Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

The oral bioavailability of Dabigatran (DGT) is significantly lower due to poor aqueous solubilization and p-gp efflux.

Objective

The prime objective was to enhance the solubilization of DGT using a self-nano-emulsifying drug delivery system (SNEDDS). DGT was administered with Piperine (PRN) to increase its availability for absorption by blocking p-gp. The secondary objective was to develop an accurate analytical method for DGT and PRN.

Methods

The first-order derivative spectrophotometry for simultaneous estimation of DGT and PRN was developed and validated. The solubility of the DGT and PRN was assessed in the chosen excipients of SNEDDS. The ternary phase diagram was constructed to assess the appropriate amount of oleic acid (OA), Capmul MCM C8 EP (CAP), and Transcutol P (TP). A risk assessment matrix and Ishikawa diagram were applied to scrutinize the critical parameters affecting the quality of SNEDDS. The optimization of SNEDDS was performed using a D-optimal mixture design. The amount of OA, CAP, and TP were carefully chosen as CMAs whereas globule size, poly-dispersibility index (PDI), emulsification time, and zeta potential were chosen as critical quality attributes (CQAs). The spring and parachute theory was applied to assess the effective amount of Soluplus to reduce precipitation. The designed SNEDDS was considered for the physicochemical parameters of SNEDDS. The optimized batch was converted into a solid SNEDDS (S-SNEDDS) by adsorbing it on the appropriate adsorbent and evaluating for flow property, X-ray Diffraction (XRD), and release.

Results

The developed method was robust, accurate, and precise for estimating DGT and PRN. The solubility study reveals that OA, CAP, and TP were screened as oil, surfactant, and co-surfactant. OA, CAP, and TP in a proportion of 1:2:1 were chosen from the ternary phase diagram. The optimal region was obtained from an overlay plot. The optimal SNEDDS was able to release DGT-PRN within two hours. The negative value of zeta potential (-11.5mv) assures the stability of SNEDDS. Soluplus (3%) was screened as a parachute which inhibited the precipitation. The optimum SNEDDS was converted into solid SNEDDS by adsorbing on Neusilin (NS). The alteration in results of FTIR, DSC, and XRD confirmed the change to amorphous form. The S-SNEDDS able to release the DGT-PRN within two hours.

Conclusion

The analytical method for estimating DGT and PRN was successfully developed and validated for its linearity, accuracy, and precision. SNEDDS containing DGT-PRN were developed with better performance. The D-optimal mixture design was adequate to optimize the SNEDDS. Soluplus was able to reduce the precipitation of the drugs. NS was explored to form S-SNEDDS and converted into a stable form. The amorphous S-SNEDDS has shown higher drug release. The optimized batch can be developed at an industrial scale.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031324561250305233355
2025-03-11
2025-12-16
Loading full text...

Full text loading...

References

  1. Institute for Clinical Systems Improvement. Health Care Guideline : Diagnosis and Initial Treatment of Ischemic Stroke, 12th Ed.ICSI2019
    [Google Scholar]
  2. AggarwalA. MehtaS. GuptaD. SheikhS. PallagattiS. SinghR. SinglaI. Clinical & immunological erythematosus patients characteristics in systemic lupus maryam.J. Dent. Educ.201276111532153910.1002/j.0022‑0337.2012.76.11.tb05416.x 23144490
    [Google Scholar]
  3. MeinelT.R. BrancaM. MarchisD.G.M. NedeltchevK. KahlesT. BonatiL. ArnoldM. HeldnerM.R. JungS. CarreraE. DirrenE. MichelP. StramboD. CeredaC.W. BiancoG. KägiG. VehoffJ. KatanM. BologneseM. BackhausR. SalmenS. AlbertS. MedlinF. BergerC. ScheloskyL. RenaudS. NiederhauserJ. BonvinC. SchaererM. MonoM.L. RodicB. TarnutzerA.A. MordasiniP. GrallaJ. KaesmacherJ. EngelterS. FischerU. SeiffgeD.J. Prior anticoagulation in patients with ischemic stroke and atrial fibrillation.Ann. Neurol.2021891425310.1002/ana.25917 32996627
    [Google Scholar]
  4. DuanJ. YangL. LiH. YamamuraN. HaradaA. Pharmacokinetics and safety of dabigatran etexilate after single and multiple oral doses in healthy chinese subjects.Eur. J. Drug Metab. Pharmacokinet.202045560160910.1007/s13318‑020‑00626‑4 32474728
    [Google Scholar]
  5. RaymondJ. ImbertL. CousinT. DuflotT. VarinR. WilsJ. LamoureuxF. Pharmacogenetics of direct oral anticoagulants: A systematic review.J. Pers. Med.20211113710.3390/jpm11010037 33440670
    [Google Scholar]
  6. RochaA.L. Bighetti-TrevisanR.L. DufflesL.F. Arrudad.J.A.A. TairaT.M. AssisB.R.D. MacariS. DinizI.M.A. BelotiM.M. RosaA.L. FukadaS.Y. GoulartG.A.C. RibeiroD.D. AbreuL.G. SilvaT.A. Inhibitory effects of dabigatran etexilate, a direct thrombin inhibitor, on osteoclasts and osteoblasts.Thromb. Res.2020186455310.1016/j.thromres.2019.12.014 31883999
    [Google Scholar]
  7. EghbaliA. AfzalR.R. SheikhbeyglooR. EghbaliA. TaherkhanchiB. BagheriB. Dabigatran versus Warfarin for the Treatment of Pediatric Thromboembolism: A Pilot Randomized Trial.Ulum-i Daruyi202026333834210.34172/PS.2020.42
    [Google Scholar]
  8. BouhajibM. TayabZ. A pharmacokinetic evaluation of dabigatran etexilate, total dabigatran, and unconjugated dabigatran following the administration of dabigatran etexilate mesylate capsules in healthy male and female subjects.Drug Res.2020701334010.1055/a‑1025‑0119 31652461
    [Google Scholar]
  9. BrandãoL.R. AlbisettiM. HaltonJ. BomgaarsL. ChalmersE. MitchellL.G. NurmeevI. SvirinP. KuhnT. ZapletalO. TartakovskyI. SimetzbergerM. HuangF. SunZ. KreuzerJ. GropperS. BrueckmannM. LucianiM. Safety of dabigatran etexilate for the secondary prevention of venous thromboembolism in children.Blood2020135749150410.1182/blood.2019000998 31805182
    [Google Scholar]
  10. PouvourvilleG.De BlinP. KaramP. The contribution of real-world evidence to cost-effectiveness analysis: Case study of dabigatran etexilate in france.Eur. J. Health Econ.201921223524910.1007/s10198‑019‑01123‑5
    [Google Scholar]
  11. ZhengC. LiY. PengZ. HeX. TaoJ. GeL. SunY. WuY. A composite nanocarrier to inhibit precipitation of the weakly basic drug in the gastrointestinal tract.Drug Deliv.202027171272210.1080/10717544.2020.1760402 32397763
    [Google Scholar]
  12. ChauhanD. SagarM.K. KumarS. Formulation and In-Vitro Evaluation of Oro-Dispersible Tablet of Dabigatran.Int. J. Adv. Sci. Technol.20192815569578
    [Google Scholar]
  13. AkhtarN. MohammedS.A.A. KhanR.A. YusufM. SinghV. MohammedH.A. Al-OmarM.S. AbdellatifA.A.H. NazM. KhadriH. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins.J. Drug Deliv. Sci. Technol.202058April10180810.1016/j.jddst.2020.101808
    [Google Scholar]
  14. BhagwatD.A. SwamiP.A. NadafS.J. ChoudhariP.B. KumbarV.M. MoreH.N. KilledarS.G. KawtikwarP.S. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In-vitro, in-silico, and in-vivo characterization.J. Pharm. Sci.2021110128029110.1016/j.xphs.2020.10.020 33069713
    [Google Scholar]
  15. AlghananimA. ÖzalpY. MesutB. SerakinciN. ÖzsoyY. GüngörS. A solid ultra fine self-nanoemulsifying drug delivery system (s-snedds) of deferasirox for improved solubility: Optimization, characterization, and in vitro cytotoxicity studies.Pharmaceuticals202013816210.3390/ph13080162 32722238
    [Google Scholar]
  16. StöllbergerC. FinstererJ. Relevance of P-glycoprotein in stroke prevention with dabigatran, rivaroxaban, and apixaban.Herz201540S2Suppl. 214014510.1007/s00059‑014‑4188‑9 25616425
    [Google Scholar]
  17. DunoisC. Laboratory monitoring of direct oral anticoagulants (DOACs).Biomedicines20219445115
    [Google Scholar]
  18. IzgelovD. DombA.J. HoffmanA. The effect of piperine on oral absorption of cannabidiol following acute vs. chronic administration.Eur. J. Pharm. Sci.202014810531310.1016/j.ejps.2020.105313 32198013
    [Google Scholar]
  19. DbM. SS. KrM. Role of piperine as an effective bioenhancer in drug absorption.Pharm. Anal. Acta20189771010.4172/2153‑2435.1000591
    [Google Scholar]
  20. KaziM. AlhajriA. AlshehriS.M. ElzayatE.M. MeanazelA.O.T. ShakeelF. NomanO. AltamimiM.A. AlanaziF.K. Enhancing oral bioavailability of apigenin using a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS): In vitro, in vivo and stability evaluations.Pharmaceutics202012874910.3390/pharmaceutics12080749 32785007
    [Google Scholar]
  21. SinghD.V. GodboleM.M. MisraK. A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: Simulation for next generation of P-gp inhibitors.J. Mol. Model.201319122723810.1007/s00894‑012‑1535‑8 22864626
    [Google Scholar]
  22. LiH. KrstinS. WangS. WinkM. Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin.Molecules201823355710.3390/molecules23030557 29498663
    [Google Scholar]
  23. TangJ. JiH. RenJ. LiM. ZhengN. WuL. Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multidrug resistance in vitro.Oncol. Lett.201713138939510.3892/ol.2016.5421 28123572
    [Google Scholar]
  24. JoK. KimH. KhadkaP. JangT. KimS.J. HwangS.H. LeeJ. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems.Asian J. Pharma. Sci.202015333634610.1016/j.ajps.2018.11.009 32636951
    [Google Scholar]
  25. MøllerA. SchultzH.B. MeolaT.R. MüllertzA. PrestidgeC.A. The influence of solidification on the in vitro solubilisation of blonanserin loaded supersaturated lipid-based oral formulations.Eur. J. Pharm. Sci.202115710564010.1016/j.ejps.2020.105640 33189902
    [Google Scholar]
  26. SabriL.A. HusseinA.A. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: Preparation and in-vitro/ex-vivo evaluation.Iraqi J. Pharm Sci.202029121622510.31351/vol29iss1pp216‑225
    [Google Scholar]
  27. XuS. DaiW.G. Drug precipitation inhibitors in supersaturable formulations.Int. J. Pharm.20134531364310.1016/j.ijpharm.2013.05.013 23680727
    [Google Scholar]
  28. WarrenD.B. BenameurH. PorterC.J.H. PoutonC.W. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: A mechanistic basis for utility.J. Drug Target.2010181070473110.3109/1061186X.2010.525652 20973755
    [Google Scholar]
  29. SubramanianP. RajnikanthP.S. KumarM. ChidambramK. In-vitro and in-vivo evaluation of supersaturable self-nanoemulsifying drug delivery system (SNEDDS) of Dutasteride.Curr. Drug Deliv.2020171748610.2174/1567201816666191112111610 31721703
    [Google Scholar]
  30. BannowJ. YorulmazY. LöbmannK. MüllertzA. RadesT. Improving the drug load and in vitro performance of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) using polymeric precipitation inhibitors.Int. J. Pharm.202057511896010.1016/j.ijpharm.2019.118960 31846728
    [Google Scholar]
  31. ZahraaA. AshmawyA.G. EissaN. ElnahasH.M. New Approach for Administration of Doxazosin Mesylate: Comparative Study between Liquid and Solid Self-nanoemulsifying Drug Delivery Systems.Inter. J. Res. Pharma. Sci.20211221095110110.26452/ijrps.v12i2.4638
    [Google Scholar]
  32. ShailendrakumarA.M. GhateV.M. KinraM. LewisS.A. Improved oral pharmacokinetics of pentoxifylline with palm oil and capmul® MCM containing self-nano-emulsifying drug delivery system.AAPS PharmSci.202021411810.1208/s12249‑020‑01644‑w 32318890
    [Google Scholar]
  33. ParmarK. BaldaniaS. ShahD. ChhalotiyaU. ParmarN. Development and validation of first-order derivative spectrophotometry for simultaneous determination of levocetirizine dihydrochloride and phenylephrine hydrochloride in pharmaceutical dosage form.Int. J. Spectrosc.201320131610.1155/2013/502310
    [Google Scholar]
  34. ThomasA.B. PatilS.D. NandaR.K. KothapalliL.P. BhosleS.S. DeshpandeA.D. Stability-indicating HPTLC method for simultaneous determination of nateglinide and metformin hydrochloride in pharmaceutical dosage form.Saudi Pharm. J.201119422123110.1016/j.jsps.2011.06.005 23960763
    [Google Scholar]
  35. MistryN. ShahP. PatelK. HingoraniL. Simultaneous Estimation of Stigmasterol and Withaferin A in Union Total Herbal Formulation Using Validated HPTLC Method.J. Appl. Pharm. Sci.201550815916610.7324/JAPS.2015.50825
    [Google Scholar]
  36. AhmadA. AmirM. AlshadidiA.A. HussainM.D. HaqA. KaziM. Central composite design expert-supported development and validation of HPTLC method: Relevance in quantitative evaluation of protopine in Fumaria indica.Saudi Pharm. J.202028448749410.1016/j.jsps.2020.02.011 32273809
    [Google Scholar]
  37. KekreV.A. WalodeS.G. Validated Hptlc Method for Estimation of Curcumin Content in Dietary Supplement.Inter. J. Pharma. Sci. Res.201231037963800
    [Google Scholar]
  38. PatelR.B. PatelM.R. PatniN.R. AgrawalV. Efinaconazole: DoE-supported development and validation of a quantitative HPTLC method and its application for the assay of drugs in solution and microemulsion-based formulations.Anal. Methods202012101380138810.1039/C9AY02599E
    [Google Scholar]
  39. SyedH.K. LiewK.B. LohG.O.K. PehK.K. Stability indicating HPLC–UV method for detection of curcumin in Curcuma longa extract and emulsion formulation.Food Chem.201517032132610.1016/j.foodchem.2014.08.066 25306352
    [Google Scholar]
  40. AlamP. EzzeldinE. IqbalM. AnwerM.K. MostafaG.A.E. AlqarniM.H. FoudahA.I. ShakeelF. Ecofriendly densitometric RP-HPTLC method for determination of rivaroxaban in nanoparticle formulations using green solvents.RSC Advances20201042133214010.1039/C9RA07825H 35494604
    [Google Scholar]
  41. G, B.; Suripeddi, R.K. Development and validation of HPTLC method for identification and quantification of sterols from leaves of Erythroxylum monogynum Roxb. and in vitro evaluation of anti-oxidant and anti-glycation activities.S. Afr. J. Bot.2021137243410.1016/j.sajb.2020.10.005
    [Google Scholar]
  42. ShewiyoD.H. KaaleE. RishaP.G. DejaegherB. Smeyers-VerbekeJ. HeydenY.V. HPTLC methods to assay active ingredients in pharmaceutical formulations: A review of the method development and validation steps.J. Pharm. Biomed. Anal.201266112310.1016/j.jpba.2012.03.034 22494517
    [Google Scholar]
  43. Topic I.C.H. ICH topic Q2 (R1) validation of analytical procedures: Text and methodology.Int. Conf. Harmon.20051117
    [Google Scholar]
  44. EninA.H.A. Abdel-BarH.M. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability.Expert Opin. Drug Deliv.201613111513152110.1080/17425247.2016.1224845 27564321
    [Google Scholar]
  45. LiuF. WangL.Y. YuM.C. LiY.T. WuZ.Y. YanC.W. A new cocrystal of isoniazid-quercetin with hepatoprotective effect: The design, structure, and in vitro/in vivo performance evaluation.Eur. J. Pharm. Sci.202014410521610.1016/j.ejps.2020.105216 31945451
    [Google Scholar]
  46. WannasA.N. MaraieN.K. Preparation and in-vitro evaluation of cilostazol self-emulsifying drug delivery system.Al Mustansiriyah J. Pharma. Sci.2020201133010.32947/ajps.v20i1.682
    [Google Scholar]
  47. PanigrahiK.C. PatraC.N. RaoM.E.B. Quality by design enabled development of oral self-nanoemulsifying drug delivery system of a novel calcimimetic cinacalcet HCl using a porous carrier: in vitro and in vivo characterisation.AAPS PharmSciTech201920521610.1208/s12249‑019‑1411‑2 31172322
    [Google Scholar]
  48. ChalikwarS.S. SuranaS.J. GoyalS.N. ChaturvediK.K. DangreP.V. Solid self-microemulsifying nutraceutical delivery system for hesperidin using quality by design: Assessment of biopharmaceutical attributes and shelf-life.J. Microencapsul.2021381617910.1080/02652048.2020.1851788 33245007
    [Google Scholar]
  49. ShahN. SethA. BalaramanR. SailorG. JaviaA. GohilD. Oral bioavailability enhancement of raloxifene by developing microemulsion using D-optimal mixture design: Optimization and in-vivo pharmacokinetic study.Drug Dev. Ind. Pharm.201844468769610.1080/03639045.2017.1408643 29168671
    [Google Scholar]
  50. KumarN. Shishu, D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats.Eur. J. Pharm. Sci.2015679711210.1016/j.ejps.2014.10.014 25445834
    [Google Scholar]
  51. AdeyeyeA.D. OyawaleF.A. Mixture experiments and their applications in welding flux design.J. Braz. Soc. Mech. Sci. Eng.200830431932610.1590/S1678‑58782008000400008
    [Google Scholar]
  52. KamalM.M. SalawiA. LamM. NokhodchiA. Abu-FayyadA. SayedE.K.A. NazzalS. Development and characterization of curcumin-loaded solid self-emulsifying drug delivery system (SEDDS) by spray drying using Soluplus® as solid carrier.Powder Technol.202036913714510.1016/j.powtec.2020.05.023
    [Google Scholar]
  53. PatilS.C. TagalpallewarA.A. KokareC.R. Natural anti-proliferative agent loaded self-microemulsifying nanoparticles for potential therapy in oral squamous carcinoma.J. Pharm. Investig.201949552754110.1007/s40005‑018‑00415‑x
    [Google Scholar]
  54. RajeshL. DumpalaA.K. Formulation and statistical optimization of S-SMEDDS of nicardipine hydrochloride by using bbd and PCA design.Int. J. Pharm. Sci. Res.20211231860187410.13040/IJPSR.0975‑8232.12(3).1860‑74
    [Google Scholar]
  55. AzeemA. RizwanM. AhmadF.J. IqbalZ. KharR.K. AqilM. TalegaonkarS. Nanoemulsion components screening and selection: A technical note.AAPS PharmSciTech2009101697610.1208/s12249‑008‑9178‑x 19148761
    [Google Scholar]
  56. TandelH. ShahD. VanzaJ. MisraA. Lipid based formulation approach for BCS class-II drug: Modafinil in the treatment of ADHD.J. Drug Deliv. Sci. Technol.20173716618310.1016/j.jddst.2016.12.012
    [Google Scholar]
  57. SastriK.T. RadhaG.V. Development of self nano-emulsifying drug delivery system for an antihypertensive agent felodipine: A systematic approach for lipid nano-formulation with improved oral bioavailability in rats.Inter. J. Appl. Pharma.2020123869410.22159/ijap.2020v12i3.37203
    [Google Scholar]
  58. IlieA.R. GriffinB.T. VertzoniM. KuentzM. KolakovicR. Prudic-PausA. MalashA. BohetsH. HermanJ. HolmR. Exploring precipitation inhibitors to improve in vivo absorption of cinnarizine from supersaturated lipid-based drug delivery systems.Eur. J. Pharm. Sci.202115910569110.1016/j.ejps.2020.105691 33359616
    [Google Scholar]
  59. HanH. LiY. PengZ. LongK. ZhengC. WangW. WebsterT.J. GeL. A Soluplus/Poloxamer 407-based self-nanoemulsifying drug delivery system for the weakly basic drug carvedilol to improve its bioavailability.Nanomedicine20202710219910.1016/j.nano.2020.102199 32275957
    [Google Scholar]
  60. FriedlJ.D. JörgensenA.M. Le-VinhB. BraunD.E. TribusM. Bernkop-SchnürchA. Solidification of self-emulsifying drug delivery systems (SEDDS): Impact on storage stability of a therapeutic protein.J. Colloid Interface Sci.202158468469710.1016/j.jcis.2020.11.051 33234314
    [Google Scholar]
  61. ShahbaA.A.W. AhmedA.R. AlanaziF.K. MohsinK. Abdel-RahmanS.I. Multi-layer self-nanoemulsifying pellets: An innovative drug delivery system for the poorly water-soluble drug cinnarizine.AAPS PharmSciTech20181952087210210.1208/s12249‑018‑0990‑7 29696614
    [Google Scholar]
  62. PandaR. KUOTSUK. Fabrication, characterization, and in vitro evaluation of pegylated glyceride labrasol® nanostructured lipid carrier composites of methotrexate: The pathway to effective cancer therapy.Asian J. Pharm. Clin. Res.201912622923710.22159/ajpcr.2019.v12i6.33377
    [Google Scholar]
  63. KaziM. ShahbaA.A. AlrashoudS. AlwadeiM. SherifA.Y. AlanaziF.K. Bioactive self-nanoemulsifying drug delivery systems (Bio-SNEDDS) for combined oral delivery of curcumin and piperine.Molecules2020257170310.3390/molecules25071703 32276393
    [Google Scholar]
  64. BurhanA. AbbasA. Novel oral solid self-nanoemulsifying drug delivery system (s-snedds) of rosuvastatin calcium: Formulation, characterization, bioavailability and pharmacokinetic study.Syst. Rev. Pharm.202112113714810.31838/srp.2021.1.23
    [Google Scholar]
  65. Lunad.M.D.G. CruzL.A.D. ChenW-H. LinB-J. HsiehT-H. Improving the stability of diesel emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing strategies.Energy20171411416142810.1016/j.energy.2017.11.055
    [Google Scholar]
  66. ParkH. HaE.S. KimM.S. Current status of supersaturable self-emulsifying drug delivery systems.Pharmaceutics202012436510.3390/pharmaceutics12040365 32316199
    [Google Scholar]
  67. GaikwadS.N. Enhancing solubility and bioavailability of artemether and lumefantrine through a self-nano emulsifying drug delivery system.Indian J. Pharm. Sci.2020822282290
    [Google Scholar]
  68. YadavP. RastogiV. VermaA. Application of Box–Behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe.Futur. J. Pharma. Sci.202061710.1186/s43094‑020‑00023‑3
    [Google Scholar]
  69. ShailendrakumarA.M. GhateV.M. KinraM. LewisS.A. Improved oral pharmacokinetics of pentoxifylline with palm oil and capmul® mcm containing self-nano-emulsifying drug delivery system.AAPS PharmSciTech202021411810.1208/s12249‑020‑01644‑w 32318890
    [Google Scholar]
  70. TongY. ShiW. ZhangQ. WangJ. Preparation, characterization, and in vivo evaluation of gentiopicroside - phospholipid complex (GTP - PC) and its self - nanoemulsion drug delivery system.GTP - PC - SNEDDS202310.3390/ph16010099
    [Google Scholar]
  71. RanaH. PatelD. ThakkarV. GandhiT. Atovaquone smart lipid system: Design, statistical optimization, and in-vitro evaluation.Food Hydrocol. Health20234June10014410.1016/j.fhfh.2023.100144
    [Google Scholar]
  72. KheawfuK. PikulkaewS. RadesT. MüllertzA. von Gersdorff JørgensenL. OkonogiS. Design and optimization of self-nanoemulsifying drug delivery systems of clove oil for efficacy enhancement in fish anesthesia.J. Drug Deliv. Sci. Technol.202161February10224110.1016/j.jddst.2020.102241
    [Google Scholar]
  73. HamdyA. El-BadryM. FathyM. El-SayedA.M. Impact of oil type on the development and oral bioavailability of self-nanoemulsifying drug delivery systems containing simvastatin.Sci. Rep.20241412258410.1038/s41598‑024‑71980‑5 39343782
    [Google Scholar]
  74. ZhangJ. GeD. WangX. WangW. CuiD. YuanG. WangK. ZhangW. Influence of Surfactant and Weak-Alkali Concentrations on the Stability of O/W Emulsion in an Alkali-Surfactant–Polymer Compound System.ACS Omega2021675001500810.1021/acsomega.0c06142 33644608
    [Google Scholar]
  75. IskandarB. MeiH.C. LiuT.W. LinH.M. LeeC.K. Evaluating the effects of surfactant types on the properties and stability of oil-in-water Rhodiola rosea nanoemulsion. Colloids Surf.B Biointerf.202423423411369210.1016/j.colsurfb.2023.113692 38104466
    [Google Scholar]
  76. Stojanović-RadićZ. PejčićM. DimitrijevićM. AleksićA. KumarA.N.V. SalehiB. ChoW.C. Sharifi-RadJ. Piperine-a major principle of black pepper: A review of its bioactivity and studies.Appl. Sci.2019920427010.3390/app9204270
    [Google Scholar]
  77. KumarM. ChawlaP.A. FarukA. ChawlaV. Solid self-nanoemulsifying drug delivery systems of nimodipine: Development and evaluation.Futur. J. Pharma. Sci.20241018710.1186/s43094‑024‑00653‑x
    [Google Scholar]
  78. GanY. BaakJ.P.A. ChenT. YeH. LiaoW. LvH. WenC. ZhengS. Supersaturation and precipitation applicated in drug delivery systems: Development strategies and evaluation approaches.Molecules2023285221210.3390/molecules28052212 36903470
    [Google Scholar]
  79. RanaH. PathakP. PatelV. ThakkarV. DholakiaM. DalwadiS. Multichannel 3D printed bionanoparticles loaded tablet (M3DPBT): Designing, development, and in vitro functionality assessment.Futur. J. Pharm. Sci.202410112410.1186/s43094‑024‑00702‑5
    [Google Scholar]
  80. ChoiM.J. WooM.R. ChoiH.G. JinS.G. Effects of polymers on the drug solubility and dissolution enhancement of poorly water-soluble rivaroxaban.Int. J. Mol. Sci.20222316949110.3390/ijms23169491 36012748
    [Google Scholar]
  81. KutukS. Morphology, crystal structure and thermal properties of nano-sized amorphous colemanite synthesis.Arab. J. Sci. Eng.2024498116991171610.1007/s13369‑024‑08801‑4
    [Google Scholar]
  82. UttrejaP. YoussefA.A.A. KarnikI. SanilK. NaralaN. WangH. ElkanayatiR.M. VemulaS.K. RepkaM.A. Formulation development of solid self-nanoemulsifying drug delivery systems of quetiapine fumarate via hot-melt extrusion technology: Optimization using central composite design.Pharmaceutics202416332410.3390/pharmaceutics1603032438543219
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031324561250305233355
Loading
/content/journals/ddl/10.2174/0122103031324561250305233355
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): D-optimal mixture design; Dabigatran; neusilin; piperine; SNEDDS; soluplus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test