Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
101 - 106 of 106 results
-
-
Neuroactive Phytoconstituents of Glycyrrhiza glabra for the Treatment of Alzheimer’s Disease
Authors: Mansi Verma, Mohd Usman and Niraj Kumar SinghAvailable online: 26 December 2024More LessAlzheimer’s Disease (AD), a prevalent neurodegenerative disorder, poses a significant global health challenge with complicated pathogenesis. Pathological characteristics of AD include increasing loss of cholinergic neurons, oxidative stress, mitochondrial dysfunction, and amyloid beta accumulation. Due to the limited availability of effective therapeutic options with only symptomatic relief and their severe adverse effects, there is a significant need to search and explore new agents for the management of AD. Recently, natural products and/or phytoconstituents of plants have gained notable attention as potential sources of neuroprotective agents due to their diverse chemical constituents, mechanism of action, and relatively safe profiles. In view of this, Glycyrrhiza glabra has been recognized for its several therapeutic properties in traditional medicine systems for centuries. Further, neuroactive phytoconstituents of this plant, including glycyrrhizin, liquiritigenin, isoliquiritigenin, glabridin, and glycyrrhizic acid, exhibit significant pharmacological advantages along with potential neuroprotective effects against AD. Glycyrrhiza glabra and its phytoconstituents have gained significant interest due to its ability to exert a neuroprotective impact by influencing multiple signaling pathways, inhibiting AChE and BACE1 activity, reducing Aβ accumulation, plaque formation, and tau phosphorylation, and quenching the free radical in experimentally-induced AD-like brain. The present review summarizes available in vitro and in vivo preclinical studies that have been performed to evaluate the beneficial neuroprotective effect of Glycyrrhiza glabra and its phytoconstituents against AD-like pathology. Based on available facts, it can be concluded that neuroactive phytoconstituents of Glycyrrhiza glabra could be significant lead molecules for the drug discovery of anti-AD medicines in the future.
-
-
-
Strategies in Parkinson's Disease Therapeutics - A Need for Synergy of Ayurveda, Small Molecules and Nanoparticles aided Approaches
Available online: 27 November 2024More LessDespite extensive research, there is an unmet need for developing disease-modifying therapies for Parkinson’s disease (PD). Failure of certain landmark clinical trials has highlighted the need for a better understanding of the disease pathogenesis as well as identifying the hurdles in developing drug candidates and designing clinical trials. While adhering to these needs, several promising trials are currently underway with the hope of developing reliable targets. There is also a need to conduct research on plant-based natural products and use them as therapeutic candidates for PD. In this context, many studies have demonstrated the efficacy of medicinal plants and their principal phytochemicals. This review provides an update on the presently underway clinical trials with a small emphasis on the disease modifying therapies that target small molecules, mitochondria, and oligodendrocytes. The role of ethnopharmacology-based approaches for treatment of PD has also been discussed. The third aspect of the article considers the importance of nanomedicine in this area, including the use of liposomes and nanoparticles to provide a novel approach for the treatment of PD.
-
-
-
Computer-aided Drug Discovery of Epigenetic Modulators in Dual-target Therapy of Multifactorial Diseases
Authors: Slavica Oljacic, Marija Popovic-Nikolic, Brankica Filipic, Zarko Gagic and Katarina NikolicAvailable online: 04 November 2024More LessNumerous studies suggest that common genetic and epigenetic factors such as p53, histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), the (Ataxia Telangiectasia mutated) ATM gene, cyclin-dependent kinase 5 (CDK5), glycogen synthase kinase 3 (GSK3) and altered expression of microRNA (miRNA) play a crucial role in cancer and neurodegeneration. As there is growing evidence that epigenetic aberrations in cancer and neurological diseases lead to complex pathophysiological changes, the simultaneous targeting of epigenetic and other related pathways by dual-target inhibitors may contribute to the discovery of more effective and personalized therapeutic options. Computer-Aided Drug Design (CADD) provides comprehensive bioinformatic, chemoinformatic, and chemometric approaches for the design of novel chemotypes of epigenetic dual-target inhibitors, enabling efficient discovery of new drug candidates for innovative treatments of these multifactorial diseases. The detailed anticancer mechanisms by which the epigenetic dual-target inhibitors alter metastatic and tumorigenic properties, influence the tumor microenvironment, or regulate the immune response are also presented and discussed in the review. To improve our understanding of the pathogenesis of cancer and neurodegeneration, this review discusses novel therapeutic agents targeting different molecular mechanisms involved in these multifactorial diseases.
-
-
-
Triazole scaffold-based DPP-IV Inhibitors for the management of Type-II Diabetes Mellitus: Insight into Molecular Docking and SAR
Available online: 31 October 2024More LessDiabetes mellitus, characterized as a chronic metabolic disorder or a polygenic syndrome; is increasing at a very fast pace among every group of the population worldwide. It arises due to the inability of the body to produce enough insulin (the hormone responsible for controlling blood sugar levels) or inability to utilize the insulin, leading to hyperglycaemic condition, which, if left uncontrolled gives rise to chronic microvascular and macrovascular complications like retinopathy, neuropathy, nephropathy, coronary artery disease, cognitive impairment, etc. Several therapeutic approaches are available for the treatment of diabetes; among which dipeptidyl peptidase (DPP-IV) inhibitors (gliptins) hold a significant place. DPP-IV is a multifunctional enzyme or a serine exopeptidase that plays an imperative role in cleaving bioactive molecules. DPP-IV causes the breakdown of incretin hormone (GLP-1: Glucagon-like peptide 1 and GIP: Glucose-dependent insulinotropic peptide) that is essential for controlling glycaemic levels in the body. Inhibition of DPP-IV enzyme (DPP-IV inhibitors: Sitagliptin, Saxagliptin, Linagliptin, Alogliptin) prevents this breakdown, thereby controlling blood glucose levels and saving the patients from deleterious effects of prolonged hyperglycaemic conditions. Triazole-based DPP-IV inhibitors are a significant class of drugs used to treat Type 2 diabetes mellitus in a dose-dependent manner. Clinical trials have demonstrated their efficacy as monotherapy or in combination with other antidiabetic agents. This review highlights the molecular docking studies and structure-activity relationship of potential synthetic derivatives that may act as lead molecules for future drug discovery and yield drug molecules with enhanced efficacy, potency and reduced toxicity profile.
-
-
-
Identification of Novel Tyrosinase Inhibitors with Nanomolar Potency Using Virtual Screening Approaches
Authors: Guohong Liu, Shihao Liu, Tegexibaiyin Wang and Xiaofang LiAvailable online: 02 October 2024More LessIntroductionHyperpigmentation disorders are caused by excess production of the pigment melanin, catalyzed by the enzyme tyrosinase. Novel tyrosinase inhibitors are needed as therapeutic agents to treat these conditions.
MethodTo discover new inhibitors, we performed a virtual screening of the ZINC20 library containing 1.4 billion compounds. An initial filter for drug-likeness, ADMET properties, and synthetic accessibility reduced the library to 10,217 hits. Quantitative structure-activity relationship (QSAR) modeling of this subset predicted nanomolar inhibitory potency for several chemical scaffolds. Comparative molecular docking studies and rigorous binding energy calculations further prioritized four cysteine-containing dipeptide compounds based on predicted strong binding affinity and mode to tyrosinase.
ResultsMicrosecond-long molecular dynamics simulations provided additional atomistic insights into the stability of inhibitor-enzyme binding interactions. This integrated computational workflow effectively sampled an extremely large chemical space to discover four novel tyrosinase inhibitors with half-maximal inhibitory concentration values below 10 nM.
ConclusionOverall, this demonstrates the power of virtual screening and multi-faceted computational techniques to accelerate the discovery of potent bioactive ligands from massive compound libraries by efficiently sampling chemical space.
-
-
-
Protective Effects of Chitosan-Loaded Pomegranate Peel Extract Nanoparticles on Infertility in Diabetic Male Rats
Available online: 20 August 2024More LessBackgroundDiabetes Mellitus (DM) is known to have an impact on the health of the male reproductive system. It is linked to low sperm quality, increased oxidative stress, and an increased generation of reactive oxygen species in the seminal fluid. Pomegranate extract has phenolic compounds and significant protective properties against oxidative stress, male sex hormone disruptions, and sperm abnormalities.
ObjectiveThe current study aimed to evaluate the effectiveness of Pomegranate Peel Extract Nanoparticles (PPENPs) on male fertility in diabetic rats.
MethodsDM was induced in rats by intraperitoneal injection of streptozotocin (60 mg/kg). Twenty-four rats were divided into four groups, 6 rats in each group: control, DM, DM+empty NPs (60 mg/kg, orally), and DM+PPENPs (60 mg/kg, orally).
ResultsAdministration of PPENPs increased the levels of insulin, FSH, LH, testosterone, catalase, glutathione reduced, and semen fructose. PPENPs also improved sperm quality, as seen by improvements in sperm morphology, motility, count, and the ability of metabolically active spermatozoa to convert blue resazurin dye to pink resorufin. However, PPENPs decreased levels of glucose, malonaldehyde, nitric oxide, and sperm abnormalities. Also, histological investigation of the PPENPs showed improvement in testis tissue architecture and increased the diameter size of seminiferous tubules and germinative layer thickness.
ConclusionOur investigation proved that the treatment of PPENPs has a protective effect on the reproductive system of male diabetic rats, improving fertility parameters, healthy sperm profiles, and the antioxidant system.
-