Skip to content
2000
image of Nano-Formulations of Herbal Agents to Ameliorate the Chemical-induced Hepatotoxicity: A Comprehensive Review

Abstract

Herbal nanoformulations have emerged as a promising approach for managing hepatotoxicity by enhancing the bioavailability, stability, and therapeutic efficacy of plant-derived compounds. Traditional herbal medicines possess hepatoprotective properties due to their antioxidant, anti-inflammatory, and detoxifying effects. However, poor solubility, rapid metabolism, and low systemic absorption limit their clinical potential. Nanoformulations, including liposomes, phytosomes, solid lipid nanoparticles, and polymeric nanoparticles, overcome these challenges by improving drug delivery, targeted release, and sustained therapeutic action. Various plant extracts, such as systems. studies indicate enhanced liver enzyme regulation, reduced oxidative stress, and improved histopathological recovery in drug-induced hepatotoxic models. Nanocarrier systems facilitate cellular uptake and protect bioactive compounds from degradation, thereby maximizing therapeutic benefits while minimizing toxicity. This innovative approach not only offers an alternative to conventional hepatoprotective agents but also provides a platform for the development of efficient herbal therapeutics. Further research is needed to establish safety, optimize formulations, and conduct clinical trials to validate their efficacy in humans. Herbal nanoformulations hold great potential as a novel strategy for preventing and treating hepatotoxicity.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031401073250711115623
2025-07-17
2025-10-12
Loading full text...

Full text loading...

References

  1. Martínez-Sena T. Moro E. Moreno-Torres M. Quintás G. Hengstler J. Castell J.V. Metabolomics-based strategy to assess drug hepatotoxicity and uncover the mechanisms of hepatotoxicity involved. Arch. Toxicol. 2023 97 6 1723 1738 10.1007/s00204‑023‑03474‑8 37022445
    [Google Scholar]
  2. Khezrian M. McNeil C.J. Murray A.D. Myint P.K. An overview of prevalence, determinants and health outcomes of polypharmacy. Ther. Adv. Drug Saf. 2020 11 2042098620933741 10.1177/2042098620933741 32587680
    [Google Scholar]
  3. Devarbhavi H. Aithal G. Treeprasertsuk S. Takikawa H. Mao Y. Shasthry S.M. Hamid S. Tan S.S. Philips C.A. George J. Jafri W. Sarin S.K. Asia Pacific Association of Study of Liver Drug-induced liver injury: Asia Pacific Association of Study of Liver consensus guidelines. Hepatol. Int. 2021 15 2 258 282 10.1007/s12072‑021‑10144‑3 33641080
    [Google Scholar]
  4. Fontana R.J. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 2014 146 4 914 928.e1 10.1053/j.gastro.2013.12.032 24389305
    [Google Scholar]
  5. Hoofnagle J.H. Björnsson E.S. Drug-induced liver injury—types and phenotypes. N. Engl. J. Med. 2019 381 3 264 273 10.1056/NEJMra1816149 31314970
    [Google Scholar]
  6. Björnsson E.S. Bergmann O.M. Björnsson H.K. Kvaran R.B. Olafsson S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 2013 144 7 1419 1425.e3 10.1053/j.gastro.2013.02.006 23419359
    [Google Scholar]
  7. Fisher K. Vuppalanchi R. Saxena R. Drug-induced liver injury. Arch. Pathol. Lab. Med. 2015 139 7 876 887 10.5858/arpa.2014‑0214‑RA 26125428
    [Google Scholar]
  8. Teschke R. Idiosyncratic DILI: Analysis of 46,266 cases assessed for causality by RUCAM and published from 2014 to early 2019. Front. Pharmacol. 2019 10 730 10.3389/fphar.2019.00730 31396080
    [Google Scholar]
  9. Andrade R.J. Aithal G.P. Björnsson E.S. Kaplowitz N. Kullak-Ublick G.A. Larrey D. Karlsen T.H. European Association for the Study of the Liver EASL clinical practice guidelines: drug-induced liver injury. J. Hepatol. 2019 70 6 1222 1261 10.1016/j.jhep.2019.02.014 30926241
    [Google Scholar]
  10. Yu K. Geng X. Chen M. Zhang J. Wang B. Ilic K. Tong W. High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metab. Dispos. 2014 42 4 744 750 10.1124/dmd.113.056267 24464804
    [Google Scholar]
  11. Parthasarathy M. Evan Prince S. The potential effect of phytochemicals and herbal plant remedies for treating drug-induced hepatotoxicity: A review. Mol. Biol. Rep. 2021 48 5 4767 4788 10.1007/s11033‑021‑06444‑4 34075538
    [Google Scholar]
  12. Tariq L. Bhat B.A. Hamdani S.S. Mir R.A. Phytochemistry, Pharmacology and Toxicity of Medicinal Plants. Medicinal and Aromatic Plants Springer 217 240 2021 10.1007/978‑3‑030‑58975‑2_8
    [Google Scholar]
  13. Salar S. Sharma P. Gaurav Quality control and multi-targeted therapeutic approach of Nyctanthes arbor-tristis for management of hepatic disease and associated complications. Pharmacogn. Mag. 2024 20 1 57 71 10.1177/09731296231189619
    [Google Scholar]
  14. Rodriguez S. Skeet K. Mehmetoglu-Gurbuz T. Goldfarb M. Karri S. Rocha J. Shahinian M. Yazadi A. Poudel S. Subramani R. Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma. Cancers 2021 13 22 5753 10.3390/cancers13225753 34830907
    [Google Scholar]
  15. Kumari A. Chandila N. Bhutani R. Yadav I. Hepatoprotective potential of Indian medicinal plants. Comb. Chem. High Throughput Screen. J. Drug Deliv. Sci. Technol. 2017 41 260 268
    [Google Scholar]
  16. Salm S. Rutz J. van den Akker M. Blaheta R.A. Bachmeier B.E. Current state of research on the clinical benefits of herbal medicines for non-life-threatening ailments. Front. Pharmacol. 2023 14 1234701 10.3389/fphar.2023.1234701 37841934
    [Google Scholar]
  17. Choudhury A. Singh P.A. Bajwa N. Dash S. Bisht P. Pharmacovigilance of herbal medicines: Concerns and future prospects. J. Ethnopharmacol. 2023 309 116383 10.1016/j.jep.2023.116383 36918049
    [Google Scholar]
  18. Khogta S. Patel J. Barve K. Londhe V. Herbal nano-formulations for topical delivery. J. Herb. Med. 2020 20 100300 10.1016/j.hermed.2019.100300
    [Google Scholar]
  19. Sharma D. Gupta A. Rawat R. Sharma S. Yadav J.S. Saxena A. Exploring nanoformulation drug delivery of herbal actives for enhanced therapeutic efficacy: A comprehensive review. Intell. Pharm. 2024 3 26 34
    [Google Scholar]
  20. Sonawane S.D. Bais S.K. Waghmare P.R. Novel herbal drug delivery system: A review. Int. J. Pharm. Herb. Technol. 2023 1 3 223 238
    [Google Scholar]
  21. Dewi M.K. Chaerunisaa A.Y. Muhaimin M. Joni I.M. Improved activity of herbal medicines through nanotechnology. Nanomaterials 2022 12 22 4073 10.3390/nano12224073 36432358
    [Google Scholar]
  22. Singh S. Sharma N. Shukla S. Behl T. Gupta S. Anwer M.K. Vargas-De-La-Cruz C. Bungau S.G. Brisc C. Understanding the potential role of nanotechnology in liver fibrosis: A paradigm in therapeutics. Molecules 2023 28 6 2811 10.3390/molecules28062811 36985782
    [Google Scholar]
  23. Kumar B. Jalodia K. Kumar P. Gautam H.K. Recent advances in nanoparticle-mediated drug delivery. J. Drug Deliv. Sci. Technol. 2017 41 260 268 10.1016/j.jddst.2017.07.019
    [Google Scholar]
  24. Mazayen Z.M. Ghoneim A.M. Elbatanony R.S. Basalious E.B. Bendas E.R. Pharmaceutical nanotechnology: From the bench to the market. Future J. Pharm. Sci. 2022 8 1 12 10.1186/s43094‑022‑00400‑0 35071609
    [Google Scholar]
  25. N Srinivasan S. Recent advances in herbal-nano formulation: A systematic review. Asian J. Biol. Life Sci. 2023 12 1 22 32 10.5530/ajbls.2023.12.4
    [Google Scholar]
  26. Namuga C. Ocan M. Kinengyere A.A. Richard S. Namisango E. Muwonge H. Kirabira J.B. Lawrence M. Obuku E.A. Efficacy of nano encapsulated herbal extracts in the treatment of induced wounds in animal models: a systematic review protocol. Syst. Rev. 2023 12 1 215 10.1186/s13643‑023‑02370‑7 37968731
    [Google Scholar]
  27. Wickramasinghe A.S.D. Kalansuriya P. Attanayake A.P. Nanoformulation of plant-based natural products for type 2 diabetes mellitus: From formulation design to therapeutic applications. Curr. Ther. Res. Clin. Exp. 2022 96 100672 10.1016/j.curtheres.2022.100672 35586563
    [Google Scholar]
  28. Böttger R. Pauli G. Chao P.H. AL Fayez N. Hohenwarter L. Li S.D. Lipid-based nanoparticle technologies for liver targeting. Adv. Drug Deliv. Rev. 2020 154-155 79 101 10.1016/j.addr.2020.06.017 32574575
    [Google Scholar]
  29. Noore S. Rastogi N.K. O’Donnell C. Tiwari B. Novel bioactive extraction and nano-encapsulation. Encyclopedia 2021 1 3 632 664 10.3390/encyclopedia1030052
    [Google Scholar]
  30. Chowdhury S. Nath D. Das S.R.C. Kar K. Chakraborty P. Kapoor D.U. Prajapati B.G. Nanotechnology based herbal drug delivery system: Current insights and future prospects. Curr. Nanomed. 2024 10.2174/0124681873349580241113081309
    [Google Scholar]
  31. Teli D. Satasia R. Patel V. Nair R. Khatri R. Gala D. Balar P.C. Patel K. Sharma A. Vadodariya P. Chavda V.P. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals. Clinical Trad. Med. Pharmacol. 2024 5 2 200139 10.1016/j.ctmp.2024.200139
    [Google Scholar]
  32. Laib I. Ali B.D. Alsalme A. Croun D. Bechelany M. Barhoum A. Therapeutic potential of silver nanoparticles from Helianthemum lippii extract for mitigating cadmium-induced hepatotoxicity: liver function parameters, oxidative stress, and histopathology in wistar rats. Front. Bioeng. Biotechnol. 2024 12 1400542 10.3389/fbioe.2024.1400542 39007052
    [Google Scholar]
  33. Alsareii S.A. Manaa Alamri A. AlAsmari M.Y. Bawahab M.A. Mahnashi M.H. Shaikh I.A. Shettar A.K. Hoskeri J.H. Kumbar V. Synthesis and characterization of silver nanoparticles from Rhizophora apiculata and studies on their wound healing, antioxidant, anti-inflammatory, and cytotoxic activity. Molecules 2022 27 19 6306 10.3390/molecules27196306 36234841
    [Google Scholar]
  34. El-Saied Y.E. Mostafa M.E. Refaat M. El-Senduny F.F. Alsharif F.M. El-Khawaga O.Y. The hepatoprotective role of Balanites aegyptiaca extract and its nano-formulation against methomyl-induced toxicity and oxidative stress in mice via overexpression of Nrf2. J. Appl. Biotechnol. Rep. 2021 8 3 263 274
    [Google Scholar]
  35. Abdullah A.S. Sayed T.E. El-Torgoman A.M.A. Kalam A. Wageh S. Kamel M.A. Green synthesis of silymarin–chitosan nanoparticles as a new nano formulation with enhanced anti- fibrotic effects against liver fibrosis. Int. J. Mol. Sci. 2022 23 10 5420 10.3390/ijms23105420 35628233
    [Google Scholar]
  36. Macit M. Duman G. Cumbul A. Sumer E. Macit C. Formulation development of Silybum marianum seed extracts and silymarin nanoparticles, and evaluation of hepatoprotective effect. J. Drug Deliv. Sci. Technol. 2023 83 104378 10.1016/j.jddst.2023.104378
    [Google Scholar]
  37. Yadav E. Alam J. Shiva S.A. Khalid M. Pal P. Ahammad S. Hashmi S. Fabrication of embelin incorporated phytosomes complex for assessing hepatoprotective potential against acetaminophen elicit hepatotoxicity in male Wistar rats. J. Pharm. Res. 2023 13 04
    [Google Scholar]
  38. Hussain S. Ashafaq M. Alshahrani S. Bokar I.A.M. Siddiqui R. Alam M.I. Taha M.M.E. Almoshari Y. Alqahtani S.S. Ahmed R.A. Jali A.M. Qadri M. Hepatoprotective effect of curcumin nano-lipid carrier against cypermethrin toxicity by countering the oxidative, inflammatory, and apoptotic changes in Wistar rats. Molecules 2023 28 2 881 10.3390/molecules28020881 36677938
    [Google Scholar]
  39. Song K. Zhou L. Wang C. Yuan Z. Cao Q. Wu X. Li M. Novel luteolin@pro-phytomicelles: in vitro characterization and in vivo evaluation of protection against drug-induced hepatotoxicity. Chem. Biol. Interact. 2022 365 110095 10.1016/j.cbi.2022.110095 35970426
    [Google Scholar]
  40. Dar S.H. Singh S.P. Pathak A. Kumar A. Effect of turmeric nano-formulation on hepatorenal function in osteoporotic rats. J. Vet. Pharmacol. Toxicol. 2021 20 2 92 94
    [Google Scholar]
  41. Liu Y. Meng X. A novel Vaccaria Semen Carbonisatum carbon nanocomposites and their protective effects on alcohol-induced liver injury in mice. J. Biomed. Nanotechnol. 2022 18 5 1497 1504 10.1166/jbn.2022.3340
    [Google Scholar]
  42. Jahangir M.A. Muheem A. Imam S.S. Ahmed F.J. Aqil M. Nigella sativa encapsulated nano-scaffolds and their bioactivity significance. Biomarkers as Targeted Herbal Drug Discovery. Apple Academic Press 2021 155 175 10.1201/9781003045526‑7
    [Google Scholar]
  43. Thant Y. Wang Q. Wei C. Liu J. Zhang K. Bao R. Zhu Q. Weng W. Yu Q. Zhu Y. Xu X. Yu J. TPGS conjugated pro-liposomal nano-drug delivery system potentiate the antioxidant and hepatoprotective activity of Myricetin. J. Drug Deliv. Sci. Technol. 2021 66 102808 10.1016/j.jddst.2021.102808
    [Google Scholar]
  44. AlKandari F.M. Mohamed H.S. Ahmed S.A. Mahmoud B. Mahmoud A.M. Protective effects of propolis and chitosan nanoparticles against ibuprofen-induced hepatotoxicity in albino rats. Diseases 2024 12 3 49 10.3390/diseases12030049 38534974
    [Google Scholar]
  45. Jahan N. Kousar F. Rahman K.U. Touqeer S.I. Abbas N. Development of nanosuspension of Artemisia absinthium extract as novel drug delivery system to enhance its bioavailability and hepatoprotective potential. J. Funct. Biomater. 2023 14 8 433 10.3390/jfb14080433 37623677
    [Google Scholar]
  46. Shariare M.H. Pinky N.J.K. Abedin J. Kazi M. Aldughaim M.S. Uddin M.N. Liposomal drug delivery of Blumea lacera leaf extract: in-vivo hepatoprotective effects. Nanomaterials 2022 12 13 2262 10.3390/nano12132262 35808096
    [Google Scholar]
  47. Mitra M. Bandyopadhyay A. Datta G. Nandi D.K. Effective dose of herbal gold nanoparticles for protection of acetaminophen-induced hepatotoxicity in male albino rats. Bionanoscience 2020 10 4 1094 1106 10.1007/s12668‑020‑00766‑6
    [Google Scholar]
  48. Hussein M.E. El Senousy A.S. Abd-elsalam W.H. Ahmed K.A. El-askary H.I. Mouneir S.M. Fishawy A.M. Roselle seed oil and its nano-formulation alleviated oxidative stress, activated Nrf2 and downregulated m-RNA expression genes of pro-inflammatory cytokines in paracetamol-intoxicated rat model. Rec. Nat. Prod. 2019 14 1 1 17 10.25135/rnp.133.19.03.1220
    [Google Scholar]
  49. Abdou E.M. Fayed M.A.A. Helal D. Ahmed K.A. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Sci. Rep. 2019 9 1 19779 10.1038/s41598‑019‑56320‑2 31875004
    [Google Scholar]
  50. Shafique H. Ahad A. Khan W. Want M.Y. Bhatt P.C. Ahmad S. Panda B.P. Mujeeb M. Ganoderic acid -loaded solid lipid nanoparticles ameliorate d-galactosamine induced hepatotoxicity in Wistar rats. J. Drug Deliv. Sci. Technol. 2019 50 48 56 10.1016/j.jddst.2019.01.005
    [Google Scholar]
  51. Singh S.K. Mukerjee A. Tripathi H.P.A. Nanoformulation of cinnamon oil/usnic acid blend: an attempt to improve chemopreventive effect and reduce hepatotoxicity. Faslnamah-i Giyahan-i Daruyi 2020 8 4 311 316
    [Google Scholar]
  52. Cristani M. Citarella A. Carnamucio F. Micale N. Nano-formulations of natural antioxidants for the treatment of liver cancer. Biomolecules 2024 14 8 1031 10.3390/biom14081031 39199418
    [Google Scholar]
  53. Robertson I. Wai Hau T. Sami F. Sajid Ali M. Badgujar V. Murtuja S. Saquib Hasnain M. Khan A. Majeed S. Tahir Ansari M. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int. J. Pharm. 2022 618 121605 10.1016/j.ijpharm.2022.121605 35227804
    [Google Scholar]
  54. Vyasa K. Vyasb A.P. A review on advances in nanoparticulate drug delivery systems for HCC treatment. GRJ 2022 8 347 374
    [Google Scholar]
  55. Sahoo P.K. Mishra A.K. Pandey M. Dewangan H.K. Sl N. A comprehensive review on liver targeting: emphasis on nanotechnology-based molecular targets and receptors mediated approaches. Curr. Drug Targets 2022 23 15 1381 1405 10.2174/1389450123666220906091432 36065923
    [Google Scholar]
  56. Zhang F. Ju J. Diao H. Song J. bian Y. Yang B. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. Br. J. Pharmacol. 2024 181 5 bph.16342 10.1111/bph.16342 38514420
    [Google Scholar]
  57. Chopra H. Dey P.S. Das D. Bhattacharya T. Shah M. Mubin S. Maishu S.P. Akter R. Rahman M.H. Karthika C. Murad W. Qusty N. Qusti S. Alshammari E.M. Batiha G.E.S. Altalbawy F.M.A. Albooq M.I.M. Alamri B.M. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021 26 16 4998 10.3390/molecules26164998 34443593
    [Google Scholar]
  58. Islam A. Mishra A. Siddiqui M.A. Siddiquie S. Recapitulation of evidence of phytochemical, pharmacokinetic and biomedical application of silybin. Drug Res. (Stuttg.) 2021 71 9 489 503 10.1055/a‑1528‑2721 34318464
    [Google Scholar]
  59. Poudyal A. Subba B. Bhattarai A. Regmi D. Tiwari B. Pradhan A. Bhutia S. A comprehensive review on phytosomes: A novel drug delivery system of phytoconstituents. Int. J. Life Sci. Pharma Res. 2022 12 5 143 161 10.22376/ijpbs/lpr.2022.12.5.p143‑161
    [Google Scholar]
  60. Bhattacharya S. Perris A. Jawed J.J. Hoda M. Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action. Pharmacol. Res. Mod. Chin. Med. 2023 6 100233 10.1016/j.prmcm.2023.100233
    [Google Scholar]
  61. Rani K. Devi N. Saharan V. Kharb P. Glycyrrhiza glabra: An insight to nanomedicine. J. Nanosci. Nanotechnol. 2021 21 6 3367 3378 10.1166/jnn.2021.19007 34739794
    [Google Scholar]
  62. Saleh S.R. Younis F.A. Abdelrahman S.S. Attia A.A. El Demellawy M.A. Newairy A.S. Ghareeb D.A. Attenuation of high-fat high-sucrose diet and CCl4-induced non-alcoholic steatohepatitis in rats by activating autophagy and SIGMAR1/GRP78/ITPR1 signaling using berberine-loaded albumin nanoparticles: in vivo prediction and in-silico molecular modeling. J. Pharm. Investig. 2024 54 1 24
    [Google Scholar]
  63. Chen Z. Liu B. Gong Z. Huang H. Gong Y. Xiao W. Metagenomics approach to the intestinal microbiome structure and abundance in high-fat-diet-induced hyperlipidemic rat fed with (−)-Epigallocatechin-3-Gallate nanoparticles. Molecules 2022 27 15 4894 10.3390/molecules27154894 35956844
    [Google Scholar]
  64. AbdElrazek D.A. Ibrahim M.A. Hassan N.H. Hassanen E.I. Farroh K.Y. Abass H.I. Neuroprotective effect of quercetin and nano-quercetin against cyclophosphamide-induced oxidative stress in the rat brain: Role of Nrf2/ HO-1/Keap-1 signaling pathway. Neurotoxicology 2023 98 16 28 10.1016/j.neuro.2023.06.008 37419146
    [Google Scholar]
  65. Quiroga D. Coy-Barrera C. Use of chitosan as a precursor for multiple applications in medicinal chemistry: recent significant contributions. Mini Rev. Med. Chem. 2024 24 18 1651 1684 10.2174/0113895575275799240306105615 38500287
    [Google Scholar]
  66. Qin X. Wang X. Tian M. Dong Z. Wang J. Wang C. Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. Phytomedicine 2023 109 154537 10.1016/j.phymed.2022.154537 36610122
    [Google Scholar]
  67. Kazmi I. Al-Abbasi F.A. Afzal M. Altayb H.N. Nadeem M.S. Gupta G. Formulation and evaluation of kaempferol loaded nanoparticles against experimentally induced hepatocellular carcinoma: in vitro and in vivo studies. Pharmaceutics 2021 13 12 2086 10.3390/pharmaceutics13122086 34959368
    [Google Scholar]
  68. Mohamed E.E. Ahmed O.M. Abdel-Moneim A. Zoheir K.M.A. Elesawy B.H. Al Askary A. Hassaballa A. El-Shahawy A.A.G. Protective effects of naringin–dextrin nanoformula against chemically induced hepatocellular carcinoma in Wistar rats: Roles of oxidative stress, inflammation, cell apoptosis, and proliferation. Pharmaceuticals 2022 15 12 1558 10.3390/ph15121558 36559011
    [Google Scholar]
  69. Gu L. Zhang F. Wu J. Zhuge Y. Nanotechnology in drug delivery for liver fibrosis. Front. Mol. Biosci. 2022 8 804396 10.3389/fmolb.2021.804396 35087870
    [Google Scholar]
  70. Afzal S. Abdul Manap A.S. Attiq A. Albokhadaim I. Kandeel M. Alhojaily S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023 14 1269581 10.3389/fphar.2023.1269581 37927596
    [Google Scholar]
  71. Villanueva-Paz M. Morán L. López-Alcántara N. Freixo C. Andrade R.J. Lucena M.I. Cubero F.J. Oxidative stress in drug-induced liver injury (DILI): From mechanisms to biomarkers for use in clinical practice. Antioxidants 2021 10 3 390 10.3390/antiox10030390 33807700
    [Google Scholar]
  72. Liu W. Zeng X. Liu Y. Liu J. Li C. Chen L. Chen H. Ouyang D. The immunological mechanisms and immune-based biomarkers of drug-induced liver injury. Front. Pharmacol. 2021 12 723940 10.3389/fphar.2021.723940 34721020
    [Google Scholar]
  73. Puricelli C. Gigliotti C.L. Stoppa I. Sacchetti S. Pantham D. Scomparin A. Rolla R. Pizzimenti S. Dianzani U. Boggio E. Sutti S. Use of poly lactic-co-glycolic acid nano and microparticles in the delivery of drugs modulating different phases of inflammation. Pharmaceutics 2023 15 6 1772 10.3390/pharmaceutics15061772 37376219
    [Google Scholar]
  74. AbouAitah K. Higazy I.M. Swiderska-Sroda A. Abdelhameed R.M. Gierlotka S. Mohamed T.A. Szałaj U. Lojkowski W. Anti-inflammatory and antioxidant effects of nanoformulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents. Drug Deliv. 2021 28 1 1478 1495 10.1080/10717544.2021.1949073 34254539
    [Google Scholar]
  75. Kumar V. Anwar F. Chemoprotective effect of crocetin-dextrin nano-formulation against N-diethylnitrosamine induced hepatocellular carcinoma in Wistar rats via mitochondrial apoptosis, antioxidative, anti-inflammatory and PI3K/Akt/mTOR signaling pathways. Gut Liver 2024 18 113
    [Google Scholar]
  76. Berumen J. Baglieri J. Kisseleva T. Mekeel K. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech. Dis. 2021 13 1 e1499 10.1002/wsbm.1499 32713091
    [Google Scholar]
  77. Kumari S. Goyal A. Sönmez Gürer E. Algın Yapar E. Garg M. Sood M. Sindhu R.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential. Pharmaceutics 2022 14 5 1091 10.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  78. Sahibzada M.U.K. Zahoor M. Sadiq A. ur Rehman F. Al-Mohaimeed A.M. Shahid M. Naz S. Ullah R. Bioavailability and hepatoprotection enhancement of berberine and its nanoparticles prepared by liquid antisolvent method. Saudi J. Biol. Sci. 2021 28 1 327 332 10.1016/j.sjbs.2020.10.006 33424313
    [Google Scholar]
  79. Shriram R.G. Moin A. Alotaibi H.F. Khafagy E.S. Al Saqr A. Abu Lila A.S. Charyulu R.N. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin. Pharmaceuticals 2022 15 7 790 10.3390/ph15070790 35890088
    [Google Scholar]
  80. Saadh M.J. Mustafa M.A. Kumar S. Gupta P. Pramanik A. Rizaev J.A. Shareef H.K. Alubiady M.H.S. Al-Abdeen S.H.Z. Shakier H.G. Alaraj M. Alzubaidi L.H. Advancing therapeutic efficacy: Nanovesicular delivery systems for medicinal plant-based therapeutics. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 10 7229 7254 10.1007/s00210‑024‑03104‑9 38700796
    [Google Scholar]
  81. Barani M. Sangiovanni E. Angarano M. Rajizadeh M.A. Mehrabani M. Piazza S. Gangadharappa H.V. Pardakhty A. Mehrbani M. Dell’Agli M. Nematollahi M.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34703224
    [Google Scholar]
  82. Tang R. Li R. Li H. Ma X.L. Du P. Yu X.Y. Ren L. Wang L.L. Zheng W.S. Design of hepatic targeted drug delivery systems for natural products: insights into nomenclature revision of nonalcoholic fatty liver disease. ACS Nano 2021 15 11 17016 17046 10.1021/acsnano.1c02158 34705426
    [Google Scholar]
  83. Elzoheiry A. Ayad E. Omar N. Elbakry K. Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci. Rep. 2022 12 1 18403 10.1038/s41598‑022‑23276‑9 36319750
    [Google Scholar]
  84. Eswaran A. Muthukrishnan S. Mathaiyan M. Pradeepkumar S. Mari K.R. Manogaran P. Green synthesis, characterization and hepatoprotective activity of silver nanoparticles synthesized from pre-formulated Liv-Pro-08 poly-herbal formulation. Appl. Nanosci. 2023 13 3 2315 2327 10.1007/s13204‑021‑01945‑x
    [Google Scholar]
  85. Vilas-Boas V. Vinken M. Hepatotoxicity induced by nanomaterials: Mechanisms and in vitro models. Arch. Toxicol. 2021 95 1 27 52 10.1007/s00204‑020‑02940‑x 33155068
    [Google Scholar]
  86. Yao Y. Zang Y. Qu J. Tang M. Zhang T. The toxicity of metallic nanoparticles on liver: The subcellular damages, mechanisms, and outcomes. Int. J. Nanomedicine 2019 14 8787 8804 10.2147/IJN.S212907 31806972
    [Google Scholar]
  87. Huang Y.S. Chang T.T. Peng C.Y. Lo G.H. Hsu C.W. Hu C.T. Huang Y.H. Herbal and dietary supplement-induced liver injury in Taiwan: Comparison with conventional drug-induced liver injury. Hepatol. Int. 2021 15 6 1456 1465 10.1007/s12072‑021‑10241‑3 34382132
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031401073250711115623
Loading
/content/journals/ddl/10.2174/0122103031401073250711115623
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytosomes ; plant extracts ; Nanoformulation ; oxidative stress ; liposomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test