroquinoline-based reversible LSD1 inhibitors.Eur. J. Med. Chem.202019411224310.1016/j.ejmech.2020.11224332229389
    [Google Scholar]
  25. SchmittM.L. HauserA.T. CarlinoL. PippelM. Schulz-FinckeJ. MetzgerE. WillmannD. YiuT. BartonM. SchüleR. SipplW. JungM. Nonpeptidic propargylamines as inhibitors of lysine specific demethylase 1 (LSD1) with cellular activity.J. Med. Chem.201356187334734210.1021/jm400792m24007511
    [Google Scholar]
  26. ZhouC. KangD. XuY. ZhangL. ZhaX. Identification of novel selective lysine‐specific demethylase 1 (LSD1) inhibitors using a pharmacophore‐based virtual screening combined with docking.Chem. Biol. Drug Des.201585665967110.1111/cbdd.1246125346381
    [Google Scholar]
  27. SunX-D. ZhengY-C. MaC-Y. YangJ. GaoQ-B. YanY. WangZ-Z. LiW. ZhaoW. LiuH-M. Identifying the novel inhibitors of lysine-specific demethylase 1 (LSD1) combining pharmacophore-based and structure-based virtual screening.J. Biomol. Struct. Dyn.201937164200421430366512
    [Google Scholar]
  28. MaltarolloV.G. HonórioK.M. EmeryF.S. GanesanA. TrossiniG.H.G. Hologram quantitative structure-activity relationship and comparative molecular interaction field analysis of aminothiazole and thiazolesulfonamide as reversible LSD1 inhibitors.Future Med. Chem.20157111381139410.4155/fmc.15.6826230878
    [Google Scholar]
  29. SerajK. Asadollahi-BaboliM. In silico evaluation of 5-hydroxypyrazoles as LSD1 inhibitors based on molecular docking derived descriptors.J. Mol. Struct.2019117951452410.1016/j.molstruc.2018.11.019
    [Google Scholar]
  30. XuY. HeZ. YangM. GaoY. JinL. WangM. ZhengY. LuX. ZhangS. WangC. ZhaoZ. ZhaoJ. GaoQ. DuanY. Investigating the binding mode of reversible LSD1 inhibitors derived from stilbene derivatives by 3D-QSAR, molecular docking, and molecular dynamics simulation.Molecules20192424447910.3390/molecules2424447931817721
    [Google Scholar]
  31. XuY. HeZ. LiuH. ChenY. GaoY. ZhangS. WangM. LuX. WangC. ZhaoZ. LiuY. ZhaoJ. YuY. YangM. 3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno[3,2- b]pyrrole-5-carboxamide derivatives as LSD1 inhibitors.RSC Advances202010126927694310.1039/C9RA10085G35493862
    [Google Scholar]
  32. AbdizadehR. HeidarianE. HadizadehF. AbdizadehT. Rational design of novel pyridine-based drugs candidates for lymphoma therapy.J. Mol. Struct.2022127013396410.1016/j.molstruc.2022.133964
    [Google Scholar]
  33. MswahiliM.E. LeeM.J. MartinG.L. KimJ. KimP. ChoiG.J. JeongY.S. Cocrystal prediction using machine learning models and descriptors.Appl. Sci. (Basel)2021113132310.3390/app11031323
    [Google Scholar]
  34. LeeJ. YoonH. LeeY.J. KimT.Y. BahnG. KimY. LimJ.M. ParkS.W. SongY.S. KimM.S. BeckB.R. Drug–target interaction deep learning-based model identifies the flavonoid troxerutin as a candidate TRPV1 antagonist.Appl. Sci. (Basel)2023139561710.3390/app13095617
    [Google Scholar]
  35. TianY. ZhangZ. YanA. Discovering the active ingredients of medicine and food homologous substances for inhibiting the cyclooxygenase-2 metabolic pathway by machine learning algorithms.Molecules20232819678210.3390/molecules2819678237836625
    [Google Scholar]
  36. ThangaveluP. VenkatesanJ. JubieS. JayapalanS. SivakumarT. A machine learning language to build a QSAR model of pyrazoline derivative inhibitors targeting Mycobacterium tuberculosis strain H37Rv.Lett. Drug Des. Discov.202320216718010.2174/1570180819666220420092723
    [Google Scholar]
  37. NandiS. KumarM. SaxenaA.K. QSAR of SARS-CoV-2 main protease inhibitors utilizing theoretical molecular descriptors.Lett. Drug Des. Discov.202421111613210.2174/1570180820666221214151614
    [Google Scholar]
  38. ShiY. HuaY. WangB. ZhangR. LiX. In silico prediction and insights into the structural basis of drug induced nephrotoxicity.Front. Pharmacol.20221279333210.3389/fphar.2021.79333235082675
    [Google Scholar]
  39. HuaY. ShiY. CuiX. LiX. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.Mol. Divers.20212531585159610.1007/s11030‑021‑10255‑x34196933
    [Google Scholar]
  40. ZhangR. GuoH. HuaY. CuiX. ShiY. LiX. Modeling and insights into the structural basis of chemical acute aquatic toxicity.Ecotoxicol. Environ. Saf.202224211394010.1016/j.ecoenv.2022.11394035999760
    [Google Scholar]
  41. ZhangR. ChenZ. WangB. LiY. MuY. LiX. Modeling and insights into the structural characteristics of chemical mitochondrial toxicity.ACS Omega2023835316753168210.1021/acsomega.3c0172537692239
    [Google Scholar]
  42. WangY. LiuH. FanY. ChenX. YangY. ZhuL. ZhaoJ. ChenY. ZhangY. In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy.J. Chem. Inf. Model.20195993968398010.1021/acs.jcim.9b0030031403793
    [Google Scholar]
  43. Castillo-GaritJ.A. Casañola-MartinG.M. BarigyeS.J. Pham-TheH. TorrensF. TorreblancaA. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis.SAR QSAR Environ. Res.201728973574710.1080/1062936X.2017.137670529022372
    [Google Scholar]
  44. SinghK.P. GuptaS. BasantN. MohanD. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.Chem. Res. Toxicol.20142791504151510.1021/tx500100m25167463
    [Google Scholar]
  45. LiX. DuZ. WangJ. WuZ. LiW. LiuG. ShenX. TangY. In silico estimation of chemical carcinogenicity with binary and ternary classification methods.Mol. Inform.201534422823510.1002/minf.20140012727490168
    [Google Scholar]
  46. Hamza AbdullahiS. UzairuA. ShallangwaG.A. UbaS. UmarA.B. SrivastavaP.N. In-silico design of some pyrazolopyridine analogs as breast cancer inhibitors: QSAR modeling, molecular docking, MD simulation, and pharmacological features profiling.J. Indian Chem. Soc.2023100810105310.1016/j.jics.2023.101053
    [Google Scholar]
  47. HuangX. TangF. HuaY. LiX. In silico prediction of drug‐induced ototoxicity using machine learning and deep learning methods.Chem. Biol. Drug Des.202198224825710.1111/cbdd.1389434013639
    [Google Scholar]
  48. XingG. LiangL. DengC. HuaY. ChenX. YangY. LiuH. LuT. ChenY. ZhangY. Activity prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence.ACS Comb. Sci.2020221287388610.1021/acscombsci.0c0016933146518
    [Google Scholar]
  49. YangM. CulhaneJ.C. SzewczukL.M. JaliliP. BallH.L. MachiusM. ColeP.A. YuH. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine.Biochemistry200746278058806510.1021/bi700664y17569509
    [Google Scholar]
  50. MorS. NagoriaS. KumarA. MongaJ. LohanS. Convenient synthesis, anticancer evaluation and QSAR studies of some thiazole tethered indenopyrazoles.Med. Chem. Res.20162561096111410.1007/s00044‑016‑1528‑8
    [Google Scholar]
  51. XiaB. LiuK. GongZ. ZhengB. ZhangX. FanB. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure–activity relationships methods.Ecotoxicol. Environ. Saf.200972378779410.1016/j.ecoenv.2008.09.00218950860
    [Google Scholar]
  52. CuiX. LiuJ. ZhangJ. WuQ. LiX. In silico prediction of drug‐induced rhabdomyolysis with machine‐learning models and structural alerts.J. Appl. Toxicol.20193981224123210.1002/jat.380831006880
    [Google Scholar]
  53. ZhaoX. SunY. ZhangR. ChenZ. HuaY. ZhangP. GuoH. CuiX. HuangX. LiX. Machine learning modeling and insights into the structural characteristics of drug-induced neurotoxicity.J. Chem. Inf. Model.202262236035604510.1021/acs.jcim.2c0113136448818
    [Google Scholar]
  54. ZhuC. Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users.J. Cloud Comput. (Heidelb.)202413111910.1186/s13677‑024‑00675‑z
    [Google Scholar]
  55. ZhouJ. WuS. LeeB.G. ChenT. HeZ. LeiY. TangB. HirstJ.D. Machine-learning-enabled virtual screening for inhibitors of lysine-specific histone demethylase 1.Molecules20212624749210.3390/molecules2624749234946572
    [Google Scholar]
  56. GaultonA. HerseyA. NowotkaM. BentoA.P. ChambersJ. MendezD. MutowoP. AtkinsonF. BellisL.J. Cibrián-UhalteE. DaviesM. DedmanN. KarlssonA. MagariñosM.P. OveringtonJ.P. PapadatosG. SmitI. LeachA.R. The ChEMBL database in 2017.Nucleic Acids Res.201745D1D945D95410.1093/nar/gkw107427899562
    [Google Scholar]
  57. SushkoI. NovotarskyiS. KörnerR. PandeyA.K. RuppM. TeetzW. BrandmaierS. AbdelazizA. ProkopenkoV.V. TanchukV.Y. TodeschiniR. VarnekA. MarcouG. ErtlP. PotemkinV. GrishinaM. GasteigerJ. SchwabC. BaskinI.I. PalyulinV.A. RadchenkoE.V. WelshW.J. KholodovychV. ChekmarevD. CherkasovA. Aires-de-SousaJ. ZhangQ.Y. BenderA. NigschF. PatinyL. WilliamsA. TkachenkoV. TetkoI.V. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information.J. Comput. Aided Mol. Des.201125653355410.1007/s10822‑011‑9440‑221660515
    [Google Scholar]
  58. GoodarziM. Vander HeydenY. Funar-TimofeiS. Towards better understanding of feature-selection or reduction techniques for quantitative structure–activity relationship models. Trac-Trend.Anal. Chem.2013424963
    [Google Scholar]
  59. StroblC. BoulesteixA.L. ZeileisA. HothornT. Bias in random forest variable importance measures: Illustrations, sources and a solution.BMC Bioinformatics2007812510.1186/1471‑2105‑8‑2517254353
    [Google Scholar]
  60. OprisiuI. NovotarskyiS. TetkoI.V. Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM).J. Cheminform.201351410.1186/1758‑2946‑5‑423321019
    [Google Scholar]
  61. KovalishynV. AbramenkoN. KopernykI. CharochkinaL. MetelytsiaL. TetkoI.V. PeijnenburgW. KustovL. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform.Food Chem. Toxicol.201811250751710.1016/j.fct.2017.08.00828802948
    [Google Scholar]
  62. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  63. ChangC-C. LinC-J. LIBSVM: A library for support vector machines.ACM Trans. Intell. Syst. Technol.20112127
    [Google Scholar]
  64. BaskinI.I. WinklerD. TetkoI.V. A renaissance of neural networks in drug discovery.Expert Opin. Drug Discov.201611878579510.1080/17460441.2016.120126227295548
    [Google Scholar]
  65. TetkoI.V. KarpovP. BrunoE. KimberT.B. GodinG. Augmentation is what you need! In: Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions.ChamSpringer201983183510.1007/978‑3‑030‑30493‑5_79
    [Google Scholar]
  66. KarpovP. GodinG. TetkoI.V. Transformer-CNN: Swiss knife for QSAR modeling and interpretation.J. Cheminform.20201211710.1186/s13321‑020‑00423‑w33431004
    [Google Scholar]
  67. Tapia Garcı’aJ.M. del MoralM.J. MartínezM.A. Herrera-ViedmaE. A consensus model for group decision making problems with linguistic interval fuzzy preference relations.Expert Syst. Appl.20123911100221003010.1016/j.eswa.2012.02.008
    [Google Scholar]
  68. StierandK. RareyM. Drawing the PDB: Protein−ligand complexes in two dimensions.ACS Med. Chem. Lett.20101954054510.1021/ml100164p24900245
    [Google Scholar]
  69. CramerR.D.III RedlG. BerkoffC.E. Substructural analysis. Novel approach to the problem of drug design.J. Med. Chem.197417553353510.1021/jm00251a0144830256
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808309008240919050151
Loading
/content/journals/lddd/10.2174/0115701808309008240919050151
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): activity prediction; drug discovery; in silico; LSD1 inhibitors; machine learning; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test