Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Thymidine kinase 2 (TK2) is a crucial enzyme in the mitochondrial pyrimidine salvage pathway, strongly associated with several mitochondrial diseases. Current treatments frequently damage mitochondria, leading to a decrease in cellular energy output.

Objective

This study aimed to use computational approaches to identify inhibitors of TK2 that could prevent these harmful consequences.

Methods

The initial screening process entailed the application of machine learning algorithms, more particularly a Random Forest model, which was trained on 189 FDA-approved drugs and decoy datasets obtained from the DUD-E database. Its purpose was to identify potential inhibitors. The molecular docking technique was employed to evaluate the affinity of the chosen medicines towards TK2. Molecular dynamics (MD) simulations lasting 100 nanoseconds were employed to conduct additional validation by examining the dynamic interactions between the top-found compounds and TK2.

Results

Three hit compounds (3168, 5209502, and 135402009) were identified through the screening process for their high affinity for TK2. Compound 5209502 had the most stable interaction with the lowest root-mean-square deviation (RMSD) in the molecular dynamics (MD) simulations and maintained 12 hydrogen bonds consistently. MM/GBSA computations verified that 5209502 exhibited the strongest binding affinity with a binding free energy of -62.14 kcal/mol, which was notably lower than that of the control ligand.

Conclusion

Compound 5209502 is a promising candidate for additional experimental evaluation because of its notable stability and great affinity for TK2. This chemical may provide a focused and less harmful treatment for mitochondrial illnesses linked to TK2 malfunction.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808321363241002110548
2024-10-04
2025-09-27
Loading full text...

Full text loading...

References

  1. PriegoE.M. KarlssonA. GagoF. CamarasaM.J. BalzariniJ. Pérez-PérezM.J. Recent advances in thymidine kinase 2 (TK2) inhibitors and new perspectives for potential applications.Curr. Pharm. Des.201218202981299410.2174/13816121280067278722571666
    [Google Scholar]
  2. LewisW. DayB.J. CopelandW.C. Mitochondrial toxicity of nrti antiviral drugs: An integrated cellular perspective.Nat. Rev. Drug Discov.200321081282210.1038/nrd120114526384
    [Google Scholar]
  3. LewisW. DalakasM.C. Mitochondrial toxicity of antiviral drugs.Nat. Med.19951541742210.1038/nm0595‑4177585087
    [Google Scholar]
  4. ZhouX. SolaroliN. BjerkeM. StewartJ.B. RozellB. JohanssonM. KarlssonA. Progressive loss of mitochondrial DNA in thymidine kinase 2-deficient mice.Hum. Mol. Genet.200817152329233510.1093/hmg/ddn13318434326
    [Google Scholar]
  5. WangJ. El-HattabA.W. WongL-J.C. TK2-related mitochondrial DNA maintenance defect, myopathic form. In: GeneReviews. AdamM.P. FeldmanJ. MirzaaG.M. PagonR.A. WallaceS.E. BeanL.J. GrippK.W. AmemiyaA. Seattle, Seattle (WA)University of Washington1993
    [Google Scholar]
  6. GalbiatiS. BordoniA. PapadimitriouD. ToscanoA. RodolicoC. KatsarouE. SciaccoM. GarufiA. PrelleA. AguennouzM. BonsignoreM. CrimiM. MartinuzziA. BresolinN. PapadimitriouA. ComiG.P. New mutations in TK2 gene associated with mitochondrial DNA depletion.Pediatr. Neurol.200634317718510.1016/j.pediatrneurol.2005.07.01316504786
    [Google Scholar]
  7. WangH. HanY. LiS. ChenY. ChenY. WangJ. ZhangY. ZhangY. WangJ. XiaY. YuanJ. Mitochondrial DNA depletion syndrome and its associated cardiac disease.Front. Cardiovasc. Med.2022880811510.3389/fcvm.2021.80811535237671
    [Google Scholar]
  8. ParadasC. Gutiérrez RíosP. RivasE. CarbonellP. HiranoM. DiMauroS. TK2 mutation presenting as indolent myopathy.Neurology201380550450610.1212/WNL.0b013e31827f0ff723303857
    [Google Scholar]
  9. BartesaghiS. Betts-HendersonJ. CainK. DinsdaleD. ZhouX. KarlssonA. SalomoniP. NicoteraP. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.Hum. Mol. Genet.20101991669167710.1093/hmg/ddq04320123860
    [Google Scholar]
  10. ChuE. CallenderM.A. FarrellM.P. SchmitzJ.C. Thymidylate synthase inhibitors as anticancer agents: From bench to bedside.Cancer Chemother. Pharmacol.200352Suppl. 1808910.1007/s00280‑003‑0625‑912819937
    [Google Scholar]
  11. MoriR. UkaiJ. TokumaruY. NiwaY. FutamuraM. The mechanism underlying resistance to 5 fluorouracil and its reversal by the inhibition of thymidine phosphorylase in breast cancer cells.Oncol. Lett.202224331110.3892/ol.2022.1343135949616
    [Google Scholar]
  12. ZhangN. YinY. XuS.J. ChenW.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies.Molecules20081381551156910.3390/molecules1308155118794772
    [Google Scholar]
  13. Munch-PetersenB. CloosL. JensenH.K. TyrstedG. Human thymidine kinase 1. Regulation in normal and malignant cells.Adv. Enzyme Regul.199535698910.1016/0065‑2571(94)00014‑T7572355
    [Google Scholar]
  14. DoradoB. AreaE. AkmanH.O. HiranoM. Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation.Hum. Mol. Genet.201120115516410.1093/hmg/ddq45320940150
    [Google Scholar]
  15. BerardoA. Domínguez-GonzálezC. EngelstadK. HiranoM. Advances in thymidine kinase 2 deficiency: Clinical aspects, translational progress, and emerging therapies.J. Neuromuscul. Dis.20229222523510.3233/JND‑21078635094997
    [Google Scholar]
  16. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein data bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_26
    [Google Scholar]
  17. BirringerM.S. ClausM.T. FolkersG. KloerD.P. SchulzG.E. ScapozzaL. Structure of a type II thymidine kinase with bound dTTP.FEBS Lett.200557961376138210.1016/j.febslet.2005.01.03415733844
    [Google Scholar]
  18. FDA-approved Drug Library 2024. https://www.selleckchem.com/screening/fda-approved-drug-library.html accessed February 12, 2024
  19. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  20. HalgrenT.A. MMFF VI. MMFF94s option for energy minimization studies.J. Comput. Chem.199920772072910.1002/(SICI)1096‑987X(199905)20:7<720::AID‑JCC7>3.0.CO;2‑X34376030
    [Google Scholar]
  21. MM, Mysinger Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking.J. Med. Chem.2012551465826594
    [Google Scholar]
  22. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  23. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  24. KumariR. DalalV. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202240209833984710.1080/07391102.2021.193617934096457
    [Google Scholar]
  25. BauerP. HessB. LindahlE. Accelerating drug target inhibitor discovery with a deep generative foundation model.Sci. Adv.2022925eadg786510.5281/ZENODO.7323409
    [Google Scholar]
  26. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  27. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. DarianE. GuvenchO. LopesP. VorobyovI. MackerellA.D. Jr CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields.J. Comput. Chem.201031467169010.1002/jcc.2136719575467
    [Google Scholar]
  28. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems.J. Chem. Phys.199398121008910092
    [Google Scholar]
  29. HarrachM.F. DrosselB. Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity.J. Chem. Phys.20141401717450110.1063/1.487223924811640
    [Google Scholar]
  30. HessB. BekkerH. BerendsenH.J.C. FraaijeJ.G.E.M. LINCS: A linear constraint solver for molecular simulations.J. Comput. Chem.199718121463147210.1002/(SICI)1096‑987X(199709)18:12<1463::AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  31. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.240842017212484
    [Google Scholar]
  32. MartoňákR. LaioA. ParrinelloM. Predicting crystal structures: The Parrinello-Rahman method revisited.Phys. Rev. Lett.200390707550310.1103/PhysRevLett.90.07550312633242
    [Google Scholar]
  33. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  34. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  35. SgarbossaA. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis.Int. J. Mol. Sci.20121312171211713710.3390/ijms13121712123242152
    [Google Scholar]
  36. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c0064534586825
    [Google Scholar]
  37. MillerB.R.III McGeeT.D.Jr SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py: An efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h26605738
    [Google Scholar]
  38. AjmalA. MahmoodA. HayatC. HakamiM.A. AlotaibiB.S. UmairM. AbdallaA.N. LiP. HeP. WadoodA. HuJ. Computer-assisted drug repurposing for thymidylate kinase drug target in monkeypox virus.Front. Cell. Infect. Microbiol.202313115938910.3389/fcimb.2023.115938937313340
    [Google Scholar]
  39. QayedW.S. FerreiraR.S. SilvaJ.R.A. In silico study towards repositioning of FDA-approved drug candidates for anticoronaviral therapy: Molecular docking, molecular dynamics and binding free energy calculations.Molecules20222718598810.3390/molecules2718598836144718
    [Google Scholar]
  40. AhmadI. JadhavH. ShindeY. JagtapV. GiraseR. PatelH. Optimizing Bedaquiline for cardiotoxicity by structure based virtual screening, DFT analysis and molecular dynamic simulation studies to identify selective MDR-TB inhibitors.In silico Pharmacol.2021912310.1007/s40203‑021‑00086‑x33854869
    [Google Scholar]
  41. PatelH.M. AhmadI. PawaraR. ShaikhM. SuranaS. In silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): A combined approach of structure-based virtual screening and molecular dynamics simulation.J. Biomol. Struct. Dyn.20213941491150510.1080/07391102.2020.173409232102624
    [Google Scholar]
  42. BhowmickS. AlFarisN.A. ALTamimi, J.Z.; ALOthman, Z.A.; Aldayel, T.S.; Wabaidur, S.M.; Islam, M.A. Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics.J. Mol. Struct.2020121612831610.1016/j.molstruc.2020.128316
    [Google Scholar]
  43. DalalV. KumariR. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: An in‐silico approach.ChemistrySelect2022742e20220172810.1002/slct.202201728
    [Google Scholar]
  44. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  45. TropshaA. IsayevO. VarnekA. SchneiderG. CherkasovA. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR.Nat. Rev. Drug Discov.202423214115510.1038/s41573‑023‑00832‑038066301
    [Google Scholar]
  46. DengJ. YangZ. OjimaI. SamarasD. WangF. Artificial intelligence in drug discovery: Applications and techniques.Brief. Bioinform.2022231bbab43010.1093/bib/bbab43034734228
    [Google Scholar]
  47. LoY.C. RensiS.E. TorngW. AltmanR.B. Machine learning in chemoinformatics and drug discovery.Drug Discov. Today20182381538154610.1016/j.drudis.2018.05.01029750902
    [Google Scholar]
  48. HuangS-Y. ZouX. Advances and challenges in protein-ligand docking, international journal of molecular sciences 11.Int. J. Mol. Sci.20101183016303410.3390/ijms11083016
    [Google Scholar]
  49. BartuziD. KaczorA. Targowska-DudaK. MatosiukD. Recent advances and applications of molecular docking to G protein-coupled receptors.Molecules201722234010.3390/molecules2202034028241450
    [Google Scholar]
  50. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z37100941
    [Google Scholar]
  51. HubbardR.E. Kamran HaiderM. Hydrogen bonds in proteins: Role and strength. In: Encyclopedia of Life Sciences.John Wiley & Sons, Ltd201010.1002/9780470015902.a0003011.pub2
    [Google Scholar]
  52. ChenD. OezguenN. UrvilP. FergusonC. DannS.M. SavidgeT.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing.Sci. Adv.201623e150124010.1126/sciadv.150124027051863
    [Google Scholar]
  53. PandeyB. GroverA. SharmaP. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).BMC Genomics201819113210.1186/s12864‑018‑4506‑329433424
    [Google Scholar]
  54. ForouzeshN. MishraN. An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on sars-cov-2 spike protein and the human ace2 receptor.Molecules2021268238310.3390/molecules2608238333923909
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808321363241002110548
Loading
/content/journals/lddd/10.2174/0115701808321363241002110548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test