Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Despite extensive research, there is an unmet need for developing disease-modifying therapies for Parkinson’s disease (PD). Failure of certain landmark clinical trials has highlighted the need for a better understanding of the disease pathogenesis as well as identifying the hurdles in developing drug candidates and designing clinical trials. While adhering to these needs, several promising trials are currently underway with the hope of developing reliable targets. There is also a need to conduct research on plant-based natural products and use them as therapeutic candidates for PD. In this context, many studies have demonstrated the efficacy of medicinal plants and their principal phytochemicals. This review provides an update on the presently underway clinical trials with a small emphasis on the disease modifying therapies that target small molecules, mitochondria, and oligodendrocytes. The role of ethnopharmacology-based approaches for treatment of PD has also been discussed. The third aspect of the article considers the importance of nanomedicine in this area, including the use of liposomes and nanoparticles to provide a novel approach for the treatment of PD.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266314877241105051752
2024-11-27
2025-12-22
Loading full text...

Full text loading...

References

  1. BraakH. Del TrediciK. Neuroanatomy and pathology of sporadic parkinson’s disease.Adv. Anat. Embryol. Cell Biol.2009201111919230552
    [Google Scholar]
  2. VijiaratnamN. SimuniT. BandmannO. MorrisH.R. FoltynieT. Progress towards therapies for disease modification in parkinson’s disease.Lancet Neurol.202120755957210.1016/S1474‑4422(21)00061‑234146514
    [Google Scholar]
  3. WillisA.W. RobertsE. BeckJ.C. FiskeB. RossW. SavicaR. Van Den EedenS.K. TannerC.M. MarrasC. AlcalayR. SchwarzschildM. RacetteB. ChenH. ChurchT. WilsonB. DoriaJ.M. Incidence of parkinson disease in North America.NPJ Parkinsons Dis.20228117010.1038/s41531‑022‑00410‑y
    [Google Scholar]
  4. OuZ. PanJ. TangS. DuanD. YuD. NongH. WangZ. Global trends in the incidence, prevalence, and years lived with disability of parkinson’s disease in 204 countries/territories from 1990 to 2019.Front. Public Health2021977684710.3389/fpubh.2021.77684734950630
    [Google Scholar]
  5. AthaudaD. MaclaganK. SkeneS.S. Bajwa-JosephM. LetchfordD. ChowdhuryK. HibbertS. BudnikN. ZampedriL. DicksonJ. LiY. Aviles-OlmosI. WarnerT.T. LimousinP. LeesA.J. GreigN.H. TebbsS. FoltynieT. Exenatide once weekly versus placebo in parkinson’s disease: A randomised, double-blind, placebo-controlled trial.Lancet2017390101031664167510.1016/S0140‑6736(17)31585‑428781108
    [Google Scholar]
  6. EggertK. SquillacoteD. BaroneP. DodelR. KatzenschlagerR. EmreM. LeesA.J. RascolO. PoeweW. TolosaE. TrenkwalderC. OnofrjM. StocchiF. NappiG. KosticV. PoticJ. RuzickaE. OertelW. Safety and efficacy of perampanel in advanced Parkinson’s disease: A randomized, placebo-controlled study.Mov. Disord.201025789690510.1002/mds.2297420461807
    [Google Scholar]
  7. LeWittP.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics.Mov. Disord.2015301647210.1002/mds.2608225449210
    [Google Scholar]
  8. LeesA.J. FerreiraJ. RascolO. PoeweW. RochaJ.F. McCroryM. Soares-da-SilvaP. Opicapone as adjunct to levodopa therapy in patients with parkinson disease and motor fluctuations: A randomized clinical trial.JAMA Neurol.201774219720610.1001/jamaneurol.2016.470328027332
    [Google Scholar]
  9. RinneU.K. LarsenJ.P. SidenÅ. Worm-PetersenJ. Nomecomt Study Group Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations.Neurology19985151309131410.1212/WNL.51.5.13099818851
    [Google Scholar]
  10. ArmstrongM.J. OkunM.S. Diagnosis and treatment of parkinson disease: A review.JAMA2020323654856010.1001/jama.2019.2236032044947
    [Google Scholar]
  11. NijhuisF.A.P. EsselinkR. de BieR.M.A. GroenewoudH. BloemB.R. PostB. MeindersM.J. Translating evidence to advanced parkinson’s disease patients: A systematic review and meta‐analysis.Mov. Disord.20213661293130710.1002/mds.2859933797786
    [Google Scholar]
  12. Pardo-MorenoT. García-MoralesV. Suleiman-MartosS. Rivas-DomínguezA. Mohamed-MohamedH. Ramos-RodríguezJ.J. Melguizo-RodríguezL. González-AcedoA. Current treatments and new, tentative therapies for parkinson’s disease.Pharmaceutics202315377010.3390/pharmaceutics1503077036986631
    [Google Scholar]
  13. BeaneyA. Trials to watch: Pipeline parkinson’s drugs could revolutionise treatment2023Available from: https://www.clinicaltrialsarena.com/features/trials-to-watch-parkinsons-disease/ 2023
  14. BezardE. GrayD. KozakR. LeoniM. CombsC. DuvvuriS. Rationale and development of Tavapadon, a D1/D5-Selective partial dopamine agonist for the treatment of parkinson's disease.CNS Neurol Disord Drug Targets.2024234476487
    [Google Scholar]
  15. LeWittP.A. KymesS. HauserR.A. Parkinson disease and orthostatic hypotension in the elderly: Recognition and management of risk factors for falls.Aging Dis.202011367969110.14336/AD.2019.080532489712
    [Google Scholar]
  16. AlladiP.A. MahadevanA. VijayalakshmiK. MuthaneU. ShankarS.K. RajuT.R. Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians.Neurochem. Int.201057553053910.1016/j.neuint.2010.06.01820615443
    [Google Scholar]
  17. CastonguayA.M. GravelC. LévesqueM. Treating parkinson’s disease with antibodies: Previous studies and future directions.J. Parkinsons Dis.2021111719210.3233/JPD‑20222133104039
    [Google Scholar]
  18. SureshS.N. ChavalmaneA.K. PillaiM. AmmanathanV. VidyadharaD.J. YarreiphangH. RaiS. PaulA. ClementJ.P. AlladiP.A. ManjithayaR. Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective.Front. Mol. Neurosci.20181110910.3389/fnmol.2018.0010929686608
    [Google Scholar]
  19. SureshS.N. ChavalmaneA.K. DjV. YarreiphangH. RaiS. PaulA. ClementJ.P. AlladiP.A. ManjithayaR. A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity.Autophagy20171371221123410.1080/15548627.2017.130204528350199
    [Google Scholar]
  20. SnS. PandurangiJ. MurumallaR. DjV. GarimellaL. AcharyaA. RaiS. PaulA. YarreiphangH. PillaiM.S. GiridharanM. ClementJ.P. AlladiP.A. SaiyedT. ManjithayaR. Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration.EBioMedicine20195026027310.1016/j.ebiom.2019.10.03631727601
    [Google Scholar]
  21. WagnerJ. RyazanovS. LeonovA. LevinJ. ShiS. SchmidtF. PrixC. Pan-MontojoF. BertschU. Mitteregger-KretzschmarG. GeissenM. EidenM. LeidelF. HirschbergerT. DeegA.A. KrauthJ.J. ZinthW. TavanP. PilgerJ. ZweckstetterM. FrankT. BährM. WeishauptJ.H. UhrM. UrlaubH. TeichmannU. SamwerM. BötzelK. GroschupM. KretzschmarH. GriesingerC. GieseA. Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and parkinson’s disease.Acta Neuropathol.2013125679581310.1007/s00401‑013‑1114‑923604588
    [Google Scholar]
  22. EminD. ZhangY.P. LobanovaE. MillerA. LiX. XiaZ. DakinH. SiderisD.I. LamJ.Y.L. RanasingheR.T. KouliA. ZhaoY. DeS. KnowlesT.P.J. VendruscoloM. RuggeriF.S. AigbirhioF.I. Williams-GrayC.H. KlenermanD. Small soluble α-synuclein aggregates are the toxic species in parkinson’s disease.Nat. Commun.2022131551210.1038/s41467‑022‑33252‑636127374
    [Google Scholar]
  23. WegrzynowiczM. Bar-OnD. Calo’L. AnichtchikO. IovinoM. XiaJ. RyazanovS. LeonovA. GieseA. DalleyJ.W. GriesingerC. AsheryU. SpillantiniM.G. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new parkinson’s disease model.Acta Neuropathol.2019138457559510.1007/s00401‑019‑02023‑x31165254
    [Google Scholar]
  24. McFarthingK. BuffS. RafaloffG. FiskeB. MursaleenL. FuestR. WyseR. K. StottS. R. Parkinson's disease drug therapies in the clinical trial pipeline: 2023 update.J Parkinsons Dis.2023134427439
    [Google Scholar]
  25. D’UrsoG. ThomannA.E. Anzures-CabreraJ. ZinnhardtB. RicciB. MarchesiM. MachadoV. MracskoE.Z. PaveseN. MarekK. BrockmannK. SimuniT. Milani MuelhardtN. PaganoG. A Phase 1b study to test the safety, pharmacokinetics, and pharmacodynamics of a novel inflammasome inhibitor in early-stage parkinson’s disease: Rationale and study design2022 International Congress111 RIVER ST, HOBOKEN, 2022 , Vol. 37, pp. S326-S326
    [Google Scholar]
  26. OlsonK.E. NammingaK.L. LuY. SchwabA.D. ThurstonM.J. AbdelmoatyM.M. KumarV. WojtkiewiczM. ObaroH. SantamariaP. MosleyR.L. GendelmanH.E. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of parkinson’s disease.EBioMedicine20216710338010.1016/j.ebiom.2021.10338034000620
    [Google Scholar]
  27. GetchellK. Promising disease-modifying therapies in parkinson disease.Sci Transl Med.202311520eaba1659
    [Google Scholar]
  28. BrakedalB. DölleC. RiemerF. MaY. NidoG.S. SkeieG.O. CravenA.R. SchwarzlmüllerT. BrekkeN. DiabJ. SverkeliL. SkjeieV. VarhaugK. TysnesO.B. PengS. HaugarvollK. ZieglerM. GrünerR. EidelbergD. TzoulisC. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in parkinson’s disease.Cell Metab.2022343396407.e610.1016/j.cmet.2022.02.00135235774
    [Google Scholar]
  29. NallsM.A. BlauwendraatC. VallergaC.L. HeilbronK. Bandres-CigaS. ChangD. TanM. KiaD.A. NoyceA.J. XueA. BrasJ. YoungE. von CoellnR. Simón-SánchezJ. SchulteC. SharmaM. KrohnL. PihlstrømL. SiitonenA. IwakiH. LeonardH. FaghriF. GibbsJ.R. HernandezD.G. ScholzS.W. BotiaJ.A. MartinezM. CorvolJ.C. LesageS. JankovicJ. ShulmanL.M. SutherlandM. TienariP. MajamaaK. ToftM. AndreassenO.A. BangaleT. BriceA. YangJ. Gan-OrZ. GasserT. HeutinkP. ShulmanJ.M. WoodN.W. HindsD.A. HardyJ.A. MorrisH.R. GrattenJ. VisscherP.M. GrahamR.R. SingletonA.B. Adarmes-GómezA.D. AguilarM. AitkulovaA. AkhmetzhanovV. AlcalayR.N. AlvarezI. AlvarezV. Bandres-CigaS. BarreroF.J. Bergareche YarzaJ.A. Bernal-BernalI. BillingsleyK. BlauwendraatC. BlazquezM. Bonilla-ToribioM. BotíaJ.A. BoungiornoM.T. BrasJ. BriceA. BrockmannK. BubbV. Buiza-RuedaD. CámaraA. CarrilloF. Carrión-ClaroM. CerdanD. ChelbanV. ClarimónJ. ClarkeC. ComptaY. CooksonM.R. CorvolJ-C. CraigD.W. DanjouF. Diez-FairenM. Dols-IcardoO. DuarteJ. DuranR. Escamilla-SevillaF. Escott-PriceV. EzquerraM. FaghriF. FelizC. FernándezM. Fernández-SantiagoR. FinkbeinerS. FoltynieT. Gan-OrZ. GarciaC. García-RuizP. GasserT. GibbsJ.R. Gomez HerediaM.J. Gómez-GarreP. GonzálezM.M. Gonzalez-AramburuI. GuelfiS. GuerreiroR. HardyJ. Hassin-BaerS. HernandezD.G. HeutinkP. HoenickaJ. HolmansP. HouldenH. InfanteJ. IwakiH. JesúsS. Jimenez-EscrigA. KaishybayevaG. KaiyrzhanovR. KarimovaA. KiaD.A. KinghornK.J. KoksS. KrohnL. KulisevskyJ. Labrador-EspinosaM.A. LeonardH.L. LesageS. LewisP. Lopez-SendonJ.L. LoveringR. LubbeS. LunguC. MaciasD. MajamaaK. ManzoniC. MarínJ. MarinusJ. MartiM.J. MartinezM. Martínez TorresI. Martínez-CastrilloJ.C. MataM. MencacciN.E. Méndez-del-BarrioC. MiddlehurstB. MínguezA. MirP. MokK.Y. MorrisH.R. MuñozE. NallsM.A. NarendraD. NoyceA.J. OjoO.O. OkubadejoN.U. PagolaA.G. PastorP. Perez ErrazquinF. Periñán-TocinoT. PihlstromL. Plun-FavreauH. QuinnJ. R’BiboL. ReedX. RezolaE.M. RizigM. RizzuP. RobakL. RodriguezA.S. RouleauG.A. Ruiz-MartínezJ. RuzC. RytenM. SadykovaD. ScholzS.W. SchreglmannS. SchulteC. SharmaM. ShashkinC. ShulmanJ.M. SierraM. SiitonenA. Simón-SánchezJ. SingletonA.B. Suarez-SanmartinE. TabaP. TaberneroC. TanM.X. TartariJ.P. Tejera-ParradoC. ToftM. TolosaE. TrabzuniD. ValldeoriolaF. van HiltenJ.J. Van Keuren-JensenK. Vargas-GonzálezL. VelaL. VivesF. WilliamsN. WoodN.W. ZharkinbekovaN. ZharmukhanovZ. ZholdybayevaE. ZimprichA. YlikotilaP. ShulmanL.M. von CoellnR. ReichS. SavittJ. AgeeM. AlipanahiB. AutonA. BellR.K. BrycK. ElsonS.L. FontanillasP. FurlotteN.A. HuberK.E. HicksB. JewettE.M. JiangY. KleinmanA. LinK-H. LittermanN.K. McCreightJ.C. McIntyreM.H. McManusK.F. MountainJ.L. NoblinE.S. NorthoverC.A.M. PittsS.J. PoznikG.D. SathirapongsasutiJ.F. SheltonJ.F. ShringarpureS. TianC. TungJ. VacicV. WangX. WilsonC.H. AndersonT. BentleyS. Dalrymple-AlfordJ. FowdarJ. GrattenJ. HallidayG. HendersA.K. HickieI. KassamI. KennedyM. KwokJ. LewisS. MellickG. MontgomeryG. PearsonJ. PitcherT. SidorenkoJ. SilburnP.A. VallergaC.L. VisscherP.M. WallaceL. WrayN.R. XueA. YangJ. ZhangF. Identification of novel risk loci, causal insights, and heritable risk for parkinson’s disease: A meta-analysis of genome-wide association studies.Lancet Neurol.201918121091110210.1016/S1474‑4422(19)30320‑531701892
    [Google Scholar]
  30. DoJ. McKinneyC. SharmaP. SidranskyE. Glucocerebrosidase and its relevance to parkinson disease.Mol. Neurodegener.20191413610.1186/s13024‑019‑0336‑231464647
    [Google Scholar]
  31. SidranskyE. NallsM.A. AaslyJ.O. Aharon-PeretzJ. AnnesiG. BarbosaE.R. Bar-ShiraA. BergD. BrasJ. BriceA. ChenC.M. ClarkL.N. CondroyerC. De MarcoE.V. DürrA. EblanM.J. FahnS. FarrerM.J. FungH.C. Gan-OrZ. GasserT. Gershoni-BaruchR. GiladiN. GriffithA. GurevichT. JanuarioC. KroppP. LangA.E. Lee-ChenG.J. LesageS. MarderK. MataI.F. MirelmanA. MitsuiJ. MizutaI. NicolettiG. OliveiraC. OttmanR. Orr-UrtregerA. PereiraL.V. QuattroneA. RogaevaE. RolfsA. RosenbaumH. RozenbergR. SamiiA. SamaddarT. SchulteC. SharmaM. SingletonA. SpitzM. TanE.K. TayebiN. TodaT. TroianoA.R. TsujiS. WittstockM. WolfsbergT.G. WuY.R. ZabetianC.P. ZhaoY. ZieglerS.G. Multicenter analysis of glucocerebrosidase mutations in parkinson’s disease.N. Engl. J. Med.2009361171651166110.1056/NEJMoa090128119846850
    [Google Scholar]
  32. AthaudaD. FoltynieT. Drug repurposing in parkinson’s disease.CNS Drugs201832874776110.1007/s40263‑018‑0548‑y30066310
    [Google Scholar]
  33. LevinJ. SingN. MelbourneS. MorganA. MarinerC. SpillantiniM.G. WegrzynowiczM. DalleyJ.W. LangerS. RyazanovS. LeonovA. GriesingerC. SchmidtF. WeckbeckerD. PragerK. MatthiasT. GieseA. Safety, tolerability and pharmacokinetics of the oligomer modulator anle138b with exposure levels sufficient for therapeutic efficacy in a murine Parkinson model: A randomised, double-blind, placebo-controlled phase 1a trial.EBioMedicine20228010402110.1016/j.ebiom.2022.10402135500536
    [Google Scholar]
  34. LeeY. MorrisonB.M. LiY. LengacherS. FarahM.H. HoffmanP.N. LiuY. TsingaliaA. JinL. ZhangP.W. PellerinL. MagistrettiP.J. RothsteinJ.D. Oligodendroglia metabolically support axons and contribute to neurodegeneration.Nature2012487740844344810.1038/nature1131422801498
    [Google Scholar]
  35. BehrendtG. BaerK. BuffoA. CurtisM.A. FaullR.L. ReesM.I. GötzM. DimouL. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men.Glia201361227328610.1002/glia.2243223090919
    [Google Scholar]
  36. UbhiK. InglisC. ManteM. PatrickC. AdameA. SpencerB. RockensteinE. MayV. WinklerJ. MasliahE. Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy.Exp. Neurol.2012234240541610.1016/j.expneurol.2012.01.00822281106
    [Google Scholar]
  37. UbhiK. RockensteinE. ManteM. InglisC. AdameA. PatrickC. WhitneyK. MasliahE. Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors.J. Neurosci.201030186236624610.1523/JNEUROSCI.0567‑10.201020445049
    [Google Scholar]
  38. DaiX. ChenJ. XuF. ZhaoJ. CaiW. SunZ. HitchensT.K. FoleyL.M. LeakR.K. ChenJ. HuX. TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia.J. Cereb. Blood Flow Metab.202040363965510.1177/0271678X1983079130834805
    [Google Scholar]
  39. ZonouziM. ScafidiJ. LiP. McEllinB. EdwardsJ. DupreeJ.L. HarveyL. SunD. HübnerC.A. Cull-CandyS.G. FarrantM. GalloV. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury.Nat. Neurosci.201518567468210.1038/nn.399025821912
    [Google Scholar]
  40. WelliverR.R. PolancoJ.J. SeidmanR.A. SinhaA.K. O’BaraM.A. KhakuZ.M. Santiago GonzálezD.A. NishiyamaA. WessJ. FeltriM.L. PaezP.M. SimF.J. Muscarinic receptor M3R signaling prevents efficient remyelination by human and mouse oligodendrocyte progenitor cells.J. Neurosci.201838316921693210.1523/JNEUROSCI.1862‑17.201829959237
    [Google Scholar]
  41. ZhuY. WendlerC.C. ShiO. RivkeesS.A. Diazoxide promotes oligodendrocyte differentiation in neonatal brain in normoxia and chronic sublethal hypoxia.Brain Res.20141586647210.1016/j.brainres.2014.08.04625157906
    [Google Scholar]
  42. ManousiA. GöttleP. ReicheL. CuiQ.L. HealyL.M. AkkermannR. GruchotJ. Schira-HeinenJ. AntelJ.P. HartungH.P. KüryP. Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence.EBioMedicine20216510327610.1016/j.ebiom.2021.10327633714029
    [Google Scholar]
  43. SteinerJ. Martins-de-SouzaD. SchiltzK. SarnyaiZ. WestphalS. IsermannB. DobrowolnyH. TurckC.W. BogertsB. BernsteinH.G. HorvathT.L. SchildL. KeilhoffG. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes.Front. Cell. Neurosci.2014838410.3389/fncel.2014.0038425477781
    [Google Scholar]
  44. BealM.F. OakesD. ShoulsonI. HenchcliffeC. GalpernW.R. HaasR. JuncosJ.L. NuttJ.G. VossT.S. RavinaB. ShultsC.M. HellesK. SnivelyV. LewM.F. GriebnerB. WattsA. GaoS. PourcherE. BondL. KompolitiK. AgarwalP. SiaC. JogM. ColeL. SultanaM. KurlanR. RichardI. DeeleyC. WatersC.H. FigueroaA. ArkunA. BrodskyM. OndoW.G. HunterC.B. Jimenez-ShahedJ. PalaoA. MiyasakiJ.M. SoJ. TetrudJ. ReysL. SmithK. SingerC. BlenkeA. RussellD.S. CottoC. FriedmanJ.H. LannonM. ZhangL. DrasbyE. KumarR. SubramanianT. FordD.S. GrimesD.A. CoteD. ConwayJ. SiderowfA.D. EvattM.L. SommerfeldB. LiebermanA.N. OkunM.S. RodriguezR.L. MerrittS. SwartzC.L. MartinW.R.W. KingP. StoverN. GuthrieS. WattsR.L. AhmedA. FernandezH.H. WintersA. MariZ. DawsonT.M. DunlopB. FeiginA.S. ShannonB. NirenbergM.J. OggM. ElliasS.A. ThomasC.A. FreiK. Bodis-WollnerI. GlazmanS. MayerT. HauserR.A. PahwaR. LanghammerA. RanawayaR. DerwentL. SethiK.D. FarrowB. PrakashR. LitvanI. RobinsonA. SahayA. GartnerM. HinsonV.K. MarkindS. PelikanM. PerlmutterJ.S. HartleinJ. MolhoE. EvansS. AdlerC.H. DuffyA. LindM. ElmerL. DavisK. SpearsJ. WilsonS. LeeheyM.A. HermanowiczN. NiswongerS. ShillH.A. ObradovS. RajputA. CowperM. LessigS. SongD. FontaineD. ZadikoffC. WilliamsK. BlindauerK.A. BergholteJ. PropsomC.S. StacyM.A. FieldJ. MihailaD. ChiltonM. UcE.Y. SierenJ. SimonD.K. KraicsL. SilverA. BoydJ.T. HamillR.W. IngvoldstadC. YoungJ. ThomasK. KostykS.K. WojcieszekJ. PfeifferR.F. PanissetM. BelandM. ReichS.G. CinesM. ZappalaN. RivestJ. ZweigR. LuminaL.P. HilliardC.L. GrillS. KellermannM. TuiteP. RolandelliS. KangU.J. YoungJ. RaoJ. CookM.M. SevertL. BoyarK. A randomized clinical trial of high-dosage coenzyme Q10 in early parkinson disease: No evidence of benefit.JAMA Neurol.201471554355210.1001/jamaneurol.2014.13124664227
    [Google Scholar]
  45. Isradipine versus placebo in early Parkinson disease: A randomized trial.Ann. Intern. Med.2020172959159810.7326/M19‑253432227247
    [Google Scholar]
  46. RabieiZ. SolatiK. Amini-KhoeiH. Phytotherapy in treatment of parkinson’s disease: A review.Pharm. Biol.201957135536210.1080/13880209.2019.161834431141426
    [Google Scholar]
  47. RaiS.N. YadavS.K. SinghD. SinghS.P. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model.J. Chem. Neuroanat.201671414910.1016/j.jchemneu.2015.12.00226686287
    [Google Scholar]
  48. YadavS.K. RaiS.N. SinghS.P. Mucuna pruriens shows neuroprotective effect by inhibiting apoptotic pathways of dopaminergic neurons in the paraquat mouse model of parkinsonism.Eur. J. Pharm. Med. Res.20163441451
    [Google Scholar]
  49. SathiyanarayananL. ArulmozhiS. Mucuna pruriens Linn.-A comprehensive review.Pharmacogn. Rev.200711
    [Google Scholar]
  50. AdepojuG.K.A. OdubenaO.O. Effect of Mucuna pruriens on some haematological and biochemical parameters.J. Med. Plants Res.2009327376
    [Google Scholar]
  51. YadavS.K. PrakashJ. ChouhanS. SinghS.P. Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced parkinsonian mouse model.Neurochem. Int.20136281039104710.1016/j.neuint.2013.03.01523562769
    [Google Scholar]
  52. BhaskarA. NithyaV. VidhyaV.G. Phytochemical evaluation by GC-MS and antihyperglycemic activity of Mucuna pruriens on streptozotocin induced diabetes in rats.J. Chem. Pharm. Res.201135689696
    [Google Scholar]
  53. NayakV.S. PaiK.S.R. NayakS.S. KumarN. BangeraH. Effect of Mucuna pruriens (Linn.) on global cerebral Ischemia-induced motor incoordination.Trop. J. Pharm. Res.20222061193119810.4314/tjpr.v20i6.14
    [Google Scholar]
  54. PoddigheS. De RoseF. MarottaR. RuffilliR. FantiM. SecciP.P. MostallinoM.C. SetzuM.D. ZunchedduM.A. ColluI. SollaP. MarrosuF. KastureS. AcquasE. LisciaA. Mucuna pruriens (Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of parkinson’s disease.PLoS One2014910e11080210.1371/journal.pone.011080225340511
    [Google Scholar]
  55. RaiS.N. BirlaH. SinghS.S. ZahraW. PatilR.R. JadhavJ.P. GeddaM.R. SinghS.P. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in parkinson’s disease through NF-κB/pAKT signaling pathways.Front. Aging Neurosci.2017942110.3389/fnagi.2017.0042129311905
    [Google Scholar]
  56. YadavS.K. RaiS.N. SinghS.P. Mucuna pruriens reduces inducible nitric oxide synthase expression in parkinsonian mice model.J. Chem. Neuroanat.20178011010.1016/j.jchemneu.2016.11.00927919828
    [Google Scholar]
  57. YadavS.K. PrakashJ. ChouhanS. WestfallS. VermaM. SinghT.D. SinghS.P. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model.Neurochem. Int.20146511310.1016/j.neuint.2013.12.00124333323
    [Google Scholar]
  58. OlsonK.E. GendelmanH.E. Immunomodulation as a neuroprotective and therapeutic strategy for parkinson’s disease.Curr. Opin. Pharmacol.201626879510.1016/j.coph.2015.10.00626571205
    [Google Scholar]
  59. TharakanB. DhanasekaranM. Mize-BergeJ. ManyamB.V. Anti‐parkinson botanical Mucuna pruriens prevents levodopa induced plasmid and genomic DNA damage.Phytother. Res.200721121124112610.1002/ptr.221917622977
    [Google Scholar]
  60. DhanasekaranM. TharakanB. ManyamB.V. Antiparkinson drug – Mucuna pruriens shows antioxidant and metal chelating activity.Phytother. Res.200822161110.1002/ptr.210918064727
    [Google Scholar]
  61. An alternative medicine treatment for parkinson’s disease: Results of a multicenter clinical trial.J. Altern. Complement. Med.19951324925510.1089/acm.1995.1.2499395621
    [Google Scholar]
  62. ManyamB.V. Paralysis agitans and levodopa in “Ayurveda”: Ancient Indian medical treatise.Mov. Disord.199051474810.1002/mds.8700501122404203
    [Google Scholar]
  63. KatzenschlagerR. EvansA. MansonA. PatsalosP.N. RatnarajN. WattH. TimmermannL. Van der GiessenR. LeesA.J. Mucuna pruriens in parkinson’s disease: A double blind clinical and pharmacological study.J. Neurol. Neurosurg. Psychiatry200475121672167710.1136/jnnp.2003.02876115548480
    [Google Scholar]
  64. CiliaR. LagunaJ. CassaniE. CeredaE. PozziN.G. IsaiasI.U. ContinM. BarichellaM. PezzoliG. Mucuna pruriens in parkinson disease.Neurology201789543243810.1212/WNL.000000000000417528679598
    [Google Scholar]
  65. CiliaR. LagunaJ. CassaniE. CeredaE. RaspiniB. BarichellaM. PezzoliG. Daily intake of Mucuna pruriens in advanced Parkinson’s disease: A 16-week, noninferiority, randomized, crossover, pilot study.Parkinsonism Relat. Disord.201849606610.1016/j.parkreldis.2018.01.01429352722
    [Google Scholar]
  66. LiY. ZhuangP. ShenB. ZhangY. ShenJ. Baicalin promotes neuronal differentiation of neural stem/progenitor cells through modulating p-stat3 and bHLH family protein expression.Brain Res.20121429364210.1016/j.brainres.2011.10.03022088824
    [Google Scholar]
  67. ChengY. HeG. MuX. ZhangT. LiX. HuJ. XuB. DuG. Neuroprotective effect of baicalein against MPTP neurotoxicity: Behavioral, biochemical and immunohistochemical profile.Neurosci. Lett.20084411162010.1016/j.neulet.2008.05.11618586394
    [Google Scholar]
  68. MuX. HeG. ChengY. LiX. XuB. DuG. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro.Pharmacol. Biochem. Behav.200992464264810.1016/j.pbb.2009.03.00819327378
    [Google Scholar]
  69. NaikS.R. PilgaonkarV.W. PandaV.S. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain.Phytother. Res.200620111013101610.1002/ptr.197616909446
    [Google Scholar]
  70. KuangS. YangL. RaoZ. ZhongZ. LiJ. ZhongH. DaiL. TangX. Effects of Ginkgo biloba extract on A53T α-synuclein transgenic mouse models of parkinson’s disease.Can. J. Neurol. Sci.201845218218710.1017/cjn.2017.26829506601
    [Google Scholar]
  71. Abdel-SalamO.M. SalemN.A. El-Sayed El-ShamarkaM. Al-Said AhmedN. Seid HusseinJ. El-KhyatZ.A. Cannabis-induced impairment of learning and memory: Effect of different nootropic drugs.EXCLI J.20131219321426417227
    [Google Scholar]
  72. Noor-E-Tabassum DasR. LamiM.S. ChakrabortyA.J. MitraS. TalleiT.E. IdroesR. MohamedA.A.R. HossainM.J. DhamaK. Mostafa-HedeabG. EmranT.B. Ginkgo biloba: A treasure of functional phytochemicals with multimedicinal applications.Evid. Based Complement. Alternat. Med.2022202213010.1155/2022/828881835265150
    [Google Scholar]
  73. MythriR.B. JagathaB. PradhanN. AndersenJ. BharathM.M.S. Mitochondrial complex I inhibition in parkinson’s disease: How can curcumin protect mitochondria?Antioxid. Redox Signal.20079339940810.1089/ars.2006.147917184173
    [Google Scholar]
  74. MythriR.B. HarishG. DubeyS.K. MisraK. Srinivas BharathM.M. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: Implications for Parkinson’s disease.Mol. Cell. Biochem.20113471-213514310.1007/s11010‑010‑0621‑420972609
    [Google Scholar]
  75. MythriR.B. BharathM.M. Curcumin: A potential neuroprotective agent in parkinson’s disease.Curr. Pharm. Des.2012181919910.2174/13816121279891899522211691
    [Google Scholar]
  76. JagathaB. MythriR.B. ValiS. BharathM.M.S. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for parkinson’s disease explained via in silico studies.Free Radic. Biol. Med.200844590791710.1016/j.freeradbiomed.2007.11.01118166164
    [Google Scholar]
  77. HarishG. VenkateshappaC. MythriR.B. DubeyS.K. MishraK. SinghN. ValiS. BharathM.M.S. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for parkinson’s disease.Bioorg. Med. Chem.20101872631263810.1016/j.bmc.2010.02.02920227282
    [Google Scholar]
  78. MarchianiA. RozzoC. FaddaA. DeloguG. RuzzaP. Curcumin and curcumin-like molecules: From spice to drugs.Curr. Med. Chem.201321220422210.2174/09298673210213120611581023590716
    [Google Scholar]
  79. AlladiP.A. MahadevanA. YashaT.C. RajuT.R. ShankarS.K. MuthaneU. Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: Relevance to lower incidence of parkinson’s disease.Neuroscience2009159123624510.1016/j.neuroscience.2008.11.05119135503
    [Google Scholar]
  80. WangM.S. BoddapatiS. EmadiS. SierksM.R. Curcumin reduces α-synuclein induced cytotoxicity in parkinson’s disease cell model.BMC Neurosci.20101115710.1186/1471‑2202‑11‑5720433710
    [Google Scholar]
  81. OjhaR.P. RastogiM. DeviB.P. AgrawalA. DubeyG.P. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of parkinson’s disease.J. Neuroimmune Pharmacol.20127360961810.1007/s11481‑012‑9363‑222527634
    [Google Scholar]
  82. PanJ. LiH. MaJ.F. TanY.Y. XiaoQ. DingJ.Q. ChenS.D. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of parkinson’s disease through suppressing mitochondria dysfunction.Transl. Neurodegener.2012111610.1186/2047‑9158‑1‑1623210631
    [Google Scholar]
  83. TripanichkulW. JaroensuppaperchE. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model.Int. J. Neurosci.2012122526327010.3109/00207454.2011.64876022176529
    [Google Scholar]
  84. BaumL. LamC.W.K. CheungS.K.K. KwokT. LuiV. TsohJ. LamL. LeungV. HuiE. NgC. WooJ. ChiuH.F.K. GogginsW.B. ZeeB.C.Y. ChengK.F. FongC.Y.S. WongA. MokH. ChowM.S.S. HoP.C. IpS.P. HoC.S. YuX.W. LaiC.Y.L. ChanM.H. SzetoS. ChanI.H.S. MokV. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with alzheimer disease.J. Clin. Psychopharmacol.200828111011310.1097/jcp.0b013e318160862c18204357
    [Google Scholar]
  85. RingmanJ.M. FrautschyS.A. TengE. BegumA.N. BardensJ. BeigiM. GylysK.H. BadmaevV. HeathD.D. ApostolovaL.G. PorterV. VanekZ. MarshallG.A. HellemannG. SugarC. MastermanD.L. MontineT.J. CummingsJ.L. ColeG.M. Oral curcumin for alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study.Alzheimers Res. Ther.2012454310.1186/alzrt14623107780
    [Google Scholar]
  86. SnitzB.E. O’MearaE.S. CarlsonM.C. ArnoldA.M. IvesD.G. RappS.R. SaxtonJ. LopezO.L. DunnL.O. SinkK.M. DeKoskyS.T. Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial.JAMA2009302242663267010.1001/jama.2009.191320040554
    [Google Scholar]
  87. GhazyE. RahdarA. BaraniM. KyzasG.Z. Nanomaterials for parkinson disease: Recent progress.J. Mol. Struct.2021123112969810.1016/j.molstruc.2020.129698
    [Google Scholar]
  88. SintovA.C. Velasco-AguirreC. Gallardo-ToledoE. ArayaE. KoganM.J. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier.Int. Rev. Neurobiol.201613019922710.1016/bs.irn.2016.06.00727678178
    [Google Scholar]
  89. CuencaA.G. JiangH. HochwaldS.N. DelanoM. CanceW.G. GrobmyerS.R. Emerging implications of nanotechnology on cancer diagnostics and therapeutics.Cancer2006107345946610.1002/cncr.2203516795065
    [Google Scholar]
  90. RazaviS. JahromiM. VatankhahE. SeyedebrahimiR. Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration.BMC Neurosci.20212215010.1186/s12868‑021‑00655‑y34384370
    [Google Scholar]
  91. CaiW. GaoT. HongH. SunJ. Applications of gold nanoparticles in cancer nanotechnology.Nanotechnol. Sci. Appl.20081173210.2147/NSA.S378824198458
    [Google Scholar]
  92. HuynhN.T. PassiraniC. SaulnierP. BenoîtJ.P. Lipid nanocapsules: A new platform for nanomedicine.Int. J. Pharm.2009379220120910.1016/j.ijpharm.2009.04.02619409468
    [Google Scholar]
  93. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.01124220497
    [Google Scholar]
  94. BatrakovaE.V. KimM.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery.J. Control. Release201521939640510.1016/j.jconrel.2015.07.03026241750
    [Google Scholar]
  95. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  96. KageyamaT. NakamuraM. MatsuoA. YamasakiY. TakakuraY. HashidaM. KanaiY. NaitoM. TsuruoT. MinatoN. ShimohamaS. The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier.Brain Res.20008791-211512110.1016/S0006‑8993(00)02758‑X11011012
    [Google Scholar]
  97. KulkarniA.D. VanjariY.H. SanchetiK.H. BelgamwarV.S. SuranaS.J. PardeshiC.V. Nanotechnology-mediated nose to brain drug delivery for Parkinson’s disease: A mini review.J. Drug Target.201523977578810.3109/1061186X.2015.102080925758751
    [Google Scholar]
  98. MdS. KhanR.A. MustafaG. ChuttaniK. BabootaS. SahniJ.K. AliJ. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model.Eur. J. Pharm. Sci.201348339340510.1016/j.ejps.2012.12.00723266466
    [Google Scholar]
  99. GendelmanH.E. AnantharamV. BronichT. GhaisasS. JinH. KanthasamyA.G. LiuX. McMillanJ. MosleyR.L. NarasimhanB. MallapragadaS.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases.Nanomedicine201511375176710.1016/j.nano.2014.12.01425645958
    [Google Scholar]
  100. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  101. NiuJ.M. ZhengZ.G. Effect of temperature on Fe3O4 magnetic nanoparticles prepared by coprecipitation method.Adv. Mat. Res.2014900172176
    [Google Scholar]
  102. KimD.H. KimT.W. Ultrahigh-luminosity white-light-emitting devices based on edge functionalized graphene quantum dots.Nano Energy20185119920510.1016/j.nanoen.2018.06.064
    [Google Scholar]
  103. BrynskikhA.M. ZhaoY. MosleyR.L. LiS. BoskaM.D. KlyachkoN.L. KabanovA.V. GendelmanH.E. BatrakovaE.V. Macrophage delivery of therapeutic nanozymes in a murine model of parkinson’s disease.Nanomedicine (Lond.)20105337939610.2217/nnm.10.720394532
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266314877241105051752
Loading
/content/journals/ctmc/10.2174/0115680266314877241105051752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test