Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Alzheimer’s Disease (AD), a prevalent neurodegenerative disorder, poses a significant global health challenge with complicated pathogenesis. Pathological characteristics of AD include increasing loss of cholinergic neurons, oxidative stress, mitochondrial dysfunction, and amyloid beta accumulation. Due to the limited availability of effective therapeutic options with only symptomatic relief and their severe adverse effects, there is a significant need to search and explore new agents for the management of AD. Recently, natural products and/or phytoconstituents of plants have gained notable attention as potential sources of neuroprotective agents due to their diverse chemical constituents, mechanism of action, and relatively safe profiles. In view of this, has been recognized for its several therapeutic properties in traditional medicine systems for centuries. Further, neuroactive phytoconstituents of this plant, including glycyrrhizin, liquiritigenin, isoliquiritigenin, glabridin, and glycyrrhizic acid, exhibit significant pharmacological advantages along with potential neuroprotective effects against AD. and its phytoconstituents have gained significant interest due to its ability to exert a neuroprotective impact by influencing multiple signaling pathways, inhibiting AChE and BACE1 activity, reducing Aβ accumulation, plaque formation, and tau phosphorylation, and quenching the free radical in experimentally-induced AD-like brain. The present review summarizes available and preclinical studies that have been performed to evaluate the beneficial neuroprotective effect of and its phytoconstituents against AD-like pathology. Based on available facts, it can be concluded that neuroactive phytoconstituents of could be significant lead molecules for the drug discovery of anti-AD medicines in the future.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266357793241223100307
2024-12-26
2025-11-02
Loading full text...

Full text loading...

References

  1. AdavalaP.D. MusukulaY.R. PuchchakayalaG. Neuroprotective effect of Aegle marmelos leaf extract in scopolamine induced cognitive impairment and oxidative stress in mice.Glob. J. Pharmacol.2016104553
    [Google Scholar]
  2. JivadN. RabieiZ. A review study on medicinal plants used in the treatment of learning and memory impairments.Asian Pac. J. Trop. Biomed.201441078078910.12980/APJTB.4.2014APJTB‑2014‑0412
    [Google Scholar]
  3. BrookmeyerR. JohnsonE. Ziegler-GrahamK. ArrighiH.M. Forecasting the global burden of Alzheimer’s disease.Alzheimers Dement.20073318619110.1016/j.jalz.2007.04.38119595937
    [Google Scholar]
  4. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox1202051736830075
    [Google Scholar]
  5. BallatoreC. LeeV.M.Y. TrojanowskiJ.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders.Nat. Rev. Neurosci.20078966367210.1038/nrn219417684513
    [Google Scholar]
  6. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X1366615071616572626813123
    [Google Scholar]
  7. Serrano-PozoA. FroschM.P. MasliahE. HymanB.T. Neuropathological alterations in Alzheimer disease.Cold Spring Harb. Perspect. Med.201111a00618910.1101/cshperspect.a00618922229116
    [Google Scholar]
  8. HonigL.S. BoydC.D. Treatment of Alzheimer’s Disease: Current Management and Experimental Therapeutics.Curr. Transl. Geriatr. Exp. Gerontol. Rep.20132317418110.1007/s13670‑013‑0056‑324093080
    [Google Scholar]
  9. ChételatG. LandeauB. SalmonE. YakushevI. BahriM.A. MézengeF. PerrotinA. BastinC. ManriqueA. ScheurichA. ScheckenbergerM. DesgrangesB. EustacheF. FellgiebelA. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity.Neuroimage20137616717710.1016/j.neuroimage.2013.03.00923518010
    [Google Scholar]
  10. LiuZ. ZhangA. SunH. HanY. KongL. WangX. Two decades of new drug discovery and development for Alzheimer’s disease.RSC Advances20177106046605810.1039/C6RA26737H
    [Google Scholar]
  11. NavarroA. BoverisA. The mitochondrial energy transduction system and the aging process.Am. J. Physiol. Cell Physiol.20072922C670C68610.1152/ajpcell.00213.200617020935
    [Google Scholar]
  12. Kumar ThakurA. KambojP. GoswamiK. AhujaK. Pathophysiology and management of alzheimer’s disease: an overview.J. Anal. Pharm. Res.20187222623510.15406/japlr.2018.07.00230
    [Google Scholar]
  13. WangX. SuB. LeeH. LiX. PerryG. SmithM.A. ZhuX. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease.J. Neurosci.200929289090910310.1523/JNEUROSCI.1357‑09.200919605646
    [Google Scholar]
  14. ŠimićG. Babić LekoM. WrayS. HarringtonC. DelalleI. Jovanov-MiloševićN. BažadonaD. BuéeL. De SilvaR. Di GiovanniG. WischikC. HofP. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies.Biomolecules201661610.3390/biom601000626751493
    [Google Scholar]
  15. BreijyehZ. KaramanR. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  16. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of Cholinergic Signaling in Alzheimer’s Disease.Molecules2022276181610.3390/molecules2706181635335180
    [Google Scholar]
  17. EftekharzadehB. DaigleJ.G. KapinosL.E. CoyneA. SchiantarelliJ. CarlomagnoY. CookC. MillerS.J. DujardinS. AmaralA.S. GrimaJ.C. BennettR.E. TepperK. DeTureM. VanderburgC.R. CorjucB.T. DeVosS.L. GonzalezJ.A. ChewJ. VidenskyS. GageF.H. MertensJ. TroncosoJ. MandelkowE. SalvatellaX. LimR.Y.H. PetrucelliL. WegmannS. RothsteinJ.D. HymanB.T. Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer’s Disease.Neuron2018995925940.e710.1016/j.neuron.2018.07.03930189209
    [Google Scholar]
  18. LeeV.M.Y. GoedertM. TrojanowskiJ.Q. Neurodegenerative Tauopathies.Annu. Rev. Neurosci.20012411121115910.1146/annurev.neuro.24.1.112111520930
    [Google Scholar]
  19. AkramM. NawazA. Effects of medicinal plants on Alzheimer’s disease and memory deficits.Neural Regen. Res.201712466067010.4103/1673‑5374.20510828553349
    [Google Scholar]
  20. FrattaruoloL. CarulloG. BrindisiM. MazzottaS. BellissimoL. RagoV. CurcioR. DolceV. AielloF. CappelloA.R. Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-kB/MAPK Pathway.Antioxidants20198618610.3390/antiox806018631226797
    [Google Scholar]
  21. SharmaV. AgrawalR.C. Glycyrrhiza glabra: a plant for the future.Mintage J Pharmaceutical Med Sci201321520
    [Google Scholar]
  22. SharmaV. KatiyarA. AgrawalR.C. Glycyrrhiza glabra: Chemistry and Pharmacological Activity.Reference Series in Phytochemistry2018318710010.1007/978‑3‑319‑27027‑2_21
    [Google Scholar]
  23. LimT.K. Glycyrrhiza glabra.Edible Medicinal Non-Medicinal Plants201522354457
    [Google Scholar]
  24. CerulliA. MasulloM. MontoroP. PiacenteS. Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients.Cosmetics202291710.3390/cosmetics9010007
    [Google Scholar]
  25. Al-SnafiA.E. Glycyrrhiza glabra: A phytochemical and pharmacological review.IOSR J. Pharm.20188117
    [Google Scholar]
  26. LiuH.M. SugimotoN. AkiyamaT. MaitaniT. Constituents and their sweetness of food additive enzymatically modified licorice extract.J. Agric. Food Chem.200048126044604710.1021/jf000772e11312777
    [Google Scholar]
  27. PastorinoG. CornaraL. SoaresS. RodriguesF. OliveiraM.B.P.P. Liquorice (Glycyrrhiza glabra ): A phytochemical and pharmacological review.Phytother. Res.201832122323233910.1002/ptr.617830117204
    [Google Scholar]
  28. TanakaA. HoriuchiM. UmanoK. ShibamotoT. Antioxidant and anti‐inflammatory activities of water distillate and its dichloromethane extract from licorice root ( Glycyrrhiza uralensis ) and chemical composition of dichloromethane extract.J. Sci. Food Agric.20088871158116510.1002/jsfa.3191
    [Google Scholar]
  29. EnasM.A. Phytochemical composition, antifungal, antiaflatoxigenic, antioxidant, and anticancer activities of Glycyrrhiza glabra L. and Matricaria chamomilla L. essential oils.J. Med. Plants Res.20137292197220710.5897/JMPR12.5134
    [Google Scholar]
  30. HusainI. BalaK. KhanI.A. KhanS.I. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice ( Glycyrrhiza sp.).Food Front.20212444948510.1002/fft2.110
    [Google Scholar]
  31. RizzatoG. ScalabrinE. RadaelliM. CapodaglioG. PiccoloO. A new exploration of licorice metabolome.Food Chem.201722195996810.1016/j.foodchem.2016.11.06827979300
    [Google Scholar]
  32. WangQ. QiaoX. LiuC. JiS. FengL. QianY. GuoD. YeM. Metabolites identification of glycycoumarin, a major bioactive coumarin from licorice in rats.J. Pharm. Biomed. Anal.20149828729510.1016/j.jpba.2014.06.00124960236
    [Google Scholar]
  33. KinoshitaT. MaruyamaK. YamamotoN. SaitoI. The effects of dietary licorice flavonoid oil supplementation on body balance control in healthy middle-aged and older Japanese women undergoing a physical exercise intervention: a randomized, double-blind, placebo-controlled trial.Aging Clin. Exp. Res.202133113099310810.1007/s40520‑020‑01513‑332162239
    [Google Scholar]
  34. MatosM.J. SantanaL. UriarteE. AbreuO. PérezE.M. Coumarins: An important class of phytochemicals.Phytochemicals - Isolation, Characterisation and Role in Human HealthInTech2015113123
    [Google Scholar]
  35. BatovskaD. TodorovaI. Trends in utilization of the pharmacological potential of chalcones.Curr. Clin. Pharmacol.20105112910.2174/15748841079041057919891604
    [Google Scholar]
  36. PloegerB. MensingaT. SipsA. SeinenW. MeulenbeltJ. DeJonghJ. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling.Drug Metab. Rev.200133212514710.1081/DMR‑10010440011495500
    [Google Scholar]
  37. VibhaJ.B. ChoudharyK. SinghM. RathoreM.S. ShekhawatN.S. A Study on Pharmacokinetics and Therapeutic Efficacy of Glycyrrhiza glabra: A Miracle Medicinal Herb.Bot. Res. Int.200923157163
    [Google Scholar]
  38. El-Saber BatihaG. Magdy BeshbishyA. El-MleehA. Abdel-DaimM.M. Prasad DevkotaH. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae).Biomolecules202010335210.3390/biom1003035232106571
    [Google Scholar]
  39. WahabS. AnnaduraiS. AbullaisS.S. DasG. AhmadW. AhmadM.F. KandasamyG. VasudevanR. AliM.S. AmirM. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology.Plants20211012275110.3390/plants1012275134961221
    [Google Scholar]
  40. MantovaniA. RicciardiC. StaziA.V. MacriC. PiccioniA. BadellinoE. De VincenziM. CaiolaS. PatriarcaM. Teratogenicity study of ammonium glycyrrhizinate in the Sprague-Dawley rat.Food Chem. Toxicol.198826543544010.1016/0278‑6915(88)90054‑33391466
    [Google Scholar]
  41. OmarH.R. KomarovaI. El-GhonemiM. FathyA. RashadR. AbdelmalakH.D. YerramadhaM.R. AliY. HelalE. CamporesiE.M. Licorice abuse: time to send a warning message.Ther. Adv. Endocrinol. Metab.20123412513810.1177/204201881245432223185686
    [Google Scholar]
  42. CelikM.M. KarakusA. ZerenC. DemirM. BayarogullariH. DuruM. AlM. Licorice induced hypokalemia, edema, and thrombocytopenia.Hum. Exp. Toxicol.201231121295129810.1177/096032711244684322653692
    [Google Scholar]
  43. MaoM. LiW. WangW. WangS.X. LuJ. ChangZ.F. [Adverse reaction induced by licorice preparations: clinical analysis of 93 cases].Zhongguo Zhongyao Zazhi201338213768377224494570
    [Google Scholar]
  44. HasanM.K. AraI. MondalM.S.A. KabirY. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon202176e0724010.1016/j.heliyon.2021.e0724034189299
    [Google Scholar]
  45. PieroniA. QuaveC.L. Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: A comparison.J. Ethnopharmacol.20051011-325827010.1016/j.jep.2005.04.02815978757
    [Google Scholar]
  46. CalvoM.I. AkerretaS. CaveroR.Y. Pharmaceutical ethnobotany in the Riverside of Navarra (Iberian Peninsula).J. Ethnopharmacol.20111351223310.1016/j.jep.2011.02.01621345364
    [Google Scholar]
  47. MedeirosM.F.T. de AlbuquerqueU.P. The pharmacy of the Benedictine monks: The use of medicinal plants in Northeast Brazil during the nineteenth century (1823–1829).J. Ethnopharmacol.2012139128028610.1016/j.jep.2011.11.01422115750
    [Google Scholar]
  48. RahnamaM. MehrabaniD. JaponiS. EdjtehadiM. Saberi FirooziM. The healing effect of licorice (Glycyrrhiza glabra) on Helicobacter pylori infected peptic ulcers.J. Res. Med. Sci.201318653253324250708
    [Google Scholar]
  49. WangL. YangR. YuanB. LiuY. LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb.Acta Pharm. Sin. B20155431031510.1016/j.apsb.2015.05.00526579460
    [Google Scholar]
  50. VijayakumarS. HarikrishnanJ.P. PrabhuS. Morvin YabeshJ.E. ManogarP. Quantitative ethnobotanical survey of traditional siddha medical practitioners from thiruvarur district with hepatoprotective potentials through in silico methods.Achievements in the Life Sciences2016101112610.1016/j.als.2016.03.001
    [Google Scholar]
  51. SharmaD. NamdeoP. SinghP. Phytochemistry and Pharmacological Studies of Glycyrrhiza glabra: A Medicinal Plant Review.Int. J. Pharm. Sci. Rev. Res.202167118719410.47583/ijpsrr.2021.v67i01.030
    [Google Scholar]
  52. DeyA. GoraiP. MukherjeeA. DhanR. ModakB.K. Ethnobiological treatments of neurological conditions in the Chota Nagpur Plateau, India.J. Ethnopharmacol.2017198334410.1016/j.jep.2016.12.04028017696
    [Google Scholar]
  53. SilambarasanR. AyyanarM. An ethnobotanical study of medicinal plants in Palamalai region of Eastern Ghats, India.J. Ethnopharmacol.201517216217810.1016/j.jep.2015.05.04626068426
    [Google Scholar]
  54. DhingraD. ParleM. KulkarniS.K. Memory enhancing activity of Glycyrrhiza glabra in mice.J. Ethnopharmacol.2004912-336136510.1016/j.jep.2004.01.01615120462
    [Google Scholar]
  55. LeiteC.S. BonaféG.A. Carvalho SantosJ. MartinezC.A.R. OrtegaM.M. RibeiroM.L. The Anti-Inflammatory Properties of Licorice (Glycyrrhiza glabra)-Derived Compounds in Intestinal Disorders.Int. J. Mol. Sci.2022238412110.3390/ijms2308412135456938
    [Google Scholar]
  56. TamirS. EizenbergM. SomjenD. IzraelS. VayaJ. Estrogen-like activity of glabrene and other constituents isolated from licorice root.J. Steroid Biochem. Mol. Biol.200178329129810.1016/S0960‑0760(01)00093‑011595510
    [Google Scholar]
  57. KoY.H. KwonS.H. LeeS.Y. JangC.G. Liquiritigenin ameliorates memory and cognitive impairment through cholinergic and BDNF pathways in the mouse hippocampus.Arch. Pharm. Res.201740101209121710.1007/s12272‑017‑0954‑628940173
    [Google Scholar]
  58. DuY. LuoM. DuY. XuM. YaoQ. WangK. HeG. Liquiritigenin Decreases Aβ Levels and Ameliorates Cognitive Decline by Regulating Microglia M1/M2 Transformation in AD Mice.Neurotox. Res.202139234935810.1007/s12640‑020‑00284‑z32990912
    [Google Scholar]
  59. ZulfugarovaP. Zivari-GhaderT. MaharramovaS. AhmadianE. EftekhariA. KhalilovR. TurksoyV.A. RosićG. SelakovicD. A mechanistic review of pharmacological activities of homeopathic medicine licorice against neural diseases.Front. Neurosci.202317114825810.3389/fnins.2023.114825836950127
    [Google Scholar]
  60. ChakravarthiK. AvadhaniR. Beneficial effect of aqueous root extract of Glycyrrhiza glabra on learning and memory using different behavioral models: An experimental study.J. Nat. Sci. Biol. Med.20134242042510.4103/0976‑9668.11702524082744
    [Google Scholar]
  61. ZhouY.Z. ZhaoF.F. GaoL. DuG.H. ZhangX. QinX.M. Licorice extract attenuates brain aging of D-galactose induced rats through inhibition of oxidative stress and attenuation of neuronal apoptosis.RSC Advances2017775477584776610.1039/C7RA07110H
    [Google Scholar]
  62. CherngJ.M. LinH.J. HungM.S. LinY.R. ChanM.H. LinJ.C. Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons.Eur. J. Pharmacol.20065471-3102110.1016/j.ejphar.2006.06.08016952351
    [Google Scholar]
  63. SongJ.H. LeeJ.W. ShimB. LeeC.Y. ChoiS. KangC. SohnN.W. ShinJ.W. Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice.Molecules20131812157881580310.3390/molecules18121578824352029
    [Google Scholar]
  64. ZhaoH. WangS.L. QianL. JinJ.L. LiH. XuY. ZhuX.L. Diammonium glycyrrhizinate attenuates Aβ(1-42) -induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci. Ther.201319211712410.1111/cns.1204323279783
    [Google Scholar]
  65. JiangR. GaoJ. ShenJ. ZhuX. WangH. FengS. HuangC. ShenH. LiuH. Glycyrrhizic Acid Improves Cognitive Levels of Aging Mice by Regulating T/B Cell Proliferation.Front. Aging Neurosci.2020121257011610.3389/fnagi.2020.57011633132898
    [Google Scholar]
  66. BanJ.Y. ParkH.K. KimS.K. Effect of Glycyrrhizic Acid on Scopolamine-Induced Cognitive Impairment in Mice.Int. Neurourol. J.202024Suppl. 1S48S5510.5213/inj.2040154.07732482057
    [Google Scholar]
  67. GongX. ShenH. GuoL. HuangC. SuT. WangH. FengS. YangS. HuoF. LiuH. ZhuJ. ZhuJ.K. LiH. LiuH. Glycyrrhizic acid inhibits myeloid differentiation of hematopoietic stem cells by binding S100 calcium binding protein A8 to improve cognition in aged mice.Immun. Ageing20232011210.1186/s12979‑023‑00337‑936906583
    [Google Scholar]
  68. PaudelY.N. AngelopoulouE. SempleB. PiperiC. OthmanI. ShaikhM.F. Potential Neuroprotective Effect of the HMGB1 Inhibitor Glycyrrhizin in Neurological Disorders.ACS Chem. Neurosci.202011448550010.1021/acschemneuro.9b0064031972087
    [Google Scholar]
  69. KongZ.H. ChenX. HuaH.P. LiangL. LiuL.J. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition.J. Mol. Neurosci.2017633-438539510.1007/s12031‑017‑0989‑729034441
    [Google Scholar]
  70. LiuR. ZouL. LüQ. Liquiritigenin inhibits Aβ25–35-induced neurotoxicity and secretion of Aβ1–40 in rat hippocampal neurons.Acta Pharmacol. Sin.200930789990610.1038/aps.2009.7419574995
    [Google Scholar]
  71. LiuR.T. TangJ.T. ZouL.B. FuJ.Y. LuQ.J. Liquiritigenin attenuates the learning and memory deficits in an amyloid protein precursor transgenic mouse model and the underlying mechanisms.Eur. J. Pharmacol.20116691-3768310.1016/j.ejphar.2011.07.05121872584
    [Google Scholar]
  72. MaherP. SchubertD. Signaling by reactive oxygen species in the nervous system.Cell. Mol. Life Sci.20005781287130510.1007/PL0000076611028919
    [Google Scholar]
  73. YangE.J. ParkG.H. SongK.S. Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells.Neurotoxicology20133911412310.1016/j.neuro.2013.08.01224012889
    [Google Scholar]
  74. KoY.H. KwonS.H. HwangJ.Y. KimK.I. SeoJ.Y. NguyenT.L. LeeS.Y. KimH.C. JangC.G. The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice.Biomol. Ther. (Seoul)201826210911410.4062/biomolther.2016.28428554200
    [Google Scholar]
  75. YuanX. WangZ. ZhangL. SuiR. KhanS. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer’s disease.Int. J. Biol. Macromol.20211831184119010.1016/j.ijbiomac.2021.05.04133965487
    [Google Scholar]
  76. ZhuX. LiuJ. ChenS. XueJ. HuangS. WangY. ChenO. Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity.BMC Neurosci.20192014110.1186/s12868‑019‑0520‑x31387531
    [Google Scholar]
  77. MaX. FangF. SongM. MaS. The effect of isoliquiritigenin on learning and memory impairments induced by high-fat diet via inhibiting TNF-α/JNK/IRS signaling.Biochem. Biophys. Res. Commun.201546441090109510.1016/j.bbrc.2015.07.08126188513
    [Google Scholar]
  78. YangE.J. KimG.S. NohH. ShinY.S. SongK.S. Inhibitory effect of isoliquiritigenin isolated from Glycyrrhizae Radix on amyloid-β production in Swedish mutant amyloid precursor protein-transfected Neuro2a cells.J. Funct. Foods20151844545410.1016/j.jff.2015.08.001
    [Google Scholar]
  79. ShiD. YangJ. JiangY. WenL. WangZ. YangB. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin.Free Radic. Biol. Med.202015220721510.1016/j.freeradbiomed.2020.03.01632220625
    [Google Scholar]
  80. FuY. JiaJ. Isoliquiritigenin Confers Neuroprotection and Alleviates Amyloid-β42-Induced Neuroinflammation in Microglia by Regulating the Nrf2/NF-κB Signaling.Front. Neurosci.20211563877210.3389/fnins.2021.63877233642990
    [Google Scholar]
  81. LiuJ.Y. GuoH.Y. QuanZ.S. ShenQ.K. CuiH. LiX. Research progress of natural products and their derivatives against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.2023381217102610.1080/14756366.2023.217102636803484
    [Google Scholar]
  82. ZhuZ. LiC. WangX. YangZ. ChenJ. HuL. JiangH. ShenX. 2,2′,4′‐Trihydroxychalcone from Glycyrrhiza glabra as a new specific BACE1 inhibitor efficiently ameliorates memory impairment in mice.J. Neurochem.2010114237438510.1111/j.1471‑4159.2010.06751.x20412384
    [Google Scholar]
  83. CuiY.M. AoM.Z. LiW. YuL.J. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice.Planta Med.200874437738010.1055/s‑2008‑103431918484526
    [Google Scholar]
  84. ArifN. SubhaniA. HussainW. RasoolN. In Silico Inhibition of BACE-1 by Selective Phytochemicals as Novel Potential Inhibitors: Molecular Docking and DFT Studies.Curr. Drug Discov. Technol.202017339741110.2174/157016381666619021416182530767744
    [Google Scholar]
  85. JiangM. ZhaoS. YangS. LinX. HeX. WeiX. SongQ. LiR. FuC. ZhangJ. ZhangZ. An “essential herbal medicine”—licorice: A review of phytochemicals and its effects in combination preparations.J. Ethnopharmacol.202024911243910.1016/j.jep.2019.11243931811935
    [Google Scholar]
  86. LiB. YangY. ChenL. ChenS. ZhangJ. TangW. 18α-Glycyrrhetinic acid monoglucuronide as an anti-inflammatory agent through suppression of the NF-κB and MAPK signaling pathway.MedChemComm2017871498150410.1039/C7MD00210F30108861
    [Google Scholar]
  87. KaoT.C. ShyuM.H. YenG.C. Neuroprotective effects of glycyrrhizic acid and 18beta-glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway.J. Agric. Food Chem.200957275476110.1021/jf802864k19105645
    [Google Scholar]
  88. KalaiarasiP. KaviarasanK. PugalendiK.V. Hypolipidemic activity of 18β-glycyrrhetinic acid on streptozotocin-induced diabetic rats.Eur. J. Pharmacol.20096121-3939710.1016/j.ejphar.2009.04.00319361497
    [Google Scholar]
  89. YuJ.Y. HaJ. KimK.M. JungY.S. JungJ.C. OhS. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver.Molecules2015207130411305410.3390/molecules20071304126205049
    [Google Scholar]
  90. LiuW. HuangS. LiY. ZhangK. ZhengX. Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway.Food Nutr. Res.20196306310.29219/fnr.v63.151631073286
    [Google Scholar]
  91. YuX.Q. XueC.C. ZhouZ.W. LiC.G. DuY.M. LiangJ. ZhouS.F. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice).Life Sci.2008821-2687810.1016/j.lfs.2007.10.01918048062
    [Google Scholar]
  92. LuoL. JinY. KimI.D. LeeJ.K. Glycyrrhizin attenuates kainic Acid-induced neuronal cell death in the mouse hippocampus.Exp. Neurobiol.201322210711510.5607/en.2013.22.2.10723833559
    [Google Scholar]
  93. NadhA.G. RevikumarA. SudhakaranP.R. NairA.S. Identification of potential lead compounds against BACE1 through in-silico screening of phytochemicals of Medhya rasayana plants for Alzheimer’s disease management.Comput. Biol. Med.202214510542210.1016/j.compbiomed.2022.10542235354103
    [Google Scholar]
  94. NakataniY. KobeA. KuriyaM. HirokiY. YahagiT. SakakibaraI. MatsuzakiK. AmanoT. Neuroprotective effect of liquiritin as an antioxidant via an increase in glucose-6-phosphate dehydrogenase expression on B65 neuroblastoma cells.Eur. J. Pharmacol.201781538139010.1016/j.ejphar.2017.09.04028970010
    [Google Scholar]
  95. KimH.J. LimS.S. ParkI.S. LimJ.S. SeoJ.Y. KimJ.S. Neuroprotective effects of dehydroglyasperin C through activation of heme oxygenase-1 in mouse hippocampal cells.J. Agric. Food Chem.201260225583558910.1021/jf300548b22578244
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266357793241223100307
Loading
/content/journals/ctmc/10.2174/0115680266357793241223100307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test