Skip to content
2000
image of Advances in Green Synthesis of Zinc Oxide Nanoparticles: A Promising Nanotechnology Approach for Diabetes Mellitus Management

Abstract

Diabetes mellitus (DM) is a major global health concern, with a growing patient population and associated complications. Traditional treatments often fall short due to the complex nature of the disease. Recent advances in nanotechnology, particularly the use of zinc oxide nanoparticles (ZnO NPs), offer promising solutions. This review aims to highlight the eco-friendly, economical, and biocompatible characteristics of ZnO NPs, with a focus on green synthesis techniques for their production.

It also explores the green synthesis of ZnO NPs using natural resources, such as microorganisms and plant extracts, which act as stabilizing and reducing agents. It examines the potential of these nanoparticles in improving medicinal properties, particularly through their antibacterial, antidiabetic, and antioxidant activities. The possibility of combining ZnO NPs with other nanomaterials is also investigated, with an emphasis on applications in biosensing, therapeutics, and diagnostics.

ZnO NPs synthesized through green methods demonstrate significant potential in enhancing insulin sensitivity, glucose management, and preventing diabetes-related complications. Their improved medicinal properties, including antibacterial, antidiabetic, and antioxidant activities, are highlighted. This review also identifies opportunities for the development of combination products and discusses the transition from laboratory-scale research to industrial-scale production.

Extensive safety and clinical studies are required to confirm the safety and efficacy of ZnO NPs, paving the way for regulatory approval and wider adoption in medical applications. This review underscores the importance of medicinal plants and biogenic approaches for the synthesis of zinc oxide nanoparticles and calls for further research to explore the full potential of ZnO NPs in diabetes management and beyond.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031350147250310032617
2025-03-19
2025-09-13
Loading full text...

Full text loading...

References

  1. Perveen R. Shujaat S. Qureshi Z. Nawaz S. Khan M.I. Iqbal M. Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J. Mater. Res. Technol. 2020 9 4 7817 7827 10.1016/j.jmrt.2020.05.004
    [Google Scholar]
  2. Sharma A. Nagraik R. Sharma S. Sharma G. Pandey S. Azizov S. Chauhan P.K. Kumar D. Green synthesis of ZnO nanoparticles using Ficus palmata: Antioxidant, antibacterial and antidiabetic studies. Results in Chemistry 2022 4 100509 10.1016/j.rechem.2022.100509
    [Google Scholar]
  3. Sana S.S. Kumbhakar D.V. Pasha A. Pawar S.C. Grace A.N. Singh R.P. Nguyen V.H. Le Q.V. Peng W. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules 2020 25 21 4896 10.3390/molecules25214896 33113894
    [Google Scholar]
  4. Jafarirad S. Mehrabi M. Divband B. Kosari-Nasab M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. C 2016 59 296 302 10.1016/j.msec.2015.09.089 26652376
    [Google Scholar]
  5. Santhoshkumar J. Kumar S.V. Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 2017 3 4 459 465 10.1016/j.reffit.2017.05.001
    [Google Scholar]
  6. Rad S.S. Sani A.M. Mohseni S. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 2019 131 239 245 10.1016/j.micpath.2019.04.022 31002961
    [Google Scholar]
  7. Norouzi Jobie F. Ranjbar M. Hajizadeh Moghaddam A. Kiani M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv. Powder Technol. 2021 32 6 2043 2052 10.1016/j.apt.2021.04.014
    [Google Scholar]
  8. Nagori K. Nakhate K.T. Yadav K. Thakur A. Innovative strategies for overcoming blood-brain barrier challenges in Alzheimer’s disease: A focus on green-synthesized metallic nanoparticles. Inorg. Chem. Commun. 2025 171 113604 10.1016/j.inoche.2024.113604
    [Google Scholar]
  9. Nagori K. in silico molecular docking analysis of some terpenoids against 3CLpro of SARS-CoV-2. Res J Pharm Technol 2023 16 10 4791 4798 10.52711/0974‑360X.2023.00777
    [Google Scholar]
  10. Hassan S.S.M. Abdel-Shafy H.I. Mansour M.S.M. Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO-nanoparticles followed by microfiltration for safe reuse. Arab. J. Chem. 2019 12 8 4074 4083 10.1016/j.arabjc.2016.04.009
    [Google Scholar]
  11. Sharma R. Garg R. Kumari A. A review on biogenic synthesis, applications and toxicity aspects of zinc oxide nanoparticles. IfADo 2020 10.17179/excli2020‑2842
    [Google Scholar]
  12. Yadav K. Singh M.R. Rai V.K. Srivastava N. Prasad Yadav N. Commercial aspects and market potential of novel delivery systems for bioactives and biological agents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Chapter 20 Singh M.R. Singh D. Kanwar J.R. Chauhan N.S. Academic Press 2020 595 620 10.1016/B978‑0‑12‑819666‑3.00020‑1
    [Google Scholar]
  13. Yadav K. Singh D. Singh M.R. Chauhan N.S. Minz S. Pradhan M. Nanobiomaterials as novel modules in the delivery of artemisinin and its derivatives for effective management of malaria. Chapter 18 Chauhan V-B.D.M. Academic Press 2023 447 466 10.1016/B978‑0‑323‑91942‑5.00003‑3
    [Google Scholar]
  14. Tang K. S. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci. 2019 239 117011 10.1016/j.lfs.2019.117011
    [Google Scholar]
  15. Mandal A. K. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials Basel 2022 12 17 3066 10.3390/nano12173066
    [Google Scholar]
  16. Sucheta Clinical and regulatory consideration for nanobiomaterials. Biomaterial-Inspired Nanomedicines for Targeted Therapies. Pradhan M. Yadav K. Singh Chauhan N. Singapore Springer Nature Singapore 2024 451 476 10.1007/978‑981‑97‑3925‑7_17
    [Google Scholar]
  17. Sahu K.K. 5 - Utility of nanomaterials in wound management. Nanotechnological Aspects for Next-Generation Wound Management. Solanki P.R. Kumar A. Pratap Singh R. Singh J. Singh K.R.B. Academic Press 2024 101 130 10.1016/B978‑0‑323‑99165‑0.00006‑X
    [Google Scholar]
  18. Jayappa M.D. Ramaiah C.K. Kumar M.A.P. Suresh D. Prabhu A. Devasya R.P. Sheikh S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl. Nanosci. 2020 10 8 3057 3074 10.1007/s13204‑020‑01382‑2 32421069
    [Google Scholar]
  19. Yadav K. Gnanakani S.P.E. Sahu K.K. Veni Chikkula C.K. Vaddi P.S. Srilakshmi S. Yadav R. Sucheta Dubey A. Minz S. Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics—A comprehensive review. Int. J. Biol. Macromol. 2024 274 Pt 1 133244 10.1016/j.ijbiomac.2024.133244 38901506
    [Google Scholar]
  20. Naseer M. Aslam U. Khalid B. Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 2020 10 1 9055 10.1038/s41598‑020‑65949‑3 32493935
    [Google Scholar]
  21. Król A. Pomastowski P. Rafińska K. Railean-Plugaru V. Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017 249 37 52 10.1016/j.cis.2017.07.033
    [Google Scholar]
  22. Mohammadi F.M. Ghasemi N. Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. J. Nanostructure Chem. 2018 8 1 93 102 10.1007/s40097‑018‑0257‑6
    [Google Scholar]
  23. Sumanth B. Lakshmeesha T.R. Ansari M.A. Alzohairy M.A. Udayashankar A.C. Shobha B. Niranjana S.R. Srinivas C. Almatroudi A. Mycogenic synthesis of extracellular zinc oxide nanoparticles from xylaria acuta and its nanoantibiotic potential. Int. J. Nanomedicine 2020 15 8519 8536 10.2147/IJN.S271743 33173290
    [Google Scholar]
  24. Al-Mohaimeed A.M. Al-Onazi W.A. El-Tohamy M.F. Multifunctional eco-friendly synthesis of zno nanoparticles in biomedical applications. Molecules 2022 27 2 579 10.3390/molecules27020579 35056891
    [Google Scholar]
  25. Chandra H. Patel D. Kumari P. Jangwan J.S. Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C 2019 102 212 220 10.1016/j.msec.2019.04.035 31146992
    [Google Scholar]
  26. Yadav R. Pradhan M. Yadav K. Mahalvar A. Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J. Drug Deliv. Sci. Technol. 2022 74 103430 10.1016/j.jddst.2022.103430 35582019
    [Google Scholar]
  27. Yadav H. Mahalvar A. Pradhan M. Yadav K. Kumar Sahu K. Yadav R. Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment. Med. Drug Disc. 2023 17 100151 10.1016/j.medidd.2023.100151
    [Google Scholar]
  28. Faisal S. Jan H. Shah S.A. Shah S. Khan A. Akbar M.T. Rizwan M. Jan F. Wajidullah Akhtar N. Khattak A. Syed S. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans : Their characterizations and biological and environmental applications. ACS Omega 2021 6 14 9709 9722 10.1021/acsomega.1c00310 33869951
    [Google Scholar]
  29. Rudayni H.A. Aladwani M. Alneghery L.M. Allam A.A. Abukhadra M.R. Bellucci S. Insight into the potential antioxidant and antidiabetic activities of scrolled kaolinite single sheet (KNs) and its composite with ZnO nanoparticles: Synergetic studies. Minerals 2023 13 4 567 10.3390/min13040567
    [Google Scholar]
  30. Thakur A. Nagori K. Rao A. Rai N. Use of deep learning approaches for the prediction of diseases from medical images. 2024 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186819473&partnerID=40&md5=a555f234af1e4d42bd2db9cf77162863
  31. Bayrami A. Ghorbani E. Rahim Pouran S. Habibi-Yangjeh A. Khataee A. Bayrami M. Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: Joint ultrasound-microwave- facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrason. Sonochem. 2019 58 104613 10.1016/j.ultsonch.2019.104613 31450359
    [Google Scholar]
  32. Hussein J. El-Naggar M.E. Latif Y.A. Medhat D. El Bana M. Refaat E. Morsy S. Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: Activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids Surf. B Biointerfaces 2018 170 76 84 10.1016/j.colsurfb.2018.05.058 29883845
    [Google Scholar]
  33. Steffy K. Shanthi G. Maroky A.S. Selvakumar S. Enhanced antibacterial effects of green synthesized ZnO NPs using Aristolochia indica against Multi-drug resistant bacterial pathogens from Diabetic Foot Ulcer. J. Infect. Public Health 2018 11 4 463 471 10.1016/j.jiph.2017.10.006 29150378
    [Google Scholar]
  34. Amiri A. Dehkordi R.A.F. Heidarnejad M.S. Dehkordi M.J. Effect of the zinc oxide nanoparticles and thiamine for the management of diabetes in alloxan-induced mice: A stereological and biochemical study. Biol. Trace Elem. Res. 2018 181 2 258 264 10.1007/s12011‑017‑1035‑x 28534098
    [Google Scholar]
  35. Patel S. Pathogenesis and molecular targets in treatment of diabetic wounds. Obesity and Diabetes: Scientific Advances and Best Practice. Faintuch J. Faintuch S. Cham Springer International Publishing 2020 747 758 10.1007/978‑3‑030‑53370‑0_55
    [Google Scholar]
  36. Ali A. Saroj S. Saha S. Gupta S.K. Rakshit T. Pal S. Glucose-responsive chitosan nanoparticle/poly(vinyl alcohol) hydrogels for sustained insulin release in vivo. ACS Appl. Mater. Interfaces 2023 15 27 32240 32250 10.1021/acsami.3c05031 37368956
    [Google Scholar]
  37. Bayrami A. Parvinroo S. Habibi-Yangjeh A. Rahim Pouran S. Bio-extract-mediated ZnO nanoparticles: Microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif. Cells Nanomed. Biotechnol. 2018 46 4 730 739 10.1080/21691401.2017.1337025 28617629
    [Google Scholar]
  38. Bala R. Kalia A. Dhaliwal S.S. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J. Soil Sci. Plant Nutr. 2019 19 2 379 389 10.1007/s42729‑019‑00040‑z
    [Google Scholar]
  39. Yadav K. Pradhan M. Singh D. Singh M.R. Chapter 16 - Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches. Translational Autoimmunity Academic Press 2022 2 361 393 10.1016/B978‑0‑12‑824390‑9.00017‑7
    [Google Scholar]
  40. Kolenčík M. Ernst D. Urík M. Ďurišová Ľ. Bujdoš M. Šebesta M. Dobročka E. Kšiňan S. Illa R. Qian Y. Feng H. Černý I. Holišová V. Kratošová G. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 2020 10 8 1619 10.3390/nano10081619 32824795
    [Google Scholar]
  41. Alkaladi A. Abdelazim A. Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2014 15 2 2015 2023 10.3390/ijms15022015 24477262
    [Google Scholar]
  42. Abd Elmonem H.A. Morsi R.M. Mansour D.S. El-Sayed E.S.R. Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer’s disease via acetylcholinesterase inhibition and oxidative stress reduction. Biometals 2023 36 6 1391 1404 10.1007/s10534‑023‑00525‑6 37556014
    [Google Scholar]
  43. Pradhan M. Alexander A. Singh M.R. Singh D. Saraf S. Saraf S. Ajazuddin Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother. 2018 107 447 463 10.1016/j.biopha.2018.07.156 30103117
    [Google Scholar]
  44. Alavi M. Nokhodchi A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discov. Today 2021 26 8 1953 1962 10.1016/j.drudis.2021.03.030
    [Google Scholar]
  45. Shahin N. Jain P. Ajazuddin Nagori K. Advancements in natural alkaloid-loaded drug delivery systems for enhanced peptic ulcer treatment: A review. Curr. Drug Ther. 2024 19 10.2174/0115748855312609240628110440
    [Google Scholar]
  46. Mohd Yusof H. Mohamad R. Zaidan U. H. Abdul Rahman N. A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019 10 57 10.1186/s40104‑019‑0368‑z
    [Google Scholar]
  47. Abdo A.M. Fouda A. Eid A.M. Fahmy N.M. Elsayed A.M. Khalil A.M.A. Alzahrani O.M. Ahmed A.F. Soliman A.M. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito, culex pipiens. Materials 2021 14 22 6983 10.3390/ma14226983 34832382
    [Google Scholar]
  48. Shamsuzzaman A. Mashrai A. Khanam H. Aljawfi R.N. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 2017 10 S1530 S1536 10.1016/j.arabjc.2013.05.004
    [Google Scholar]
  49. Subramanian H. Krishnan M. Mahalingam A. Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Advances 2021 12 2 985 997 10.1039/D1RA08196A 35425145
    [Google Scholar]
  50. Šebesta M. Urík M. Bujdoš M. Kolenčík M. Vávra I. Dobročka E. Kim H. Matúš P. Fungus aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. J. Fungi 2020 6 4 210 10.3390/jof6040210 33049947
    [Google Scholar]
  51. Kavithaa K. Paulpandi M. Ponraj T. Murugan K. Sumathi S. Induction of intrinsic apoptotic pathway in human breast cancer (MCF-7) cells through facile biosynthesized zinc oxide nanorods. Karbala Int. J. Mod. Sci. 2016 2 1 46 55 10.1016/j.kijoms.2016.01.002
    [Google Scholar]
  52. Rao M.D. Gautam P. Synthesis and characterization of ZnO nanoflowers using C hlamydomonas reinhardtii : A green approach. Environ. Prog. Sustain. Energy 2016 35 4 1020 1026 10.1002/ep.12315
    [Google Scholar]
  53. Saroj S. Saha S. Ali A. Gupta S.K. Bharadwaj A. Agrawal T. Pal S. Rakshit T. Plant extracellular nanovesicle-loaded hydrogel for topical antibacterial wound healing in vivo. ACS Appl. Bio Mater. 2024 Oct acsabm.4c00992 10.1021/acsabm.4c00992 39377525
    [Google Scholar]
  54. Singh S.K. Dwivedi S.D. Yadav K. Shah K. Chauhan N.S. Pradhan M. Singh M.R. Singh D. Novel biotherapeutics targeting biomolecular and cellular approaches in diabetic wound healing. Biomedicines 2023 11 2 613 10.3390/biomedicines11020613 36831151
    [Google Scholar]
  55. Kalpana V.N. Kataru B.A.S. Sravani N. Vigneshwari T. Panneerselvam A. Devi Rajeswari V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano 2018 3 48 55 10.1016/j.onano.2018.06.001
    [Google Scholar]
  56. Malik A.R. Sharif S. Shaheen F. Khalid M. Iqbal Y. Faisal A. Aziz M.H. Atif M. Ahmad S. Fakhar-e-Alam M. Hossain N. Ahmad H. Botmart T. Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. J. Saudi Chem. Soc. 2022 26 2 101438 10.1016/j.jscs.2022.101438
    [Google Scholar]
  57. Agarwal H. Venkat Kumar S. Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies 2017 3 4 406 413 10.1016/j.reffit.2017.03.002
    [Google Scholar]
  58. Dutta G. Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J. Drug Deliv. Sci. Technol. 2021 Dec 66 102853 10.1016/j.jddst.2021.102853
    [Google Scholar]
  59. Manasa D.J. Chandrashekar K.R. Pavan Kumar M.A. Suresh D. Madhu Kumar D.J. Ravikumar C.R. Bhattacharya T. Ananda Murthy H.C. Proficient synthesis of zinc oxide nanoparticles from Tabernaemontana heyneana Wall. via green combustion method: Antioxidant, anti-inflammatory, antidiabetic, anticancer and photocatalytic activities. Results in Chemistry 2021 3 100178 10.1016/j.rechem.2021.100178
    [Google Scholar]
  60. Sharma A. Nagraik R. Venkidasamy B. Khan A. Dulta K. Kumar Chauhan P. Kumar D. Shin D.S. in vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity of Murraya koenigii leaf extract intercedes ZnO nanoparticles. Luminescence 2023 38 7 1139 1148 10.1002/bio.4244 35362206
    [Google Scholar]
  61. Dappula S.S. Kandrakonda Y.R. Shaik J.B. Mothukuru S.L. Lebaka V.R. Mannarapu M. Amooru G.D. Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: Characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer’s properties. J. Mol. Struct. 2023 1273 134264 10.1016/j.molstruc.2022.134264
    [Google Scholar]
  62. Chandrasekaran S. Anbazhagan V. Anusuya S. Green route synthesis of ZnO nanoparticles using Senna auriculata aqueous flower extract as reducing agent and evaluation of its antimicrobial, antidiabetic and cytotoxic activity. Appl. Biochem. Biotechnol. 2023 195 6 3840 3854 10.1007/s12010‑022‑03900‑0 35357663
    [Google Scholar]
  63. Maheo A.R. Vithiya B S.M. Arul Prasad T A. Mangesh V.L. Perumal T. Al-Qahtani W.H. Govindasamy M. Cytotoxic, antidiabetic, and antioxidant study of biogenically improvised elsholtzia blanda and chitosan-assisted zinc oxide nanoparticles. ACS Omega 2023 8 12 10954 10967 10.1021/acsomega.2c07530 37008090
    [Google Scholar]
  64. Vinotha V. Iswarya A. Thaya R. Govindarajan M. Alharbi N.S. Kadaikunnan S. Khaled J.M. Al-Anbr M.N. Vaseeharan B. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. J. Photochem. Photobiol. B 2019 197 111541 10.1016/j.jphotobiol.2019.111541 31272033
    [Google Scholar]
  65. Naik J. David M. Phytofabrication of silver and zinc oxide nanoparticles using the fruit extract of Phyllanthus emblica and its potential anti-diabetic and anti-cancer activity. Particul. Sci. Technol. 2023 41 6 761 773 10.1080/02726351.2022.2141668
    [Google Scholar]
  66. Sengani M. Chakraborty S. Balaji M.P. Govindasamy R. Alahmadi T.A. Al Obaid S. Karuppusamy I. Lan Chi N.T. Brindhadevi K. v D.R. Anti-diabetic efficacy and selective inhibition of methyl glyoxal, intervention with biogenic Zinc oxide nanoparticle. Environ. Res. 2023 216 Pt 2 114475 10.1016/j.envres.2022.114475 36244440
    [Google Scholar]
  67. Murali M. Thampy A. Anandan S. Aiyaz M. Shilpa N. Singh S.B. Gowtham H.G. Ramesh A.M. Rahdar A. Kyzas G.Z. Competent antioxidant and antiglycation properties of zinc oxide nanoparticles (ZnO-NPs) phyto-fabricated from aqueous leaf extract of Boerhaavia erecta L. Environ. Sci. Pollut. Res. Int. 2023 30 19 56731 56742 10.1007/s11356‑023‑26331‑8 36929264
    [Google Scholar]
  68. Karthick V. Optimization and characterization of eco-friendly formulated ZnO NPs in various parameters: Assessment of its antidiabetic, antioxidant and antibacterial properties. Biomass Convers. Biorefin. 2023 May 1 15 10.1007/S13399‑023‑04363‑X/METRICS
    [Google Scholar]
  69. Ikbal A.M.A. Rajkhowa A. Singh W.S. Manna K. Green synthesis of zinc oxide nanoparticles using Croton joufra leaf extract, characterization and antidiabetic activity. Int. Nano Lett. 2023 13 3-4 251 260 10.1007/s40089‑023‑00401‑8
    [Google Scholar]
  70. Sodhi R.S. Biogenic synthesis of ZnO nanoparticles using Polystichum squarrosum extract and its applications as anti-oxidant, anti-diabetic agent and industrial waste water treatment. Emergent Mater. 2023 Nov 1 14 10.1007/S42247‑023‑00589‑7/METRICS
    [Google Scholar]
  71. Kambale E.K. Katemo F.M. Quetin-Leclercq J. Memvanga P.B. Beloqui A. “Green”-synthesized zinc oxide nanoparticles and plant extracts: A comparison between synthesis processes and antihyperglycemic activity. Int. J. Pharm. 2023 635 122715 10.1016/j.ijpharm.2023.122715 36773728
    [Google Scholar]
  72. Halarnekar D. Ayyanar M. Gangapriya P. Kalaskar M. Redasani V. Gurav N. Nadaf S. Saoji S. Rarokar N. Gurav S. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int. J. Biol. Macromol. 2023 242 Pt 1 124764 10.1016/j.ijbiomac.2023.124764 37148929
    [Google Scholar]
  73. Bai X. Jarubula R. Development of novel green synthesized Zinc oxide nanoparticles with antibacterial activity and effect on diabetic wound healing process of excisional skin wounds in nursing care during sports training. Inorg. Chem. Commun. 2023 150 110453 10.1016/j.inoche.2023.110453
    [Google Scholar]
  74. Bayrami A. Haghgooie S. Rahim Pouran S. Mohammadi Arvanag F. Habibi-Yangjeh A. Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Adv. Powder Technol. 2020 31 5 2110 2118 10.1016/j.apt.2020.03.004
    [Google Scholar]
  75. Rehman H. Ali W. Zaman Khan N. Aasim M. Khan T. Ali Khan A. Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities. Saudi J. Biol. Sci. 2023 30 1 103485 10.1016/j.sjbs.2022.103485 36387032
    [Google Scholar]
  76. Bala N. Saha S. Chakraborty M. Maiti M. Das S. Basu R. Nandy P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances 2015 5 7 4993 5003 10.1039/C4RA12784F
    [Google Scholar]
  77. Rajakumar G. Thiruvengadam M. Mydhili G. Gomathi T. Chung I.M. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng. 2018 41 1 21 30 10.1007/s00449‑017‑1840‑9 28916855
    [Google Scholar]
  78. Hamed R. Obeid R. Z. Abu-Huwaij R. Plant mediated-green synthesis of zinc oxide nanoparticles: An insight into biomedical applications. Nanotechnology Rev. 2023 12 1 20230112 10.1515/ntrev‑2023‑0112
    [Google Scholar]
  79. Rehana D. Mahendiran D. Kumar R.S. Rahiman A.K. in vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng. 2017 40 6 943 957 10.1007/s00449‑017‑1758‑2 28361361
    [Google Scholar]
  80. Choudhary M.K. Bodakhe S.H. Gupta S.K. Assessment of the antiulcer potential of Moringa oleifera root-bark extract in rats. J. Acupunct. Meridian Stud. 2013 6 4 214 220 10.1016/j.jams.2013.07.003 23972244
    [Google Scholar]
  81. Nagori K. Nakhate K.T. Yadav K. Ajazuddin Pradhan M. Unlocking the therapeutic potential of medicinal plants for alzheimer’s disease: Preclinical to clinical trial insights. Future Pharmacology 2023 3 4 877 907 10.3390/futurepharmacol3040053
    [Google Scholar]
  82. Thatoi P. Kerry R.G. Gouda S. Das G. Pramanik K. Thatoi H. Patra J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B 2016 163 311 318 10.1016/j.jphotobiol.2016.07.029 27611454
    [Google Scholar]
  83. Kalpana V.N. Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. 2018 2018 1 12 10.1155/2018/3569758 30154832
    [Google Scholar]
  84. Murali M. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: A possible alternative for plants. Front. Microbiol. 2023 14 1227951 10.3389/fmicb.2023.1227951
    [Google Scholar]
  85. Šebesta M. Vojtková H. Cyprichová V. Ingle A. P. Urík M. Kolenčík M. Mycosynthesis of metal-containing nanoparticles- fungal metal resistance and mechanisms of synthesis. Int. J. Mol. Sci. 2022 23 22 14084 10.3390/ijms232214084
    [Google Scholar]
  86. Ebadi M. Zolfaghari M.R. Aghaei S.S. Zargar M. Noghabi K.A. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles. J. Appl. Microbiol. 2022 132 1 221 236 10.1111/jam.15177 34101961
    [Google Scholar]
  87. Faisal S. Abdullah Rizwan M. Ullah R. Alotaibi A. Khattak A. Bibi N. Idrees M. Paraclostridium benzoelyticum bacterium-mediated zinc oxide nanoparticles and their in vivo multiple biological applications. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/5994033 35571251
    [Google Scholar]
  88. Rudayni H.A. Rabie A.M. Aladwani M. Alneghery L.M. Abu-Taweel G.M. Al Zoubi W. Allam A.A. Abukhadra M.R. Bellucci S. Biological activities of Sargassum algae mediated ZnO and Co Doped ZnO nanoparticles as enhanced antioxidant and anti-diabetic agents. Molecules 2023 28 9 3692 10.3390/molecules28093692 37175102
    [Google Scholar]
  89. Barani M. Masoudi M. Mashreghi M. Makhdoumi A. Eshghi H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int. J. Pharm. 2021 606 120878 10.1016/j.ijpharm.2021.120878 34265392
    [Google Scholar]
  90. Rajabairavi N. Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. Springer Proceedings in Physics. Springer Science and Business Media, LLC 2017 245 254 10.1007/978‑3‑319‑44890‑9_23
    [Google Scholar]
  91. Ajmal N. Saraswat K. in-vitro antibacterial and antioxidant activities of zinc oxide nanoparticles synthesized using Prunus domestica L.(Plum) agro-waste (peel) extracts. Adv. Biores. 2017 8 3 39 46 10.15515/abr.0976‑4585.8.3.3946
    [Google Scholar]
  92. Malandrakis A.A. Kavroulakis N. Chrysikopoulos C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019 670 292 299 10.1016/j.scitotenv.2019.03.210 30903901
    [Google Scholar]
  93. Vijayakumar S. Mahadevan S. Arulmozhi P. Sriram S. Praseetha P.K. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 2018 82 39 45 10.1016/j.mssp.2018.03.017
    [Google Scholar]
  94. Vestby L. K. Grønseth T. Simm R. Nesse L. L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics Basel 2020 9 2 59 10.3390/antibiotics9020059
    [Google Scholar]
  95. Ramana V. Rajeshkumar S. Jagadeesh K. Review of the environmentally friendly production of zinc oxide nanoparticles and its anti-oxidant, anti-hyperlipidemic, and anti-diabetic properties. J. Survey Fisheries Sci. 2023 10 1S 117 127 10.17762/sfs.v10i1S.154
    [Google Scholar]
  96. Gupta A. Jain P. Nagori K. Adnan M. Ajazuddin Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine. Pharmacol. Res. Mod. Chin. Med. 2024 12 100463 10.1016/j.prmcm.2024.100463
    [Google Scholar]
  97. Lai X. Wang M. Zhu Y. Feng X. Liang H. Wu J. Nie L. Li L. Shao L. ZnO NPs delay the recovery of psoriasis-like skin lesions through promoting nuclear translocation of p-NFκB p65 and cysteine deficiency in keratinocytes. J. Hazard. Mater. 2021 410 November 124566 10.1016/j.jhazmat.2020.124566 33323305
    [Google Scholar]
  98. Yadav K. Singh D. Singh M.R. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J. Drug Deliv. Sci. Technol. 2021 65 102688 10.1016/j.jddst.2021.102688
    [Google Scholar]
  99. Yadav K. Singh D. Singh M.R. Novel archetype in psoriasis management bridging molecular dynamics in exploring novel therapies. Eur. J. Pharmacol. 2021 907 174254 10.1016/j.ejphar.2021.174254 34118225
    [Google Scholar]
  100. Yadav K. Singh D. Singh M.R. Development and characterization of corticosteroid loaded lipid carrier system for psoriasis. Res. J. Pharm. Technol. 2021 14 2 966 970 10.5958/0974‑360X.2021.00172.4
    [Google Scholar]
  101. Umrani R.D. Paknikar K.M. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine 2014 9 1 89 104 10.2217/nnm.12.205 23427863
    [Google Scholar]
  102. Rasha E. Alkhulaifi M.M. AlOthman M. Khalid I. Doaa E. Alaa K. Awad M.A. Abdalla M. Effects of zinc oxide nanoparticles synthesized using Aspergillus niger on carbapenem-resistant Klebsiella pneumonia in vitro and in vivo. Front. Cell. Infect. Microbiol. 2021 11 748739 10.3389/fcimb.2021.748739 34869059
    [Google Scholar]
  103. Nagori K. Sharma R. Shukla A. Nakhate K.T. Dewangan D. “Bioink as integral material for 3d printing,” 3D Printing and Microfluidics in Dermatology. Innov. Drug Deliv. 2024 7 1 29 10.1201/9781032690926‑2
    [Google Scholar]
  104. Fatima M.T. Bhat A.A. Nisar S. Fakhro K.A. Al-Shabeeb Akil A.S. The role of dietary antioxidants in type 2 diabetes and neurodegenerative disorders: An assessment of the benefit profile. Heliyon 2023 9 1 e12698 10.1016/j.heliyon.2022.e12698 36632095
    [Google Scholar]
  105. Nagori K. Pradhan M. Nakhate K. T. Thakur A. Patle K. Thakur A. Dietary supplements and phytopharmaceuticals for the management of cognitive disorders. Medicinal Applications of Phytopharmaceuticals. Springer Cham 2024 135 158 10.1007/978‑3‑031‑63677‑6_9
    [Google Scholar]
  106. Rosales-Corral S. Tan D.X. Manchester L. Reiter R.J. Diabetes and Alzheimer disease, two overlapping pathologies with the same background: Oxidative stress. Oxid. Med. Cell. Longev. 2015 2015 1 14 10.1155/2015/985845 25815110
    [Google Scholar]
  107. Nagori K. Pradhan M. Sharma M. Ajazuddin H.R. Badwaik H.R. Nakhate K.T. Current progress on central cholinergic receptors as therapeutic targets for Alzheimer’s disease. Curr. Alzheimer Res. 2024 21 1 50 68 10.2174/0115672050306008240321034006 38529600
    [Google Scholar]
  108. Nagori K. Pradhan M. Nakhate K.T. Ethyl gallate ameliorates diabetes-induced Alzheimer’s disease-like phenotype in rats via activation of α7 nicotinic receptors and mitigation of oxidative stress. Biochem. Biophys. Res. Commun. 2024 737 September 150925 10.1016/j.bbrc.2024.150925 39492127
    [Google Scholar]
  109. Król A. Railean-Plugaru V. Pomastowski P. Złoch M. Buszewski B. Mechanism study of intracellular zinc oxide nanocomposites formation. Colloids Surf. A Physicochem. Eng. Asp. 2018 553 349 358 10.1016/j.colsurfa.2018.05.069
    [Google Scholar]
  110. Madan H.R. Sharma S.C. Udayabhanu Suresh D. Vidya Y.S. Nagabhushana H. Rajanaik H. Anantharaju K.S. Prashantha S.C. Sadananda Maiya P. Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: Their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 152 404 416 10.1016/j.saa.2015.07.067 26241826
    [Google Scholar]
  111. Fowsiya J. Madhumitha G. Al-Dhabi N.A. Arasu M.V. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B 2016 162 395 401 10.1016/j.jphotobiol.2016.07.011 27434698
    [Google Scholar]
  112. Çolak H. Karaköse E. Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method. J. Alloys Compd. 2017 690 658 662 10.1016/j.jallcom.2016.08.090
    [Google Scholar]
  113. Aljelehawy Q. Karimi N. Alavi M. Comparison of antibacterial and cytotoxic activities of phytosynthesized ZnONPs by leaves extract of Daphne mucronata at different salt sources. Mater. Technol. 2020 1 13 10.1080/10667857.2020.1794280
    [Google Scholar]
  114. Lingaraju K. Raja Naika H. Manjunath K. Basavaraj R.B. Nagabhushana H. Nagaraju G. Suresh D. Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl. Nanosci. 2016 6 5 703 710 10.1007/s13204‑015‑0487‑6
    [Google Scholar]
  115. Ahmed S.S. Alqahtani A.M. Alqahtani T. Alamri A.H. Menaa F. Mani R.K. D R B. Kavitha K. Green synthesis, characterizations of zinc oxide nanoparticles from aqueous leaf extract of Tridax procumbens Linn. and assessment of their anti-hyperglycemic activity in streptozoticin-induced diabetic rats. Materials 2022 15 22 8202 10.3390/ma15228202 36431686
    [Google Scholar]
  116. El-Belely E. F. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials Basel 2021 11 1 95 10.3390/nano11010095
    [Google Scholar]
  117. Ganesan V. Hariram M. Vivekanandhan S. Muthuramkumar S. Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications. Mater. Sci. Semicond. Process. 2020 105 104739 10.1016/j.mssp.2019.104739
    [Google Scholar]
  118. Mousa S. A. Novel mycosynthesis of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic Aspergillus terreus and evaluation of their antioxidant and antimicrobial activities. Appl. Microbiol. Biotechnol. 2021 Jan 105 2 741 753
    [Google Scholar]
  119. Moghaddam A.B. Moniri M. Azizi S. Rahim R.A. Ariff A.B. Saad W.Z. Namvar F. Navaderi M. Mohamad R. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 2017 22 6 872 10.3390/molecules22060872 28538674
    [Google Scholar]
  120. Osmond M.J. Mccall M.J. Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology 2010 4 1 15 41 10.3109/17435390903502028 20795900
    [Google Scholar]
  121. Alghsham R.S. Satpathy S.R. Bodduluri S.R. Hegde B. Jala V.R. Twal W. Burlison J.A. Sunkara M. Haribabu B. Zinc oxide nanowires exposure induces a distinct inflammatory response via CCL11-mediated eosinophil recruitment. Front. Immunol. 2019 10 2604 10.3389/fimmu.2019.02604 31787980
    [Google Scholar]
  122. Khan M. Naqvi A.H. Ahmad M. Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol. Rep. 2015 2 765 774 10.1016/j.toxrep.2015.02.004 28962412
    [Google Scholar]
  123. Keerthana S. Kumar A. Potential risks and benefits of zinc oxide nanoparticles: A systematic review. Crit. Rev. Toxicol. 2020 50 1 47 71 10.1080/10408444.2020.1726282 32186437
    [Google Scholar]
  124. Ehsan M. Waheed A. Ullah A. Kazmi A. Ali A. Raja N.I. Mashwani Z.R. Sultana T. Mustafa N. Ikram M. Li H. Plant-based bimetallic silver-zinc oxide nanoparticles: A comprehensive perspective of synthesis, biomedical applications, and future trends. BioMed Res. Int. 2022 2022 1 20 10.1155/2022/1215183 35535038
    [Google Scholar]
  125. Iqbal Y. Raouf Malik A. Iqbal T. Hammad Aziz M. Ahmed F. Abolaban F.A. Mansoor Ali S. Ullah H. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater. Lett. 2021 305 130671 10.1016/j.matlet.2021.130671
    [Google Scholar]
  126. Rahman S. Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Appl. Microbiol. Biotechnol. 2019 103 6 2551 2569 10.1007/s00253‑019‑09661‑x
    [Google Scholar]
  127. Chauhan R. Reddy A. Abraham J. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl. Nanosci. 2015 5 1 63 71 10.1007/s13204‑014‑0292‑7
    [Google Scholar]
  128. Saeed M. Siddique M. Ibrahim M. Akram N. Usman M. Aleem M.A. Baig A. Calotropis gigantea leaves assisted biosynthesis of ZnO and Ag@ZnO catalysts for degradation of rhodamine B dye in aqueous medium. Environ. Prog. Sustain. Energy 2020 39 4 e13408 10.1002/ep.13408
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031350147250310032617
Loading
/content/journals/ddl/10.2174/0122103031350147250310032617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test