Skip to content
2000
image of Microbial-Based Nanoparticle for Cancer Therapy: Opportunities and Challenges

Abstract

Cancer remains one of the most significant global health challenges, necessitating innovative therapeutic approaches to improve treatment efficacy and minimize side effects. Traditional methods such as chemotherapy, radiotherapy, and surgery, while effective to some extent, face limitations, including drug resistance, tumor recurrence, and systemic toxicity. In this context, microbial-based nanoparticles have emerged as a novel and promising solution in cancer therapy. These nanoparticles leverage the inherent properties of microbes, such as targeting and biocompatibility, in combination with nanotechnology to deliver drugs with precision, enhance bioavailability, and reduce off-target effects.

This review highlights recent advancements in microbial-derived nanoparticles, focusing on their mechanisms of action, such as immune modulation, tumor penetration, and drug delivery capabilities. Furthermore, it discusses their potential to overcome current therapeutic challenges, emphasizing safety, efficacy, and scalability. Microbial-based nanoparticles offer a pathway toward more patient-centered and precision-based therapeutic solutions by addressing critical gaps in existing cancer treatments. The review also explores the challenges of clinical translation, such as toxicity concerns, regulatory hurdles, and manufacturing complexities, while providing insights into future research directions to accelerate their application in clinical practice.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031324481250609130704
2025-06-24
2025-10-31
Loading full text...

Full text loading...

References

  1. Zhu C. Ji Z. Ma J. Ding Z. Shen J. Wang Q. Recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems for cancer treatment. Pharmaceutics 2021 13 7 940 10.3390/pharmaceutics13070940 34202452
    [Google Scholar]
  2. Bascuas T. Moreno M. Grille S. Chabalgoity J.A. Salmonella immunotherapy improves the outcome of CHOP chemotherapy in non-Hodgkin lymphoma-bearing mice. Front. Immunol. 2018 9 7 10.3389/fimmu.2018.00007 29410666
    [Google Scholar]
  3. Ebelt N.D. Manuel E.R. Utilizing Salmonella to treat solid malignancies. J. Surg. Oncol. 2017 116 1 75 82 10.1002/jso.24644 28420039
    [Google Scholar]
  4. Xie Y.J. Huang M. Li D. Hou J.C. Liang H.H. Nasim A.A. Huang J.M. Xie C. Leung E.L.H. Fan X.X. Bacteria-based nanodrug for anticancer therapy. Pharmacol. Res. 2022 182 106282 10.1016/j.phrs.2022.106282 35662630
    [Google Scholar]
  5. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014 13 11 813 827 10.1038/nrd4333 25287120
    [Google Scholar]
  6. Klibanov A.L. Maruyama K. Torchilin V.P. Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990 268 1 235 237 10.1016/0014‑5793(90)81016‑H 2384160
    [Google Scholar]
  7. Messager L. Burns J.R. Kim J. Cecchin D. Hindley J. Pyne A.L.B. Gaitzsch J. Battaglia G. Howorka S. Biomimetic hybrid nanocontainers with selective permeability. Angew. Chem. Int. Ed. 2016 55 37 11106 11109 10.1002/anie.201604677 27560310
    [Google Scholar]
  8. Kievit F.M. Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 2011 44 10 853 862 10.1021/ar2000277 21528865
    [Google Scholar]
  9. Dvir T. Banghart M.R. Timko B.P. Langer R. Kohane D.S. Photo-targeted nanoparticles. Nano Lett. 2010 10 1 250 254 10.1021/nl903411s 19904979
    [Google Scholar]
  10. Xie S. Chen M. Song X. Zhang Z. Zhang Z. Chen Z. Li X. Bacterial microbots for acid-labile release of hybrid micelles to promote the synergistic antitumor efficacy. Acta Biomater. 2018 78 198 210 10.1016/j.actbio.2018.07.041 30036720
    [Google Scholar]
  11. Nguyen V.H. Kim H.S. Ha J.M. Hong Y. Choy H.E. Min J.J. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res. 2010 70 1 18 23 10.1158/0008‑5472.CAN‑09‑3453 20028866
    [Google Scholar]
  12. Minton NP Clostridia in cancer therapy. Nat. Rev. Microbiol. 2003 1 237 242 10.1038/nrmicro777
    [Google Scholar]
  13. Wei M.Q. Mengesha A. Good D. Anné J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 2008 259 1 16 27 10.1016/j.canlet.2007.10.034 18063294
    [Google Scholar]
  14. Morales A. Eidinger D. Bruce A.W. Intracavitary bacillus calmette-guerin in the treatment of superficial bladder tumors. J. Urol. 1976 116 2 180 182 10.1016/S0022‑5347(17)58737‑6 820877
    [Google Scholar]
  15. Shintani Y. Sawada Y. Inagaki T. Kohjimoto Y. Uekado Y. Shinka T. Intravesical instillation therapy with bacillus Calmette-Guérin for superficial bladder cancer: Study of the mechanism of bacillus Calmette-Guérin immunotherapy. Int. J. Urol. 2007 14 2 140 146 10.1111/j.1442‑2042.2007.01696.x 17302571
    [Google Scholar]
  16. Victor Torres Carlos Olivar Luis Carla Navarro Jorge Fuenmayor Adrián Pérez Andres Mindiola Milagros Rojas Sofía Martínez María Manuel Velasco Joselyn Rojas Bacteria in cancer therapy: beyond immunostimulation. J. Cancer Metastasis Treat. 2018 4 4 10.20517/2394‑4722.2017.49
    [Google Scholar]
  17. Datta N.R. Ordóñez S.G. Gaipl U.S. Paulides M.M. Crezee H. Gellermann J. Marder D. Puric E. Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev. 2015 41 9 742 753 10.1016/j.ctrv.2015.05.009 26051911
    [Google Scholar]
  18. Al-Hilu S.A. Al-Shujairi W.H. Dual role of bacteria in carcinoma: Stimulation and inhibition. Int. J. Microbiol. 2020 2020 1 15 10.1155/2020/4639761 32908523
    [Google Scholar]
  19. Sarotra P. Medhi B. Use of bacteria in cancer therapy. Recent Results Cancer Res. 2016 209 111 121 10.1007/978‑3‑319‑42934‑2_8 28101691
    [Google Scholar]
  20. Song S. Vuai M.S. Zhong M. The role of bacteria in cancer therapy – Enemies in the past, but allies at present. Infect. Agent. Cancer 2018 13 1 9 10.1186/s13027‑018‑0180‑y
    [Google Scholar]
  21. Diaz L.A. Jr Cheong I. Foss C.A. Zhang X. Peters B.A. Agrawal N. Bettegowda C. Karim B. Liu G. Khan K. Huang X. Kohli M. Dang L.H. Hwang P. Vogelstein A. Garrett-Mayer E. Kobrin B. Pomper M. Zhou S. Kinzler K.W. Vogelstein B. Huso D.L. Pharmacologic and toxicologic evaluation of C. novyi-NT spores. Toxicol. Sci. 2005 88 2 562 575 10.1093/toxsci/kfi316 16162850
    [Google Scholar]
  22. Agrawal N. Bettegowda C. Cheong I. Geschwind J.F. Drake C.G. Hipkiss E.L. Tatsumi M. Dang L.H. Diaz L.A. Jr Pomper M. Abusedera M. Wahl R.L. Kinzler K.W. Zhou S. Huso D.L. Vogelstein B. Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc. Natl. Acad. Sci. USA 2004 101 42 15172 15177 10.1073/pnas.0406242101 15471990
    [Google Scholar]
  23. Roberts N.J. Zhang L. Janku F. Collins A. Bai R.Y. Staedtke V. Rusk A.W. Tung D. Miller M. Roix J. Khanna K.V. Murthy R. Benjamin R.S. Helgason T. Szvalb A.D. Bird J.E. Roy-Chowdhuri S. Zhang H.H. Qiao Y. Karim B. McDaniel J. Elpiner A. Sahora A. Lachowicz J. Phillips B. Turner A. Klein M.K. Post G. Diaz L.A. Jr Riggins G.J. Papadopoulos N. Kinzler K.W. Vogelstein B. Bettegowda C. Huso D.L. Varterasian M. Saha S. Zhou S. Intratumoral injection of Clostridium novyi -NT spores induces antitumor responses. Sci. Transl. Med. 2014 6 249 249ra111 10.1126/scitranslmed.3008982 25122639
    [Google Scholar]
  24. Krick E.L. Sorenmo K.U. Rankin S.C. Cheong I. Kobrin B. Thornton K. Kinzler K.W. Vogelstein B. Zhou S. Diaz L.A. Evaluation of Clostridium novyi–NT spores in dogs with naturally occurring tumors. Am. J. Vet. Res. 2012 73 1 112 118 10.2460/ajvr.73.1.112
    [Google Scholar]
  25. Bettegowda C. Huang X. Lin J. Cheong I. Kohli M. Szabo S.A. Zhang X. Diaz L.A. Jr Velculescu V.E. Parmigiani G. Kinzler K.W. Vogelstein B. Zhou S. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat. Biotechnol. 2006 24 12 1573 1580 10.1038/nbt1256 17115055
    [Google Scholar]
  26. Kalia V.C. Patel S.K.S. Cho B.K. Wood T.K. Lee J.K. Emerging applications of bacteria as antitumor agents. Semin. Cancer Biol. 2022 86 Pt 2 1014 1025 10.1016/j.semcancer.2021.05.012 33989734
    [Google Scholar]
  27. Wang J. Ghosh D. Maniruzzaman M. Using bugs as drugs: Administration of bacteria-related microbes to fight cancer. Adv. Drug Deliv. Rev. 2023 197 114825 10.1016/j.addr.2023.114825 37075953
    [Google Scholar]
  28. Theys J. Pennington O. Dubois L. Anlezark G. Vaughan T. Mengesha A. Landuyt W. Anné J. Burke P.J. Dûrre P. Wouters B.G. Minton N.P. Lambin P. Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br. J. Cancer 2006 95 9 1212 1219 10.1038/sj.bjc.6603367 17024128
    [Google Scholar]
  29. Sandra L. The potential therapeutic gain of radiation-associated gene therapy with the suicide gene cytosine deaminase. Int. J. Radiat. Biol. 2000 76 285 293 10.1080/095530000138628
    [Google Scholar]
  30. Wang C.Z. Kazmierczak R.A. Eisenstark A. Strains, mechanism, and perspective: Salmonella -based cancer therapy. Int. J. Microbiol. 2016 2016 1 10 10.1155/2016/5678702 27190519
    [Google Scholar]
  31. Ganai S. Arenas R.B. Sauer J.P. Bentley B. Forbes N.S. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther. 2011 18 7 457 466 10.1038/cgt.2011.10 21436868
    [Google Scholar]
  32. Saccheri F. Pozzi C. Avogadri F. Barozzi S. Faretta M. Fusi P. Rescigno M. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci. Transl. Med. 2010 2 44 44ra57 10.1126/scitranslmed.3000739 20702856
    [Google Scholar]
  33. Shiau A.L. Chen C.C. Yo Y.T. Chu C.Y. Wang S.Y. Wu C.L. Enhancement of humoral and cellular immune responses by an oral Salmonella choleraesuis vaccine expressing porcine prothymosin α. Vaccine 2005 23 48-49 5563 5571 10.1016/j.vaccine.2005.07.004 16125286
    [Google Scholar]
  34. Felgner S. Kocijancic D. Pawar V. Weiss S. Biomimetic salmonella: A next-generation therapeutic vector? Trends Microbiol. 2016 24 11 850 852 10.1016/j.tim.2016.08.007 27614692
    [Google Scholar]
  35. Lee C.H. Wu C.L. Shiau A.L. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 2004 6 12 1382 1393 10.1002/jgm.626 15468191
    [Google Scholar]
  36. Nishikawa H. Sato E. Briones G. Chen L.M. Matsuo M. Nagata Y. Ritter G. Jäger E. Nomura H. Kondo S. Tawara I. Kato T. Shiku H. Old L.J. Galán J.E. Gnjatic S. in vivo antigen delivery by aSalmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest. 2006 116 7 1946 1954 10.1172/JCI28045 16794737
    [Google Scholar]
  37. Panthel K. Meinel K.M. Sevil Domènech V.E. Geginat G. Linkemann K. Busch D.H. Rüssmann H. Prophylactic anti-tumor immunity against a murine fibrosarcoma triggered by the Salmonella type III secretion system. Microbes Infect. 2006 8 9-10 2539 2546 10.1016/j.micinf.2006.07.004 16919987
    [Google Scholar]
  38. Zhao M. Yang M. Ma H. Li X. Tan X. Li S. Yang Z. Hoffman R.M. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006 66 15 7647 7652 10.1158/0008‑5472.CAN‑06‑0716 16885365
    [Google Scholar]
  39. Li X. Li Y. Wang B. Ji K. Liang Z. Guo B. Hu J. Yin D. Du Y. Kopecko D.J. Kalvakolanu D.V. Zhao X. Xu D. Zhang L. Delivery of the co-expression plasmid pEndo-Si-Stat3 by attenuated Salmonella serovar typhimurium for prostate cancer treatment. J. Cancer Res. Clin. Oncol. 2013 139 6 971 980 10.1007/s00432‑013‑1398‑0 23463096
    [Google Scholar]
  40. Li X. Li Y. Hu J. Wang B. Zhao L. Ji K. Guo B. Yin D. Du Y. Kopecko D.J. Kalvakolanu D.V. Zhao X. Xu D. Zhang L. Plasmid-based E6-specific siRNA and co-expression of wild-type p53 suppresses the growth of cervical cancer in vitro and in vivo. Cancer Lett. 2013 335 1 242 250 10.1016/j.canlet.2013.02.034 23435374
    [Google Scholar]
  41. Leschner S. Westphal K. Dietrich N. Viegas N. Jablonska J. Lyszkiewicz M. Lienenklaus S. Falk W. Gekara N. Loessner H. Weiss S. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS One 2009 4 8 e6692 10.1371/journal.pone.0006692 19693266
    [Google Scholar]
  42. Leschner S. Weiss S. Salmonella—allies in the fight against cancer. J. Mol. Med. 2010 88 8 763 773 10.1007/s00109‑010‑0636‑z 20526574
    [Google Scholar]
  43. Pawelek J.M. Low K.B. Bermudes D. Bacteria as tumour-targeting vectors. Lancet Oncol. 2003 4 9 548 556 10.1016/S1470‑2045(03)01194‑X 12965276
    [Google Scholar]
  44. Zhao M. Geller J. Ma H. Yang M. Penman S. Hoffman R.M. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc. Natl. Acad. Sci. USA 2007 104 24 10170 10174 10.1073/pnas.0703867104 17548809
    [Google Scholar]
  45. Seow Y. Wood M.J. Biological gene delivery vehicles: Beyond viral vectors. Mol. Ther. 2009 17 5 767 777 10.1038/mt.2009.41 19277019
    [Google Scholar]
  46. Chirullo B. Ammendola S. Leonardi L. Falcini R. Petrucci P. Pistoia C. Vendetti S. Battistoni A. Pasquali P. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response. Oncotarget 2015 6 19 17648 17660 10.18632/oncotarget.3893 26158862
    [Google Scholar]
  47. Hong J.W. Song S. Shin J.H. A novel microfluidic co-culture system for investigation of bacterial cancer targeting. Lab Chip 2013 13 15 3033 3040 10.1039/c3lc50163a 23743709
    [Google Scholar]
  48. Hayashi K. Zhao M. Yamauchi K. Yamamoto N. Tsuchiya H. Tomita K. Hoffman R.M. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J. Cell. Biochem. 2009 106 6 992 998 10.1002/jcb.22078 19199339
    [Google Scholar]
  49. Tian Y. Guo B. Jia H. Ji K. Sun Y. Li Y. Zhao T. Gao L. Meng Y. Kalvakolanu D.V. Kopecko D.J. Zhao X. Zhang L. Xu D. Targeted therapy via oral administration of attenuated Salmonella expression plasmid-vectored Stat3-shRNA cures orthotopically transplanted mouse HCC. Cancer Gene Ther. 2012 19 6 393 401 10.1038/cgt.2012.12 22555509
    [Google Scholar]
  50. Yu L.C.H. Wei S.C. Ni Y.H. Impact of microbiota in colorectal carcinogenesis: Lessons from experimental models. Intest. Res. 2018 16 3 346 357 10.5217/ir.2018.16.3.346 30090033
    [Google Scholar]
  51. Toley B.J. Forbes N.S. Motility is critical for effective distribution and accumulation of bacteria in tumor tissue. Integr. Biol. 2012 4 2 165 176 10.1039/c2ib00091a 22193245
    [Google Scholar]
  52. Zhang HY Man JH Liang B Zhou T Wang CH Li T Tumor-targeted delivery of biologically active TRAIL protein. Cancer Gene Ther. 2010 17 5 334 343 10.1038/cgt.2009.76
    [Google Scholar]
  53. Xie S. Zhang P. Zhang Z. Liu Y. Chen M. Li S. Li X. Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. Acta Biomater. 2021 131 172 184 10.1016/j.actbio.2021.06.030 34171461
    [Google Scholar]
  54. Xie S. Xia T. Li S. Mo C. Chen M. Li X. Bacteria-propelled microrockets to promote the tumor accumulation and intracellular drug uptake. Chem. Eng. J. 2020 392 123786 10.1016/j.cej.2019.123786
    [Google Scholar]
  55. Min J.J. Kim H.J. Park J.H. Moon S. Jeong J.H. Hong Y.J. Cho K.O. Nam J.H. Kim N. Park Y.K. Bom H.S. Rhee J.H. Choy H.E. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol. Imaging Biol. 2008 10 1 54 61 10.1007/s11307‑007‑0120‑5 17994265
    [Google Scholar]
  56. Zhou H. He Z. Wang C. Xie T. Liu L. Liu C. Song F. Ma Y. Intravenous administration is an effective and safe route for cancer gene therapy using the bifidobacterium-mediated recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int. J. Mol. Sci. 2016 17 6 891 10.3390/ijms17060891 27275821
    [Google Scholar]
  57. Gao X. Zou W. Jiang B. Xu D. Luo Y. Xiong J. Yan S. Wang Y. Tang Y. Chen C. Li H. Qiao H. Wang Q. Zou J. Experimental study of retention on the combination of bifidobacterium with high-intensity focused ultrasound (HIFU) synergistic substance in tumor tissues. Sci. Rep. 2019 9 1 6423 10.1038/s41598‑019‑42832‑4 31015517
    [Google Scholar]
  58. Nour M. Aref S. Masoumeh H. Shiva M. Amin K. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect. Drug Resist. 2020 13 45 61 10.2147/IDR.S234353 32021319
    [Google Scholar]
  59. Marzieh Bakhshinejad Bacteriophages and medical oncology: Targeted gene therapy of cancer. Med. Oncol. 2014 31 110 10.1007/s12032‑014‑0110‑9
    [Google Scholar]
  60. Ghosh D. Kohli A.G. Moser F. Endy D. Belcher A.M. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth. Biol. 2012 1 12 576 582 10.1021/sb300052u 23656279
    [Google Scholar]
  61. Murgas P. Bustamante N. Araya N. Cruz-Gómez S. Durán E. Gaete D. Oyarce C. López E. Herrada A.A. Ferreira N. Pieringer H. Lladser A. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer. Cancer Immunol. Immunother. 2018 67 2 183 193 10.1007/s00262‑017‑2076‑x 29026949
    [Google Scholar]
  62. Jounaidi Y. Doloff J. Waxman D. Conditionally replicating adenoviruses for cancer treatment. Curr. Cancer Drug Targets 2007 7 3 285 301 10.2174/156800907780618301 17504125
    [Google Scholar]
  63. Yan Y. Xu H. Wang J. Wu X. Wen W. Liang Y. Wang L. Liu F. Du X. Inhibition of breast cancer cells by targeting E2F-1 gene and expressing IL15 oncolytic adenovirus. Biosci. Rep. 2019 39 7 BSR20190384 10.1042/BSR20190384 31278126
    [Google Scholar]
  64. Zhu W. Wei L. Zhang H. Chen J. Qin X. Oncolytic adenovirus armed with IL-24 Inhibits the growth of breast cancer in vitro and in vivo. J. Exp. Clin. Cancer Res. 2012 31 1 51 10.1186/1756‑9966‑31‑51 22640485
    [Google Scholar]
  65. Steel J.C. Di Pasquale G. Ramlogan C.A. Patel V. Chiorini J.A. Morris J.C. Oral vaccination with adeno-associated virus vectors expressing the Neu oncogene inhibits the growth of murine breast cancer. Mol. Ther. 2013 21 3 680 687 10.1038/mt.2012.260
    [Google Scholar]
  66. Trepel M. Körbelin J. Spies E. Heckmann M.B. Hunger A. Fehse B. Katus H.A. Kleinschmidt J.A. Müller O.J. Michelfelder S. Treatment of multifocal breast cancer by systemic delivery of dual-targeted adeno-associated viral vectors. Gene Ther. 2015 22 10 840 847 10.1038/gt.2015.52 26034897
    [Google Scholar]
  67. Wei C.M. Gibson M. Spear P.G. Scolnick E.M. Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1. J. Virol. 1981 39 3 935 944 10.1128/jvi.39.3.935‑944.1981 6270359
    [Google Scholar]
  68. Siegl G. Biology and pathogenicity of autonomous parvoviruses. The Parvoviruses. The Viruses. Springer Boston, MA 1984 297 362 10.1007/978‑1‑4684‑8012‑2_8
    [Google Scholar]
  69. Lacroix J. Leuchs B. Li J. Hristov G. Deubzer H.E. Kulozik A.E. Rommelaere J. Schlehofer J.R. Witt O. Parvovirus H1 selectively induces cytotoxic effects on human neuroblastoma cells. Int. J. Cancer 2010 127 5 1230 1239 10.1002/ijc.25168 20087864
    [Google Scholar]
  70. Sieben M. Schäfer P. Dinsart C. Galle P.R. Moehler M. Activation of the human immune system via toll-like receptors by the oncolytic parvovirus H-1. Int. J. Cancer 2013 132 11 2548 2556 10.1002/ijc.27938 23151948
    [Google Scholar]
  71. Muharram G. Le Rhun E. Loison I. Wizla P. Richard A. Martin N. Roussel A. Begue A. Devos P. Baranzelli M.C. Bonneterre J. Caillet-Fauquet P. Stehelin D. Parvovirus H-1 induces cytopathic effects in breast carcinoma-derived cultures. Breast Cancer Res. Treat. 2010 121 1 23 33 10.1007/s10549‑009‑0451‑9 19565332
    [Google Scholar]
  72. Conry R.M. Westbrook B. McKee S. Norwood T.G. Talimogene laherparepvec: First in class oncolytic virotherapy. Hum. Vaccin. Immunother. 2018 14 4 839 846 10.1080/21645515.2017.1412896 29420123
    [Google Scholar]
  73. Schumacher L. Ribas A. Dissette V.B. McBride W.H. Mukherji B. Economou J.S. Butterfield L.H. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J. Immunother. 2004 27 3 191 200 10.1097/00002371‑200405000‑00003
    [Google Scholar]
  74. Chen Y. Emtage P. Zhu Q. Foley R. Muller W. Hitt M. Gauldie J. Wan Y. Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: Enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther. 2001 8 4 316 323 10.1038/sj.gt.3301396 11313806
    [Google Scholar]
  75. Panebianco C. Andriulli A. Pazienza V. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018 6 1 92 10.1186/s40168‑018‑0483‑7 29789015
    [Google Scholar]
  76. Chen B. Du G. Guo J. Zhang Y. Bugs, drugs, and cancer: Can the microbiome be a potential therapeutic target for cancer management? Drug Discov. Today 2019 24 4 1000 1009 10.1016/j.drudis.2019.02.009 30818030
    [Google Scholar]
  77. Chowdhury S. Castro S. Coker C. Hinchliffe T.E. Arpaia N. Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 2019 25 7 1057 1063 10.1038/s41591‑019‑0498‑z 31270504
    [Google Scholar]
  78. Bandala C. Perez-Santos J.L.M. Lara-Padilla E. Delgado Lopez M.G. Anaya-Ruiz M. Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line. Asian Pac. J. Cancer Prev. 2013 14 2 891 894 10.7314/APJCP.2013.14.2.891
    [Google Scholar]
  79. Zhang J. Wei H. Guo X. Hu M. Gao F. Li L. Zhang S. Functional verification of the diphtheria toxin A gene in a recombinant system. J. Anim. Sci. Biotechnol. 2012 3 1 29 10.1186/2049‑1891‑3‑29 23062032
    [Google Scholar]
  80. Li M. Zhou H. Yang C. Wu Y. Zhou X. Liu H. Wang Y. Bacterial outer membrane vesicles as a platform for biomedical applications: An update. J. Control. Release 2020 323 253 268 10.1016/j.jconrel.2020.04.031 32333919
    [Google Scholar]
  81. Kim O.Y. Park H.T. Dinh N.T.H. Choi S.J. Lee J. Kim J.H. Lee S.W. Gho Y.S. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 2017 8 1 626 10.1038/s41467‑017‑00729‑8 28931823
    [Google Scholar]
  82. Kaparakis-Liaskos M. Ferrero R.L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 2015 15 6 375 387 10.1038/nri3837 25976515
    [Google Scholar]
  83. Zhu X.H. Du J.X. Zhu D. Ren S.Z. Chen K. Zhu H.L. Recent research on methods to improve tumor hypoxia environment. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/5721258 33343807
    [Google Scholar]
  84. Bressuire-Isoard C. Broussolle V. Carlin F. Sporulation environment influences spore properties in Bacillus: Evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol. Rev. 2018 42 5 614 626 10.1093/femsre/fuy021 29788151
    [Google Scholar]
  85. Duc L.H. Hong H.A. Fairweather N. Ricca E. Cutting S.M. Bacterial spores as vaccine vehicles. Infect. Immun. 2003 71 5 2810 2818 10.1128/IAI.71.5.2810‑2818.2003
    [Google Scholar]
  86. Barbé S. Van Mellaert L. Anné J. The use of clostridial spores for cancer treatment. J. Appl. Microbiol. 2006 101 3 571 578 10.1111/j.1365‑2672.2006.02886.x 16907807
    [Google Scholar]
  87. Soojeong Park Huang Xiaoke Larson Andrew C. Branched gold nanoparticle coating of *Clostridium novyi*-NT spores for CT-guided intratumoral injection. Small 2016 13 1602722 10.1002/smll.201602722
    [Google Scholar]
  88. Pan F. Chen Z. Li Y. Novel insights into the role of Clostridium novyi-NT related combination bacteriolytic therapy in solid tumors. Oncol. Lett. 2020 21 1 10.3892/ol.2020.12371
    [Google Scholar]
  89. Siqing Janku Ravi Murthy Karp Daniel D. Hong David S. Maria Tsimberidou Apostolia Gillison Maura L. Abha Adat Anjali Raina Greg Call Brent Kreider David Tung Mary Varterasian 383 First-in-man clinical trial of intratumoral injection of *Clostridium novyi*-NT spores in combination with pembrolizumab in patients with treatment-refractory advanced solid tumors. J. Immunother. Cancer 2020 8 10.1136/jitc‑2020‑SITC2020.0383
    [Google Scholar]
  90. Pum D. Toca-Herrera J. Sleytr U. S-layer protein self-assembly. Int. J. Mol. Sci. 2013 14 2 2484 2501 10.3390/ijms14022484 23354479
    [Google Scholar]
  91. Mader C. Huber C. Moll D. Sleytr U.B. Sára M. Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J. Bacteriol. 2004 186 6 1758 1768 10.1128/JB.186.6.1758‑1768.2004 14996807
    [Google Scholar]
  92. Buse J. El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine 2010 5 8 1237 1260 10.2217/nnm.10.107 21039200
    [Google Scholar]
  93. Ucisik M.H. Küpcü S. Debreczeny M. Schuster B. Sleytr U.B. S-layer coated emulsomes as potential nanocarriers. Small 2013 9 17 2895 2904 10.1002/smll.201203116 23606662
    [Google Scholar]
  94. Ucisik M.H. Küpcü S. Schuster B. Sleytr U.B. Characterization of CurcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. J. Nanobiotechnology 2013 11 1 37 10.1186/1477‑3155‑11‑37 24314310
    [Google Scholar]
  95. Mader C. Küpcü S. Sleytr U.B. Sára M. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochim. Biophys. Acta Biomembr. 2000 1463 1 142 150 10.1016/S0005‑2736(99)00190‑X 10631303
    [Google Scholar]
  96. Jeon O. Powell C. Ahmed S.M. Alsberg E. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity. Tissue Eng. Part A 2010 16 9 2915 2925 10.1089/ten.tea.2010.0096 20486798
    [Google Scholar]
  97. Sleytr U.B. Huber C. Ilk N. Pum D. Schuster B. Egelseer E.M. S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol. Lett. 2007 267 2 131 144 10.1111/j.1574‑6968.2006.00573.x 17328112
    [Google Scholar]
  98. Ilk N. Egelseer E.M. Ferner-Ortner J. Küpcü S. Pum D. Schuster B. Sleytr U.B. Surfaces functionalized with self-assembling S-layer fusion proteins for nanobiotechnological applications. Colloids Surf. A Physicochem. Eng. Asp. 2008 321 1-3 163 167 10.1016/j.colsurfa.2007.12.038
    [Google Scholar]
  99. Suri S.S. Fenniri H. Singh B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007 2 1 16 10.1186/1745‑6673‑2‑16 18053152
    [Google Scholar]
  100. Wetzer B. Pum D. Sleytr U.B. S-layer stabilized solid support lipid bilayers. J. Struct. Biol. 1997 119 2 123 128 10.1006/jsbi.1997.3867 9245752
    [Google Scholar]
  101. Koller V.J. Dirsch V.M. Beres H. Donath O. Reznicek G. Lubitz W. Kudela P. Modulation of bacterial ghosts – induced nitric oxide production in macrophages by bacterial ghost-delivered resveratrol. FEBS J. 2013 280 5 1214 1225 10.1111/febs.12112 23289719
    [Google Scholar]
  102. Langemann T. Koller V.J. Muhammad A. Kudela P. Mayr U.B. Lubitz W. The bacterial ghost platform system. Bioeng. Bugs 2010 1 5 326 336 10.4161/bbug.1.5.12540 21326832
    [Google Scholar]
  103. Ganeshpurkar A. Ganeshpurkar A. Pandey V. Agnihotri A. Bansal D. Dubey N. Harnessing the potential of bacterial ghost for the effective delivery of drugs and biotherapeutics. Int. J. Pharm. Investig. 2014 4 1 1 4 10.4103/2230‑973X.127733 24678455
    [Google Scholar]
  104. Brown L. Wolf J.M. Prados-Rosales R. Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015 13 10 620 630 10.1038/nrmicro3480 26324094
    [Google Scholar]
  105. Takeo K. Uesaka I. Uehira K. Nishiura M. Fine structure of Cryptococcus neoformans grown in vitro as observed by freeze-etching. J. Bacteriol. 1973 113 3 1442 1448 10.1128/jb.113.3.1442‑1448.1973 4347973
    [Google Scholar]
  106. Klimentová J. Stulík J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol. Res. 2015 170 1 9 10.1016/j.micres.2014.09.006 25458555
    [Google Scholar]
  107. Sonsire A. Caridad Z. Armando A. Sarmiento M.E. Ferro V.A. Einar R. Campa C. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 2014 5 121 10.3389/fimmu.2014.00121
    [Google Scholar]
  108. Avila-Calderón E.D. Lopez-Merino A. Jain N. Peralta H. López-Villegas E.O. Sriranganathan N. Boyle S.M. Witonsky S. Contreras-Rodríguez A. Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin. Dev. Immunol. 2012 2012 1 13 10.1155/2012/352493 22242036
    [Google Scholar]
  109. Sargent J. Bell G. McEvoy L. Tocher D. Estevez A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999 177 1-4 191 199 10.1016/S0044‑8486(99)00083‑6
    [Google Scholar]
  110. Blanc V. Mesa R. Saco M. Lavilla S. Prats G. Miró E. Navarro F. Cortés P. Llagostera M. ESBL- and plasmidic class C β-lactamase-producing E. coli strains isolated from poultry, pig and rabbit farms. Vet. Microbiol. 2006 118 3-4 299 304 10.1016/j.vetmic.2006.08.002
    [Google Scholar]
  111. Pérez K. Osorio M. Hernández J. Carr A. Fernández L.E. NGcGM3/VSSP vaccine as treatment for melanoma patients. Hum. Vaccin. Immunother. 2013 9 6 1237 1240 10.4161/hv.24115 23442598
    [Google Scholar]
  112. Mousavi T. Sattari Saravi S. Valadan R. Haghshenas M.R. Rafiei A. Jafarpour H. Shamshirian A. Different types of adjuvants in prophylactic and therapeutic human papillomavirus vaccines in laboratory animals: A systematic review. Arch. Virol. 2020 165 2 263 284 10.1007/s00705‑019‑04479‑4 31802228
    [Google Scholar]
  113. Khan A.N.M.N.H. Emmons T.R. Magner W.J. Alqassim E. Singel K.L. Ricciuti J. Eng K.H. Odunsi K. Tomasi T.B. Lee K. Abrams S.I. Mesa C. Segal B.H. VSSP abrogates murine ovarian tumor-associated myeloid cell-driven immune suppression and induces M1 polarization in tumor-associated macrophages from ovarian cancer patients. Cancer Immunol. Immunother. 2022 71 10 2355 2369 10.1007/s00262‑022‑03156‑x
    [Google Scholar]
  114. Estevez F. Carr A. Solorzano L. Valiente O. Mesa C. Barroso O. Victoriano Sierra G. Fernandez L.E. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 1999 18 1-2 190 197 10.1016/S0264‑410X(99)00219‑4 10501249
    [Google Scholar]
  115. Mulens V. de la Torre A. Marinello P. Rodríguez R. Cardoso J. Díaz R. O´Farrill M. Macias A. Viada C. Saurez G. Carr A. Crombet T. Mazorra Z. Perez R. Fernández L.E. Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: Results from a controlled study in metastatic breast cancer patients. Hum. Vaccin. 2010 6 9 736 744 10.4161/hv.6.9.12571
    [Google Scholar]
  116. Osorio M. Osorio M. Gracia Hernandez J. De la Torre A. Cepeda Car Fernandez Avila Rodríguez Avila Y. Rodríguez M. Fernandez L.E. Effect of vaccination with N-glycolyl GM3/VSSP vaccine by subcutaneous injection in patients with advanced cutaneous melanoma. Cancer Manag. Res. 2012 4 341 345 10.2147/CMAR.S22617 23055778
    [Google Scholar]
  117. Bequet-Romero M. Morera Y. Ayala-Ávila M. Ancizar J. Soria Y. Blanco A. Suárez-Alba J. Gavilondo J.V. CIGB-247: A VEGF-based therapeutic vaccine that reduces experimental and spontaneous lung metastasis of C57Bl/6 and BALB/c mouse tumors. Vaccine 2012 30 10 1790 1799 10.1016/j.vaccine.2012.01.006
    [Google Scholar]
  118. Aguilar F.F. Barranco J.J. Fuentes E.B. Aguilera L.C. Sáez Y.L. Santana M.D.C. Vázquez E.P. Baker R.B. Acosta O.R. Pérez H.G. Nieto G.G. Very small size proteoliposomes (VSSP) and Montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer. Vaccine 2012 30 46 6595 6599 10.1016/j.vaccine.2012.08.020 22921738
    [Google Scholar]
  119. Fernández A. Oliver L. Alvarez R. Hernández A. Raymond J. Fernández L.E. Mesa C. Very small size proteoliposomes abrogate cross-presentation of tumor antigens by myeloid-derived suppressor cells and induce their differentiation to dendritic cells. J. Immunother. Cancer 2014 2 1 5 10.1186/2051‑1426‑2‑5 24829762
    [Google Scholar]
  120. Brown A.J. XIX.—The chemical action of pure cultivations of bacterium aceti. J. Chem. Soc. Trans. 1886 49 0 172 187 10.1039/CT8864900172
    [Google Scholar]
  121. Rehm B.H.A. Bacterial polymers: Biosynthesis, modifications and applications. Nat. Rev. Microbiol. 2010 8 8 578 592 10.1038/nrmicro2354 20581859
    [Google Scholar]
  122. York G.M. Junker B.H. Stubbe J. Sinskey A.J. Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J. Bacteriol. 2001 183 14 4217 4226 10.1128/JB.183.14.4217‑4226.2001 11418562
    [Google Scholar]
  123. Steinbüchel A. Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol. Biosci. 2001 1 1 1 24 10.1002/1616‑5195(200101)1:1<1::AID‑MABI1>3.0.CO;2‑B
    [Google Scholar]
  124. Farjadian F. Moghoofei M. Mirkiani S. Ghasemi A. Rabiee N. Hadifar S. Beyzavi A. Karimi M. Hamblin M.R. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol. Adv. 2018 36 4 968 985 10.1016/j.biotechadv.2018.02.016 29499341
    [Google Scholar]
  125. Hay I.D. Wang Y. Moradali M.F. Rehman Z.U. Rehm B.H.A. Genetics and regulation of bacterial alginate production. Environ. Microbiol. 2014 16 10 2997 3011 10.1111/1462‑2920.12389
    [Google Scholar]
  126. Moebus K. Siepmann J. Bodmeier R. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur. J. Pharm. Biopharm. 2009 72 1 42 53 10.1016/j.ejpb.2008.12.004 19126428
    [Google Scholar]
  127. Matricardi P. Onorati I. Coviello T. Alhaique F. Drug delivery matrices based on scleroglucan/alginate/borax gels. Int. J. Pharm. 2006 316 1-2 21 28 10.1016/j.ijpharm.2006.02.024 16554128
    [Google Scholar]
  128. Jayant R.D. McShane M.J. Srivastava R. Polyelectrolyte-coated alginate microspheres as drug delivery carriers for dexamethasone release. Drug Deliv. 2009 16 6 331 340 10.1080/10717540903031126 19606947
    [Google Scholar]
  129. Martínez A. Arana P. Fernández A. Olmo R. Teijón C. Blanco M.D. Synthesis and characterisation of alginate/chitosan nanoparticles as tamoxifen controlled delivery systems. J. Microencapsul. 2013 30 4 398 408 10.3109/02652048.2012.746747 23489017
    [Google Scholar]
  130. Martín M.J. Calpena A.C. Fernández F. Mallandrich M. Gálvez P. Clares B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym. 2015 117 140 149 10.1016/j.carbpol.2014.09.032
    [Google Scholar]
  131. Moon R.J. Martini A. Nairn J. Simonsen J. Youngblood J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011 40 7 3941 3994 10.1039/c0cs00108b
    [Google Scholar]
  132. Lopes C.A. de Souza S.F. de Olyveira G.M. Costa L.M.M. Brandão C.V.S. Narine S.S. Bacterial nanocellulose for medical implants. Advances in Natural Polymers Springer Berlin, Heidelberg. 2012 337 359 10.1007/978‑3‑642‑20940‑6_10
    [Google Scholar]
  133. Müller A. Ni Z. Hessler N. Wesarg F. Müller F.A. Kralisch D. Fischer D. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J. Pharm. Sci. 2013 102 2 579 592 10.1002/jps.23385 23192666
    [Google Scholar]
  134. Numata Y. Mazzarino L. Borsali R. A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int. J. Pharm. 2015 486 1-2 217 225 10.1016/j.ijpharm.2015.03.068 25840273
    [Google Scholar]
  135. Van Brunt J. More to hyaluronic acid than meets the eye. Nat. Biotechnol. 1986 4 9 780 782 10.1038/nbt0986‑780
    [Google Scholar]
  136. Jin Y-J. Ubonvan T. Kim D-D. Hyaluronic acid in drug delivery systems. J. Pharm. Investig. 2010 40 spc 33 43 10.4333/KPS.2010.40.S.033
    [Google Scholar]
  137. Mattheolabakis G. Milane L. Singh A. Amiji M.M. Hyaluronic acid targeting of CD44 for cancer therapy: From receptor biology to nanomedicine. J. Drug Target. 2015 23 7-8 605 618 10.3109/1061186X.2015.1052072 26453158
    [Google Scholar]
  138. Choi K. Jang M. Kim J.H. Ahn H.J. Tumor-specific delivery of siRNA using supramolecular assembly of hyaluronic acid nanoparticles and 2b RNA-binding protein/siRNA complexes. Biomaterials 2014 35 25 7121 7132 10.1016/j.biomaterials.2014.04.096 24854094
    [Google Scholar]
  139. Portilla-Arias J.A. Camargo B. García-Alvarez M. de Ilarduya A.M. Muñoz-Guerra S. Nanoparticles made of microbial poly(γ-glutamate)s for encapsulation and delivery of drugs and proteins. J. Biomater. Sci. Polym. Ed. 2009 20 7-8 1065 1079 10.1163/156856209X444420
    [Google Scholar]
  140. Wang X. Uto T. Akagi T. Akashi M. Baba M. Poly(γ-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: Potential for an AIDS vaccine. J. Med. Virol. 2008 80 1 11 19 10.1002/jmv.21029
    [Google Scholar]
  141. Gonçalves Ana Catarina Leite Inês Pereira José Oliveira Maria Barbosa Mário A. Macrophage response to chitosan/poly-(γ-glutamic acid) nanoparticles carrying an anti-inflammatory drug. J. Mater. Sci. Mater. Med. 2015 26 167 10.1007/s10856‑015‑5496‑1
    [Google Scholar]
  142. Okamoto S. Yoshii H. Matsuura M. Kojima A. Ishikawa T. Akagi T. Akashi M. Takahashi M. Yamanishi K. Mori Y. Poly-γ-glutamic acid nanoparticles and aluminum adjuvant used as an adjuvant with a single dose of Japanese encephalitis virus- like particles provide effective protection from Japanese encephalitis virus. Clin. Vaccine Immunol. 2012 19 1 17 22 10.1128/CVI.05412‑11 22089248
    [Google Scholar]
  143. Shima S. Sakai H. Poly- l -lysine produced by streptomyces. Part III. Chemical studies. Agric. Biol. Chem. 1981 45 11 2503 2508 10.1080/00021369.1981.10864930
    [Google Scholar]
  144. Shih I. Shen M. Van Y. Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour. Technol. 2006 97 9 1148 1159 10.1016/j.biortech.2004.08.012 16551535
    [Google Scholar]
  145. Eom K.D. Park S.M. Tran H.D. Kim M.S. Yu R.N. Yoo H. Dendritic α,ε-poly(L-lysine)s as delivery agents for antisense oligonucleotides. Pharm. Res. 2007 24 8 1581 1589 10.1007/s11095‑006‑9231‑y 17373579
    [Google Scholar]
  146. Zhang L. Zhou Y. Li G. Zhao Y. Gu X. Yang Y. Nanoparticle mediated controlled delivery of dual growth factors. Sci. China Life Sci. 2014 57 2 256 262 10.1007/s11427‑014‑4606‑5 24430559
    [Google Scholar]
  147. Wang R. Zhou B. Xu D. Xu H. Liang L. Feng X. Ouyang P. Chi B. Antimicrobial and biocompatible ε-polylysine–γ-poly(glutamic acid)–based hydrogel system for wound healing. J. Bioact. Compat. Polym. 2016 31 3 242 259 10.1177/0883911515610019
    [Google Scholar]
  148. Togo Y. Takahashi K. Saito K. Kiso H. Huang B. Tsukamoto H. Hyon S.H. Bessho K. Aldehyded dextran and ε -poly(L-lysine) hydrogel as nonviral gene carrier. Stem Cells Int. 2013 2013 1 5 10.1155/2013/634379 24027586
    [Google Scholar]
  149. Gujrati V. Kim S. Kim S-H. Min J.J. Choy H.E. Kim S.C. Jon S. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 2014 8 2 1525 1537 10.1021/nn405724x
    [Google Scholar]
  150. Lou X. Chen Z. He Z. Sun M. Sun J. Bacteria-mediated synergistic cancer therapy: Small microbiome has a big hope. Nano-Micro Lett. 2021 13 1 37 10.1007/s40820‑020‑00560‑9 34138211
    [Google Scholar]
  151. Lu Y. Mei N. Ying Y. Wang D. Li X. Zhao Y. Zhu Y. Shen S. Yin B. Bacteria-based nanoprobes for cancer therapy. Int. J. Nanomedicine 2024 19 759 785 10.2147/IJN.S438164 38283198
    [Google Scholar]
  152. Allemailem K.S. Innovative approaches of engineering tumor-targeting bacteria with different therapeutic payloads to fight cancer: A smart strategy of disease management. Int. J. Nanomedicine 2021 16 8159 8184 10.2147/IJN.S338272 34938075
    [Google Scholar]
  153. Afkhami H. Yarahmadi A. Bostani S. Yarian N. Haddad M.S. Lesani S.S. Aghaei S.S. Zolfaghari M.R. Converging frontiers in cancer treatment: The role of nanomaterials, mesenchymal stem cells, and microbial agents—challenges and limitations. Discover Oncology 2024 15 1 818 10.1007/s12672‑024‑01590‑0 39707033
    [Google Scholar]
  154. Attar M. Shamsabadi F.T. Soltani A. Joghataei M.T. khandoozi S.R. Teimourian S. Shahbazi M. Erfani-Moghadam V. Development and characterization of paclitaxel-loaded MF59 nano-emulsion for breast cancer therapy. Bionanoscience 2024 14 3 2730 2738 10.1007/s12668‑024‑01501‑1
    [Google Scholar]
  155. Ghanbarikondori P. Aliakbari R.B.S. Saberian E. Jenča A. Petrášová A. Jenčová J. Khayavi A.A. Enhancing cisplatin delivery via liposomal nanoparticles for oral cancer treatment. Indian J. Clin. Biochem. 2024 10.1007/s12291‑024‑01239‑3
    [Google Scholar]
  156. Maeda H. Nakamura H. Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013 65 1 71 79 10.1016/j.addr.2012.10.002 23088862
    [Google Scholar]
  157. Patil Y. Sadhukha T. Ma L. Panyam J. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J. Control. Release 2009 136 1 21 29 10.1016/j.jconrel.2009.01.021 19331851
    [Google Scholar]
  158. Sharma P. Allison J.P. The future of immune checkpoint therapy. Science 2015 348 6230 56 61 10.1126/science.aaa8172 25838373
    [Google Scholar]
  159. Sivan A. Corrales L. Hubert N. Williams J.B. Aquino-Michaels K. Earley Z.M. Benyamin F.W. Man Lei Y. Jabri B. Alegre M.L. Chang E.B. Gajewski T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 2015 350 6264 1084 1089 10.1126/science.aac4255 26541606
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031324481250609130704
Loading
/content/journals/ddl/10.2174/0122103031324481250609130704
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immunotherapy ; Microbial nanoparticles ; cancer therapy ; tumor targeting ; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test