Skip to content
2000
Volume 25, Issue 26
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Diabetes Mellitus (DM) is known to have an impact on the health of the male reproductive system. It is linked to low sperm quality, increased oxidative stress, and an increased generation of reactive oxygen species in the seminal fluid. Pomegranate extract has phenolic compounds and significant protective properties against oxidative stress, male sex hormone disruptions, and sperm abnormalities.

Objective

The current study aimed to evaluate the effectiveness of Pomegranate Peel Extract Nanoparticles (PPENPs) on male fertility in diabetic rats.

Methods

DM was induced in rats by intraperitoneal injection of streptozotocin (60 mg/kg). Twenty-four rats were divided into four groups, 6 rats in each group: control, DM, DM+empty NPs (60 mg/kg, orally), and DM+PPENPs (60 mg/kg, orally).

Results

Administration of PPENPs increased the levels of insulin, FSH, LH, testosterone, catalase, glutathione reduced, and semen fructose. PPENPs also improved sperm quality, as seen by improvements in sperm morphology, motility, count, and the ability of metabolically active spermatozoa to convert blue resazurin dye to pink resorufin. However, PPENPs decreased levels of glucose, malonaldehyde, nitric oxide, and sperm abnormalities. Also, histological investigation of the PPENPs showed improvement in testis tissue architecture and increased the diameter size of seminiferous tubules and germinative layer thickness.

Conclusion

Our investigation proved that the treatment of PPENPs has a protective effect on the reproductive system of male diabetic rats, improving fertility parameters, healthy sperm profiles, and the antioxidant system.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266308882240806175831
2025-08-20
2025-12-15
Loading full text...

Full text loading...

References

  1. TaitsonP.F. MourthéA. RodriguesL.M.F. Treating male infertility.JBRA Assist. Reprod.2022176351352 35939554
    [Google Scholar]
  2. SharmaA. MinhasS. DhilloW.S. JayasenaC.N. Male infertility due to testicular disorders.J. Clin. Endocrinol. Metab.20211062e442e45910.1210/clinem/dgaa781 33295608
    [Google Scholar]
  3. EisenbergM.L. EstevesS.C. LambD.J. HotalingJ.M. GiwercmanA. HwangK. ChengY.S. Male infertility.Nat. Rev. Dis. Primers2023914910.1038/s41572‑023‑00459‑w 37709866
    [Google Scholar]
  4. Concepción-ZavaletaM. Paz IbarraJ.L. Ramos-YatacoA. Coronado-ArroyoJ. Concepción-UrteagaL. RoseboomP.J. WilliamsC.A. Assessment of hormonal status in male infertility. An update.Diabetes Metab. Syndr.202216310244710.1016/j.dsx.2022.102447 35272174
    [Google Scholar]
  5. StrasserM.O. DupreeJ.M. Care delivery for male infertility.Urol. Clin. North Am.202047219320410.1016/j.ucl.2019.12.006 32272991
    [Google Scholar]
  6. JiaoS.Y. YangY.H. ChenS.R. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice.Hum. Reprod. Update202127115418910.1093/humupd/dmaa034 33118031
    [Google Scholar]
  7. RamaN. LescayH. RaheemO. Male factor infertility.Obstet. Gynecol. Clin. North Am.202350476377710.1016/j.ogc.2023.08.001 37914493
    [Google Scholar]
  8. MurshidiM.M. ChoyJ.T. EisenbergM.L. Male infertility and somatic health.Urol. Clin. North Am.202047221121710.1016/j.ucl.2019.12.008 32272993
    [Google Scholar]
  9. ReedJ. BainS. KanamarlapudiV. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives.Diabetes Metab. Syndr. Obes.2021143567360210.2147/DMSO.S319895 34413662
    [Google Scholar]
  10. Aiysha ThompsonK. KanamarlapudV. Type 2 diabetes mellitus and glucagon like peptide-1 receptor signalling.Clin. Exp. Pharmacol.20133410.4172/2161‑1459.1000138
    [Google Scholar]
  11. RehmanH. UllahK. RasoolA. ManzoorR. YuanY. TareenA.M. KaleemI. RiazN. HameedS. BashirS. Comparative impact of streptozotocin on altering normal glucose homeostasis in diabetic rats compared to normoglycemic rats.Sci. Rep.2023131792110.1038/s41598‑023‑29445‑8 37193696
    [Google Scholar]
  12. WongP.L. ZolkefleeN.K.Z. RamliN.S. TanC.P. AzlanA. ThamC.L. ShaariK. AbasF. Antidiabetic effect of Ardisia elliptica extract and its mechanisms of action in STZ-NA-induced diabetic rat model via (1)H-NMR-based metabolomics.J. Ethnopharmacol.2024318117015
    [Google Scholar]
  13. BenerA. Al-AnsariA.A. ZirieM. Al-HamaqA.O.A.A. Is male fertility associated with type 2 diabetes mellitus?Int. Urol. Nephrol.200941477778410.1007/s11255‑009‑9565‑6 19381857
    [Google Scholar]
  14. MareschC.C. StuteD.C. AlvesM.G. OliveiraP.F. de KretserD.M. LinnT. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review.Hum. Reprod. Update20182418610510.1093/humupd/dmx033 29136166
    [Google Scholar]
  15. FaragN.A. MohamedA.S. El SayedH.F. Salah EL DinE.Y. TawfikA.R.A. Echinochrome pigment improves male rats’ fertility.Nat. Prod. J.2022123e16092118804410.2174/2210315510999201116205519
    [Google Scholar]
  16. ZhongO. JiL. WangJ. LeiX. HuangH. Association of diabetes and obesity with sperm parameters and testosterone levels: a meta-analysis.Diabetol. Metab. Syndr.202113110910.1186/s13098‑021‑00728‑2 34656168
    [Google Scholar]
  17. EgorovE. PietersC. Korach-RechtmanH. ShkloverJ. SchroederA. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems.Drug Deliv. Transl. Res.202111234535210.1007/s13346‑021‑00929‑2 33585972
    [Google Scholar]
  18. SimS. WongN. Nanotechnology and its use in imaging and drug delivery (Review).Biomed. Rep.20211454210.3892/br.2021.1418 33728048
    [Google Scholar]
  19. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules26195905 34641447
    [Google Scholar]
  20. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: a brief review.Global Health Journal202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
  21. SoltanzadehM. PeighambardoustS.H. GhanbarzadehB. MohammadiM. LorenzoJ.M. Chitosan nanoparticles as a promising nanomaterial for encapsulation of pomegranate (Punica granatum L.) peel extract as a natural source of antioxidants.Nanomaterials (Basel)2021116143910.3390/nano11061439 34072520
    [Google Scholar]
  22. KumarS. YeF. MazinaniB. DobretsovS. DuttaJ. Chitosan nanocomposite coatings containing chemically resistant zno–snox core–shell nanoparticles for photocatalytic antifouling.Int. J. Mol. Sci.2021229451310.3390/ijms22094513 33925962
    [Google Scholar]
  23. RahamanM.M. HossainR. Herrera-BravoJ. IslamM.T. AtolaniO. AdeyemiO.S. OwolodunO.A. KambiziL. DaştanS.D. CalinaD. Sharifi-RadJ. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update.Food Sci. Nutr.20231141657167010.1002/fsn3.3217 37051367
    [Google Scholar]
  24. Popović-DjordjevićJ. QuispeC. GiordoR. KostićA. Katanić StankovićJ.S. Tsouh FokouP.V. CarboneK. MartorellM. KumarM. PintusG. Sharifi-RadJ. DoceaA.O. CalinaD. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs.Eur. J. Med. Chem.202223311421710.1016/j.ejmech.2022.114217 35276425
    [Google Scholar]
  25. HashemA.H. SaiedE. AliO.M. SelimS. Al JaouniS.K. ElkadyF.M. El-SayyadG.S. Pomegranate peel extract stabilized selenium nanoparticles synthesis: promising antimicrobial potential, antioxidant activity, biocompatibility, and hemocompatibility.Appl. Biochem. Biotechnol.2023195105753577610.1007/s12010‑023‑04326‑y 36705842
    [Google Scholar]
  26. El-BeltagiH.S. EshakN.S. MohamedH.I. BendaryE.S.A. DanialA.W. Physical characteristics, mineral content, and antioxidant and antibacterial activities of Punica granatum or Citrus sinensis peel extracts and their applications to improve cake quality.Plants20221113
    [Google Scholar]
  27. MoY. MaJ. GaoW. ZhangL. LiJ. LiJ. ZangJ. Pomegranate peel as a source of bioactive compounds: a mini review on their physiological functions.Front. Nutr.2022988711310.3389/fnut.2022.887113 35757262
    [Google Scholar]
  28. BawazeerS. RaufA. NawazT. KhalilA.A. JavedM.S. MuhammadN. ShahM.A. Punica granatum peel extracts mediated the green synthesis of gold nanoparticles and their detailed in vivo biological activities.Green Process. Synthesis202110188289210.1515/gps‑2021‑0080
    [Google Scholar]
  29. ZhaoX. YuanZ. Anthocyanins frolanate (Punica granatum L.) and their role in antioxidant capacities in vitro.Chem. Biodivers.20211810e210039910.1002/cbdv.202100399 34388293
    [Google Scholar]
  30. LavoroA. FalzoneL. GattusoG. SalemiR. CultreraG. LeoneG. ScandurraG. CandidoS. LibraM. Pomegranate: A promising avenue against the most common chronic diseases and their associated risk factors (Review).Int. J. Funct. Nutrit.202122610.3892/ijfn.2021.16
    [Google Scholar]
  31. JurenkaJ.S. Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern. Med. Rev. J. Clinic.Therap.2008132128144
    [Google Scholar]
  32. ZarfeshanyA. AsgaryS. JavanmardS.H. Potent health effects of pomegranate.Adv. Biomed. Res.20143100100 24800189
    [Google Scholar]
  33. Virgen-CarrilloC.A. Martínez MorenoA.G. Valdés MiramontesE.H. Potential Hypoglycemic Effect of Pomegranate Juice and Its Mechanism of Action: A Systematic Review.J. Med. Food202023111110.1089/jmf.2019.0069 31397609
    [Google Scholar]
  34. NikfarjamM. Rashki GhalenoL. ShahverdiA.H. MirshahvaladS.H. GhoreishiS.M. AlizadehA.R. Effects of Dietary Pomegranate Peel on Antioxidant Gene Expression and DJ-1 Protein Abundance in Ram Testes.Int. J. Fertil. Steril.2021154258262 34913293
    [Google Scholar]
  35. MinisyF.M. ShawkiH.H. El OmriA. MassoudA.A. OmaraE.A. MetwallyF.G. BadawyM.A. HassanN.A. HassanN.S. OishiH. Pomegranate Seeds Extract Possesses a Protective Effect against Tramadol-Induced Testicular Toxicity in Experimental Rats.BioMed Res. Int.2020202011210.1155/2020/2732958 32219129
    [Google Scholar]
  36. TürkG. SönmezM. AydinM. YüceA. GürS. YükselM. AksuE.H. AksoyH. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats.Clin. Nutr.200827228929610.1016/j.clnu.2007.12.006 18222572
    [Google Scholar]
  37. HarakehS. AlmuhayawiM.S. AkefeI.O. SaberS.H. Al JaouniS.K. AlzughaibiT. AlmehmadiY. AliS.S. BharaliD.J. MousaS. Novel Pomegranate-Nanoparticles Ameliorate Cisplatin-Induced Nephrotoxicity and Improves Cisplatin Anti-Cancer Efficacy in Ehrlich Carcinoma Mice Model.Molecules2022275160510.3390/molecules27051605 35268707
    [Google Scholar]
  38. MonikaP. ChandraprabhaM.N. Hari KrishnaR. VittalM. LikhithaC. PoojaN. ChaudharyV. CM. Recent advances in pomegranate peel extract mediated nanoparticles for clinical and biomedical applications.Biotechnol. Genet. Eng. Rev.202212910.1080/02648725.2022.2122299 36117472
    [Google Scholar]
  39. WangZ. PanZ. MaH. AtunguluG.G. Extract of Phenolics From Pomegranate Peels.Open Food Sci. J.201151172510.2174/1874256401105010017
    [Google Scholar]
  40. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxidat. med. cell. longev.201720178416763
    [Google Scholar]
  41. ChineduE. AromeD. AmehF. A new method for determining acute toxicity in animal models.Toxicol. Int.201320322422610.4103/0971‑6580.121674 24403732
    [Google Scholar]
  42. ChenX. FuX.S. LiC.P. ZhaoH.X. ER stress and ER stress-induced apoptosis are activated in gastric SMCs in diabetic rats.World J. Gastroenterol.201420258260826710.3748/wjg.v20.i25.8260 25009401
    [Google Scholar]
  43. FreundB.J. AllenD. WilmoreJ.H. Interaction of test protocol and inclined run training on maximal oxygen uptake.Med. Sci. Sports Exerc.198618558859210.1249/00005768‑198610000‑00016 3773677
    [Google Scholar]
  44. HerbertV. LauK. GottliebC.W. Bleicher. Coated charcoal immunoassay of insulin.J. Clin. Endocrinol.1965251375
    [Google Scholar]
  45. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  46. MontgomeryH.A.C. DymockJ.F. The determination of nitrite in water.Analyst (Lond.)196186414416
    [Google Scholar]
  47. AebiH. Catalase in vitro.Methods Enzymol.198410512112610.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  48. SolomonM.C. ErasmusN. HenkelR.R. In vivo effects of Eurycoma longifolia Jack (Tongkat Ali) extract on reproductive functions in the rat.Andrologia201446433934810.1111/and.12082 23464350
    [Google Scholar]
  49. ForemanD. GaylorL. EvansE. TrellaC. A modification of the Roe procedure for determination of fructose in tissues with increased specificity.Anal. Biochem.197356258459010.1016/0003‑2697(73)90225‑X 4797275
    [Google Scholar]
  50. ReddyK.V. BordekarA.D. Spectrophotometric analysis of resazurin reduction test and semen quality in men.Indian J. Exp. Biol.1999378782786 10709326
    [Google Scholar]
  51. MayerP. Note on hematein and hematoxylin.J. Sci. Microscopy Microscopic190320409
    [Google Scholar]
  52. UjahG.A. NnaV.U. SuleimanJ.B. EleazuC. NwokochaC. RebeneJ.A. ImowoM.U. ObiE.O. AmachreeC. UdechukwuE.C. MohamedM. Tert-butylhydroquinone attenuates doxorubicin-induced dysregulation of testicular cytoprotective and steroidogenic genes, and improves spermatogenesis in rats.Sci. Rep.2021111552210.1038/s41598‑021‑85026‑7 33750916
    [Google Scholar]
  53. NnaV.U. Abu BakarA.B. AhmadA. EleazuC.O. MohamedM. Oxidative Stress, NF-κB-Mediated Inflammation and Apoptosis in the Testes of Streptozotocin-Induced Diabetic Rats: Combined Protective Effects of Malaysian Propolis and Metformin.Antioxidants2019810465
    [Google Scholar]
  54. HuangH-F. DingG-L. LiuY. LiuM-E. PanJ-X. GuoM-X. ShengJ-Z. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis.Asian J. Androl.201517694895310.4103/1008‑682X.150844 25814158
    [Google Scholar]
  55. FacondoP. Di LodovicoE. DelbarbaA. AnelliV. PezzaioliL.C. FilippiniE. CappelliC. CoronaG. FerlinA. The impact of diabetes mellitus type 1 on male fertility: Systematic review and meta‐analysis.Andrology202210342644010.1111/andr.13140 34904793
    [Google Scholar]
  56. MohamadiY. JameieS.B-e. AkbariM. StajiM. MoradiF. MokhtariT. KhanehzadM. HassanzadehG. Hyperglycemia decreased medial amygdala projections to medial preoptic area in experimental model of Diabetes Mellitus.Acta Med. Iran.201553117 25597598
    [Google Scholar]
  57. HeidariH. AbdollahiM. KhaniS. NojavanF. KhaniS. Effect of Alpinia officinarum extract on reproductive damages in streptozotocin induced diabetic male rats.J. Diabetes Metab. Disord.2021201778510.1007/s40200‑020‑00711‑0 34222060
    [Google Scholar]
  58. PedersenC. PorsgaardT. ThomsenM. RosenkildeM.M. RoedN.K. Sustained effect of glucagon on body weight and blood glucose: Assessed by continuous glucose monitoring in diabetic rats.PLoS One2018133e019446810.1371/journal.pone.0194468 29558502
    [Google Scholar]
  59. MouriM. BadireddyM. Hyperglycemia. StatPearls.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  60. HantzidiamantisP.J. LappinS.L. Physiology, Glucose. StatPearls.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  61. JiangY.P. YeR.J. YangJ.M. LiuN. ZhangW.J. MaL. SunT. NiuJ.G. ZhengP. YuJ.Q. Protective effects of Salidroside on spermatogenesis in streptozotocin induced type-1 diabetic male mice by inhibiting oxidative stress mediated blood-testis barrier damage.Chem. Biol. Interact.202031510886910.1016/j.cbi.2019.108869 31682803
    [Google Scholar]
  62. ChoudhuryA.A. Devi RajeswariV. Gestational diabetes mellitus - A metabolic and reproductive disorder.Biomed. Pharmacother.202114311218310.1016/j.biopha.2021.112183 34560536
    [Google Scholar]
  63. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: a review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  64. WeiQ. QiL. LinH. LiuD. ZhuX. DaiY. WaldronR.T. LugeaA. GoodarziM.O. PandolS.J. LiL. Pathological Mechanisms in Diabetes of the Exocrine Pancreas: What’s Known and What’s to Know.Front. Physiol.20201157027610.3389/fphys.2020.570276 33250773
    [Google Scholar]
  65. TemidayoS.O. StefanS.P. Diabetes mellitus and male infertility.Asian Pac. J. Reprod.20187161410.4103/2305‑0500.220978
    [Google Scholar]
  66. GrabežM. ŠkrbićR. StojiljkovićM.P. Rudić-GrujićV. PaunovićM. ArsićA. PetrovićS. VučićV. Mirjanić-AzarićB. ŠavikinK. MenkovićN. JankovićT. VasiljevićN. Beneficial effects of pomegranate peel extract on plasma lipid profile, fatty acids levels and blood pressure in patients with diabetes mellitus type-2: A randomized, double-blind, placebo-controlled study.J. Funct. Foods20206410369210.1016/j.jff.2019.103692
    [Google Scholar]
  67. ArunK. JayamurthyP. AnushaC. MaheshS. NishaP. Studies on activity guided fractionation of pomegranate peel extracts and its effect on antidiabetic and cardiovascular protection properties.J. Food process.2017411e13108
    [Google Scholar]
  68. MiddhaS.K. UshaT. PandeV. Pomegranate peel attenuates hyperglycemic effects of alloxan-induced diabetic rats.EXCLI J.201413223224 26417256
    [Google Scholar]
  69. MaJ. HanR. DengP. QiY. LiuW. CuiT. WangS. Effect of diabetes mellitus on semen quality.Int. J. Clin. Exp. Med.2020131079107919
    [Google Scholar]
  70. SchoellerE.L. SchonS. MoleyK.H. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis.Cell Tissue Res.2012349383984710.1007/s00441‑012‑1387‑7 22526620
    [Google Scholar]
  71. HeZ. YinG. LiQ.Q. ZengQ. DuanJ. Diabetes mellitus causes male reproductive dysfunction: A review of the evidence and mechanisms.in vivo202135525032511
    [Google Scholar]
  72. GhanbariE. NejatiV. KhazaeiM. Antioxidant and protective effects of Royal jelly on histopathological changes in testis of diabetic rats.Int. J. Reprod. Biomed. (Yazd)201614851952610.29252/ijrm.14.8.519 27679827
    [Google Scholar]
  73. DingE.L. SongY. MalikV.S. LiuS. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis.JAMA2006295111288129910.1001/jama.295.11.1288 16537739
    [Google Scholar]
  74. KellyD.M. JonesT.H. Testosterone: a metabolic hormone in health and disease.J. Endocrinol.20132173R25R4510.1530/JOE‑12‑0455 23378050
    [Google Scholar]
  75. XiaF. XuX. ZhaiH. MengY. ZhangH. DuS. XuH. WuH. LuY. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats.Reprod. Biol. Endocrinol.201311110610.1186/1477‑7827‑11‑106 24238614
    [Google Scholar]
  76. MitsuhashiK. SenmaruT. FukudaT. YamazakiM. ShinomiyaK. UenoM. KinoshitaS. KitawakiJ. KatsuyamaM. TsujikawaM. ObayashiH. NakamuraN. FukuiM. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes.Endocrine201651117418410.1007/s12020‑015‑0666‑y 26100787
    [Google Scholar]
  77. SatoK. IemitsuM. AizawaK. AjisakaR. Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle.Am. J. Physiol. Endocrinol. Metab.20082945E961E96810.1152/ajpendo.00678.2007 18349113
    [Google Scholar]
  78. YaoQ. WangB. AnX. ZhangJ. DingL. Testosterone level and risk of type 2 diabetes in men: a systematic review and meta-analysis.Endocr. Connect.20187122023110.1530/EC‑17‑0253 29233816
    [Google Scholar]
  79. JohansenJ.S. HarrisA.K. RychlyD.J. ErgulA. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice.Cardiovasc. Diabetol.200541510.1186/1475‑2840‑4‑5 15862133
    [Google Scholar]
  80. MoussaS.A. Oxidative stress in diabetes mellitus.Rom. J. Biophys.2008183225236
    [Google Scholar]
  81. AsmatU. AbadK. IsmailK. Diabetes mellitus and oxidative stress-A concise review.Saudi pharmaceut. j.2016245547553
    [Google Scholar]
  82. SunitaR. SahidanS. HidayatR. Evaluation of Malondialdehyde in Type 2 Diabetes Mellitus Patients as Oxidative Stress Markers in Bengkulu Population. Bioscientia Medicina.Journal of Biomedicine and Translational Research202043
    [Google Scholar]
  83. CondorelliR.A. La VigneraS. MongioìL.M. AlamoA. CalogeroA.E. Diabetes Mellitus and Infertility: Different Pathophysiological Effects in Type 1 and Type 2 on Sperm Function.Front. Endocrinol. (Lausanne)2018926810.3389/fendo.2018.00268 29887834
    [Google Scholar]
  84. AsadiN. BahmaniM. KheradmandA. Rafieian-KopaeiM. The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidants in Improving it: A Review.J. Clin. Diagn. Res.2017115IE01IE0510.7860/JCDR/2017/23927.9886 28658802
    [Google Scholar]
  85. PatelH. ChenJ. DasK.C. KavdiaM. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC.Cardiovasc. Diabetol.201312114214610.1186/1475‑2840‑12‑142 24093550
    [Google Scholar]
  86. YigitturkG. AcaraA.C. ErbasO. OltuluF. YavasogluN.U.K. UysalA. YavasogluA. The antioxidant role of agomelatine and gallic acid on oxidative stress in STZ induced type I diabetic rat testes.Biomed. Pharmacother.20178724024610.1016/j.biopha.2016.12.102 28061407
    [Google Scholar]
  87. GanjifrockwalaF. JosephJ. GeorgeG. Decreased total antioxidant levels and increased oxidative stress in South African type 2 diabetes mellitus patients.J. Endocrinol. Metabol. Diabet. South Africa20172222125
    [Google Scholar]
  88. MatoughF.A. BudinS.B. HamidZ.A. AlwahaibiN. MohamedJ. The Role of Oxidative Stress and Antioxidants in Diabetic Complications = السكري مرض مضاعفات في للأكسدة المضادة المواد و التأكسدي الإجهاد دور.Sultan Qaboos Univ. Med. J.201212151810.12816/0003082 22375253
    [Google Scholar]
  89. MaphetuN. UnuofinJ.O. MasukuN.P. OlisahC. LebeloS.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review.Biomed. pharmacoth.2022153113256
    [Google Scholar]
  90. AkuruE.A. ChukwumaC.I. OyeaguC.E. ErukainureO.L. MashileB. SetlhodiR. MasheleS.S. MakhafolaT.J. UnuofinJ.O. AbifarinT.O. MpenduloT.C. Nutritional and phytochemical profile of pomegranate (“Wonderful variety”) peel and its effects on hepatic oxidative stress and metabolic alterations.J. Food Biochem.2022464e1391310.1111/jfbc.13913 34453451
    [Google Scholar]
  91. SextonW.J. JarowJ.P. Effect of diabetes mellitus upon male reproductive function.Urology199749450851310.1016/S0090‑4295(96)00573‑0 9111618
    [Google Scholar]
  92. LuoZ.C. JinZ.R. JiangY.F. WeiT.J. CaoY.L. ZhangZ. WeiR. JiangH. The protective effects and underlying mechanisms of dapagliflozin on diabetes-induced testicular dysfunction.Asian J. Androl.202325333133810.4103/aja202242 35848706
    [Google Scholar]
  93. La VigneraS. CondorelliR. VicariE. D’AgataR. CalogeroA.E. Diabetes mellitus and sperm parameters.J. Androl.201233214515310.2164/jandrol.111.013193 21474785
    [Google Scholar]
  94. GonzalesG.F. VillenaA. True corrected seminal fructose level: a better marker of the function of seminal vesicles in infertile men.Int. J. Androl.200124525526010.1046/j.1365‑2605.2001.00306.x 11554981
    [Google Scholar]
  95. MarconiM. PilatzA. WagenlehnerF. DiemerT. WeidnerW. Impact of infection on the secretory capacity of the male accessory glands.Int. Braz J Urol200935329930910.1590/S1677‑55382009000300006 19538765
    [Google Scholar]
  96. JeburA.B. El-SayedR.A. Abdel-DaimM.M. El-DemerdashF.M. Punica granatum (Pomegranate) Peel Extract Pre-Treatment Alleviates Fenpropathrin-Induced Testicular Injury via Suppression of Oxidative Stress and Inflammation in Adult Male Rats.Toxics202311650410.3390/toxics11060504 37368604
    [Google Scholar]
  97. SalauV.F. ErukainureO.L. OlofinsanK.A. OmotosoB.R. Shahidul IslamM. Pomegranate (P. granatum) fruit juice protects against iron-induced oxidative testicular injury via amelioration of oxidative imbalance and modulation of metabolic indices linked to male infertility.Medicine in Omics2023810002110.1016/j.meomic.2023.100021
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266308882240806175831
Loading
/content/journals/ctmc/10.2174/0115680266308882240806175831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test