Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

, commonly known as Guduchi, Giloy, or Amrita, has been a cornerstone of traditional medicine for centuries and is renowned for its diverse nutraceutical and medicinal potential. The plant exhibits immunomodulatory, antioxidant, anti-inflammatory, and anti-viral activities due to its rich array of bioactive compounds, including alkaloids, diterpenoid lactones, polysaccharides, and others. These properties make Giloy a promising candidate for a variety of therapeutic applications. Further, as oxidative damage contributes to chronic diseases by affecting essential biomolecules, the antioxidant phytochemicals found in counter the free radicals and offer significant health benefits. This comprehensive review delves into the health benefits and therapeutic efficacy of Giloy, with a particular focus on its mechanisms for mitigating stress and combating cancer. The preclinical and clinical studies have demonstrated Giloy’s ability to enhance antioxidant defences and induce apoptosis in cancerous cells. Additionally, it has shown potential in adjunct therapy to improve the quality of life for cancer patients by reducing the side effects associated with conventional cancer therapies. By exploring the multifaceted potential of in modern medicine, this review aims to bridge the gap between traditional knowledge and contemporary scientific insights by addressing the underutilization of ancient herbal remedies in evidence-based healthcare. It also discusses future research directions and probable applications of Giloy in clinical practice, highlighting the importance of this ancient remedy in the context of modern healthcare practices, especially in cancer and stress management.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266347636250505063601
2025-05-08
2025-12-22
Loading full text...

Full text loading...

References

  1. Global cancer observatory. International agency for research on cancer.Geneva, SwitzerlandWorld Health Organization202016
    [Google Scholar]
  2. RajpalV.R. KoulH.K. RainaS.N. Sampath KumarH.M. QaziG.N. Phytochemicals for human health: The emerging trends and prospects.Curr. Top. Med. Chem.2024244vvi10.2174/15680266240424022609414538745435
    [Google Scholar]
  3. ThakurR.K. RajpalV.R. ChaudharyM. SonkarA. RaoS.R. KaushalP. DubeyB.K. GoelS. RainaS.N. Bringing to light the preponderance and origin of spontaneous triploid cytotypes in medicinal Tinospora cordifolia: Implications for genetic improvement.Nucleus202366324526010.1007/s13237‑023‑00437‑3
    [Google Scholar]
  4. ThakurR.K. RajpalV.R. RainaS.N. KumarP. SonkarA. JoshiL. UPLC-DAD assisted phytochemical quantitation reveals a sex, ploidy and ecogeography specificity in the expression levels of selected secondary metabolites in medicinal Tinospora cordifolia: Implications for elites’ identification program.Curr. Top. Med. Chem.202020869870910.2174/156802662066620012410502731976836
    [Google Scholar]
  5. Herbal medicines: Global Strategic Business Repot.2023Available from: https://www.researchandmarkets.com/reports/5302363/herbal-medicines-global-strategic-business?srsltid=AfmBOor1LrBKRUc7IYrUys4QflAbhSikfeQhEK8EV2Ap5e9wW3fTI9q5
  6. ChaachouayN. ZidaneL. Plant-derived natural products: a source for drug discovery and development.Drugs and Drug Candidates20243118420710.3390/ddc3010011
    [Google Scholar]
  7. DissanayakeK. PereraW. PremasingheN. Immunomodulatory efficiency of Tinospora cordifolia against viral infections.World J. Pharm. Med. Res.2020652228
    [Google Scholar]
  8. RajuS. DasM. Medicinal plants industry in India: Challenges, opportunities and sustainability. Med Plants - Int J Phytomed.Relat. Ind.2024161114
    [Google Scholar]
  9. RajpalV.R. Sampath KumarH.M. KoulH.K. RainaS.N. QaziG.N. Phytochemicals for human health: The emerging trends and prospects, part-2.Curr. Top. Med. Chem.202424975575610.2174/15680266240924032500544238842097
    [Google Scholar]
  10. ArunachalamK. YangX. SanT.T. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases.J. Ethnopharmacol.202228311454010.1016/j.jep.2021.11454034509604
    [Google Scholar]
  11. AhsanR. MishraA. BadarB. OwaisM. MishraV. Therapeutic application, phytoactives and pharmacology of Tinospora cordifolia: An evocative review.Chin. J. Integr. Med.202329654955510.1007/s11655‑023‑3733‑237017881
    [Google Scholar]
  12. KumarM. HasanM. SharmaA. SuhagR. MaheshwariC. Radha ChandranD. SharmaK. DhumalS. SenapathyM. NatarajanK. PunniyamoorthyS. MohankumarP. DeyA. DeshmukhV. AnithaT. BalamuruganV. PandiselvamR. LorenzoJ.M. KennedyJ.F. Tinospora cordifolia (Willd.) Hook.f. & Thomson polysaccharides: A review on extraction, characterization, and bioactivities.Int. J. Biol. Macromol.202322946347510.1016/j.ijbiomac.2022.12.18136563821
    [Google Scholar]
  13. ThakurR.K. RajpalV.R. RaoS.R. SinghA. JoshiL. KaushalP. RainaS.N. Induction and evaluation of colchitetraploids of two species of Tinospora Miers, 1851.Comp. Cytogenet.202014221122910.3897/CompCytogen.v14i2.3339432509238
    [Google Scholar]
  14. SirsathK.D. VirD. SanapG. Potential role of tinospora cordifolia in pharmaceuticals.Int. J. Pharma Sci.2023111272281
    [Google Scholar]
  15. YatesC.R. BrunoE.J. YatesM.E.D. Tinospora Cordifolia : A review of its immunomodulatory properties.J. Diet. Suppl.202219227128510.1080/19390211.2021.187321433480818
    [Google Scholar]
  16. MalabadiRB SadiyaMR KolkarKP ChalannavarRK BaijnathH Tinospora cordifolia (Amruthballi): Medicinal plant with anticancer activity.Magna Scient. Adv. Biol. Pharm.202411200101910.30574/msabp.2024.11.2.0017
    [Google Scholar]
  17. KaurS. VermaH. KaurS. SinghS. ManthaA.K. DhimanM. Herbal remedies for improving cancer treatment through modulation of redox balance.Handbook of oxidative stress in cancer: Therapeutic aspects.SingaporeSpringer Nature Singapore202270972510.1007/978‑981‑16‑5422‑0_270
    [Google Scholar]
  18. RajpalV.R. SharmaS. SehgalD. SinghA. KumarA. VaishnaviS. TiwariM. BhallaH. GoelS. RainaS.N. A comprehensive account of SARS-CoV-2 genome structure, incurred mutations, lineages and COVID-19 vaccination program.Future Virol.202217968770610.2217/fvl‑2021‑027735747328
    [Google Scholar]
  19. PatilN.N. JadhavR.S. SangleP.A. SalunkheS. PatilR.C. SahaB. QureshiM.I. In-vitro antiviral activity evaluation of Indian medicinal plants against SARS-CoV-2.J. Pharm. Sci.2023121716
    [Google Scholar]
  20. KumarH.M.S. RajpalV.R. KoulH.K. RainaS.N. QaziG.N. Phytochemicals for human health: The emerging trends and prospects, part-3.Curr. Top. Med. Chem.202424121011101210.2174/15680266241224050609282439005060
    [Google Scholar]
  21. ChiS. SheG. HanD. WangW. LiuZ. LiuB. Genus Tinospora: Ethnopharmacology, phytochemistry, and pharmacology.Evid. Based Complement. Alternat. Med.201620161923259310.1155/2016/923259327648105
    [Google Scholar]
  22. GautamA. KaurH. KaurA. Tinospora cordifolia: A successful story from botanical background to pharmaceutical product.Res J Pharm Technol2020131156205630
    [Google Scholar]
  23. SharmaN. KumarA. SharmaP.R. QayumA. SinghS.K. DuttP. PaulS. GuptaV. VermaM.K. SattiN.K. VishwakarmaR. A new clerodane furano diterpene glycoside from Tinospora cordifolia triggers autophagy and apoptosis in HCT-116 colon cancer cells.J. Ethnopharmacol.201821129531010.1016/j.jep.2017.09.03428962889
    [Google Scholar]
  24. GomathiS. ManeemegalaiS. Phytochemical analysis and in vitro anti-oxidant activities of medicinal plants Cyperus rotundus, tinospora cordifolia and their formulation.Orient. J. Chem.202339371272010.13005/ojc/390322
    [Google Scholar]
  25. Sharifi-RadM. Anil KumarN.V. ZuccaP. VaroniE.M. DiniL. PanzariniE. RajkovicJ. Tsouh FokouP.V. AzziniE. PelusoI. Prakash MishraA. NigamM. El RayessY. BeyrouthyM.E. PolitoL. IritiM. MartinsN. MartorellM. DoceaA.O. SetzerW.N. CalinaD. ChoW.C. Sharifi-RadJ. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.0069432714204
    [Google Scholar]
  26. AruomaO.I. Free radicals, oxidative stress, and antioxidants in human health and disease.J. Am. Oil Chem. Soc.199875219921210.1007/s11746‑998‑0032‑932287334
    [Google Scholar]
  27. BhatiaS. ShuklaR. Venkata MadhuS. Kaur GambhirJ. Madhava PrabhuK. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy.Clin. Biochem.200336755756210.1016/S0009‑9120(03)00094‑814563450
    [Google Scholar]
  28. DhallaN.S. TemsahR.M. NetticadanT. Role of oxidative stress in cardiovascular diseases.J. Hypertens.200018665567310.1097/00004872‑200018060‑0000210872549
    [Google Scholar]
  29. KnektP. JarvinenR. ReunanenA. MaatelaJ. Flavonoid intake and coronary mortality in Finland: A cohort study.BMJ1996312702947848110.1136/bmj.312.7029.4788597679
    [Google Scholar]
  30. GurungR. Preliminary phytochemical screening, total phenol and flavonoid content of Mimosa rubicaulis and Reinwardita indica. Int. J. Pharm. Pharm. Sci.20201215458
    [Google Scholar]
  31. SainiA. KumarM. BhattS. SainiV. MalikA. Cancer causes and treatments.Int. J. Pharm. Sci. Res.202011731213134
    [Google Scholar]
  32. JiangC.H. SunT.L. XiangD.X. WeiS.S. LiW.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.).Front. Pharmacol.2018953010.3389/fphar.2018.0053029872398
    [Google Scholar]
  33. HouldsworthA. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants.Brain Commun.202361fcad35610.1093/braincomms/fcad35638214013
    [Google Scholar]
  34. GuptaA. GuptaP. BajpaiG. Tinospora cordifolia (Giloy): An insight on the multifarious pharmacological paradigms of a most promising medicinal ayurvedic herb.Heliyon20241042612510.1016/j.heliyon.2024.e2612538390130
    [Google Scholar]
  35. PalmieriA. ScapoliL. IapichinoA. MercoliniL. MandroneM. PoliF. GiannìA.B. BasergaC. MartinelliM. Berberine and Tinospora cordifolia exert a potential anticancer effect on colon cancer cells by acting on specific pathways.Int. J. Immunopathol. Pharmacol.201933205873841985556710.1177/205873841985556731663444
    [Google Scholar]
  36. SharmaU. BalaM. KumarN. SinghB. MunshiR.K. BhaleraoS. Immunomodulatory active compounds from Tinospora cordifolia. J. Ethnopharmacol.2012141391892610.1016/j.jep.2012.03.02722472109
    [Google Scholar]
  37. GuptaP.K. KulkarniS. Polysaccharide rich extract (PRE) from Tinospora cordifolia inhibits the intracellular survival of drug resistant strains of Mycobacterium tuberculosis in macrophages by nitric oxide induction.Tuberculosis2018113819010.1016/j.tube.2018.09.00530514517
    [Google Scholar]
  38. SachanS. DhamaK. LatheefS.K. Abdul SamadH. MariappanA.K. MunuswamyP. SinghR. SinghK.P. MalikY.S. SinghR.K. Immunomodulatory potential of Tinospora cordifolia and CpG ODN (TLR21 agonist) against the very virulent, infectious bursal disease virus in SPF chicks.Vaccines20197310610.3390/vaccines703010631487960
    [Google Scholar]
  39. PriyaT.S. SivaB. VemireddyS. BabuK.S. Bioactive constituents from Tinospora cordifolia (willd.): Isolation, synthesis and their immunomodulatory activity.Fitoterapia202417610598810.1016/j.fitote.2024.10598838703915
    [Google Scholar]
  40. LudasA. InduS. HindujaS. NirmalaA.K. RajalakshmiM. Antioxidant potential of polysaccharide isolated from methanolic extract of Tinospora cordifolia stem bark.Asian J. Pharm. Clin. Res.2018111044745110.22159/ajpcr.2018.v11i10.19439
    [Google Scholar]
  41. BouyahyaA. BakrimS. AboulaghrasS. El KadriK. AannizT. KhalidA. AbdallaA.N. AbdallahA.A. ArdiantoC. MingL.C. El OmariN. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress.Biomed. Pharmacother.202417411643210.1016/j.biopha.2024.11643238520868
    [Google Scholar]
  42. WuK. El ZowalatyA.E. SayinV.I. PapagiannakopoulosT. The pleiotropic functions of reactive oxygen species in cancer.Nat. Cancer20245338439910.1038/s43018‑024‑00738‑938531982
    [Google Scholar]
  43. Bharathi PriyaL. BalasubramanianB. ShanmugarajB. SubbiahS. HuR-M. HuangC-Y. BaskaranR. Therapeutic potential of the medicinal plant Tinospora cordifolia–minireview.Phyton20229161129114010.32604/phyton.2022.017707
    [Google Scholar]
  44. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  45. SunD. LiX. NieS. LiuJ. WangS. Disorders of cancer metabolism: The therapeutic potential of cannabinoids.Biomed. Pharmacother.202315711399310.1016/j.biopha.2022.11399336379120
    [Google Scholar]
  46. Gilgun-SherkiY. MelamedE. OffenD. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier.Neuropharmacology200140895997510.1016/S0028‑3908(01)00019‑311406187
    [Google Scholar]
  47. ReshiZ.A. AhmadW. LukatkinA.S. JavedS.B. From Nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches.Metabolites202313889510.3390/metabo1308089537623839
    [Google Scholar]
  48. RuanY. YuanP.P. LiP.Y. ChenY. FuY. GaoL.Y. WeiY.X. ZhengY.J. LiS.F. FengW.S. ZhengX.K. Tingli Dazao Xiefei Decoction ameliorates asthma in vivo and in vitro from lung to intestine by modifying NO–CO metabolic disorder mediated inflammation, immune imbalance, cellular barrier damage, oxidative stress and intestinal bacterial disorders.J. Ethnopharmacol.202331311650310.1016/j.jep.2023.11650337116727
    [Google Scholar]
  49. HuY. ZhangQ. BaiX. MenL. MaJ. LiD. XuM. WeiQ. ChenR. WangD. YinX. HuT. XieT. Screening and modification of (+)-germacrene A synthase for the production of the anti-tumor drug (−)-β-elemene in engineered Saccharomyces cerevisiae. Int. J. Biol. Macromol.2024279Pt 413545510.1016/j.ijbiomac.2024.13545539260653
    [Google Scholar]
  50. JomovaK. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants.Arch. Toxicol.20249851323136710.1007/s00204‑024‑03696‑438483584
    [Google Scholar]
  51. PengC. WangQ. XuW. WangX. ZhengQ. LiangX. DongX. LiF. PengL. A bifunctional endolytic alginate lyase with two different lyase catalytic domains from Vibrio sp. H204.Front. Microbiol.202415150959910.3389/fmicb.2024.150959939735187
    [Google Scholar]
  52. HuE. LiZ. LiT. YangX. DingR. JiangH. SuH. ChengM. YuZ. LiH. TangT. WangY. A novel microbial and hepatic biotransformation-integrated network pharmacology strategy explores the therapeutic mechanisms of bioactive herbal products in neurological diseases: The effects of Astragaloside IV on intracerebral hemorrhage as an example.Chin. Med.20231814010.1186/s13020‑023‑00745‑537069580
    [Google Scholar]
  53. MuscoloA. MariateresaO. GiulioT. MariateresaR. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases.Int. J. Mol. Sci.2024256326410.3390/ijms2506326438542238
    [Google Scholar]
  54. ZhangY.J. DengG.F. XuX.R. WuS. LiS. LiH.B. Chemical components and bioactivities of cape gooseberry (Physalis peruviana).Int J Food Nutr Saf2013311524
    [Google Scholar]
  55. GiampieriF. TulipaniS. Alvarez-SuarezJ.M. QuilesJ.L. MezzettiB. BattinoM. The strawberry: Composition, nutritional quality, and impact on human health.Nutrition201228191910.1016/j.nut.2011.08.00922153122
    [Google Scholar]
  56. CostaA.G.V. Garcia-DiazD.F. JimenezP. SilvaP.I. Bioactive compounds and health benefits of exotic tropical red–black berries.J. Funct. Foods20135253954910.1016/j.jff.2013.01.029
    [Google Scholar]
  57. CogoS.L.P. ChavesF.C. SchirmerM.A. ZambiaziR.C. NoraL. SilvaJ.A. RombaldiC.V. Low soil water content during growth contributes to preservation of green colour and bioactive compounds of cold-stored broccoli (Brassica oleraceae L.) florets.Postharvest Biol. Technol.201160215816310.1016/j.postharvbio.2010.12.008
    [Google Scholar]
  58. LemoineM.L. ChavesA.R. MartínezG.A. Influence of combined hot air and UV-C treatment on the antioxidant system of minimally processed broccoli (Brassica oleracea L. var. Italica).Lebensm. Wiss. Technol.20104391313131910.1016/j.lwt.2010.05.011
    [Google Scholar]
  59. NgZ.X. ChaiJ.W. KuppusamyU.R. Customized cooking method improves total antioxidant activity in selected vegetables.Int. J. Food Sci. Nutr.201162215816310.3109/09637486.2010.52693121250903
    [Google Scholar]
  60. GeorgievaS. ChristovaBagdassarianV. AtanassovaM. Comparative evaluation of the polyphenol composition and antioxidant capacity of propolis and Echinacea purpurea. J. Exp. Integr. Med.201441515610.5455/jeim.050913.or.089
    [Google Scholar]
  61. PrasadK.N. YangB. DongX. JiangG. ZhangH. XieH. JiangY. Flavonoid contents and antioxidant activities from Cinnamomum species.Innov. Food Sci. Emerg. Technol.200910462763210.1016/j.ifset.2009.05.009
    [Google Scholar]
  62. MathewS. AbrahamT.E. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models.Food Chem.200694452052810.1016/j.foodchem.2004.11.043
    [Google Scholar]
  63. ChericoniS. PrietoJ.M. IacopiniP. CioniP. MorelliI. In vitro activity of the essential oil of Cinnamomum zeylanicum and eugenol in peroxynitrite-induced oxidative processes.J. Agric. Food Chem.200553124762476510.1021/jf050183e15941312
    [Google Scholar]
  64. XuZ. HowardL.R., Eds. Analysis of antioxidant-rich phytochemicals.Hoboken, New Jersey20121910.1002/9781118229378
    [Google Scholar]
  65. JuQ. WuX. LiB. PengH. LippkeS. GanY. Regulation of craving training to support healthy food choices under stress: A randomized control trial employing the hierarchical drift‐diffusion model.App. Psychol. Health Well. Being.20241631810.1111/aphw.12522
    [Google Scholar]
  66. PetareA.U. SalveB.A. TripathiR.K. RautA. RegeN. Effect of Tinospora cordifolia on physical and cardiovascular performance induced by physical stress in healthy human volunteers.Ayu201536326527010.4103/0974‑8520.18275127313412
    [Google Scholar]
  67. NatheS.B. Guduchi (Tinospora cordifolia): A review of its phytochemical composition and medicinal properties.World J. Pharm. Res.20231211305313
    [Google Scholar]
  68. DasK. Neuroprotective effect of isolated palmatine from Tinospora cordifolia(Thunb.) Miers leaves in aluminium chloride induced oxidative stress.Thaiphesatchasan202447113
    [Google Scholar]
  69. Imtiyaj KhanM. Sri HarshaP.S.C. GiridharP. RavishankarG.A. Pigment identification, antioxidant activity, and nutrient composition of Tinospora cordifolia (willd.) Miers ex Hook. f & Thoms fruit.Int. J. Food Sci. Nutr.201162323924910.3109/09637486.2010.52906921155657
    [Google Scholar]
  70. BhawyaD. AnilakumarK. In vitro antioxidant potency of Tinospora cordifolia(gulancha) in sequential extracts.Int. J. Pharm. Biol. Arch.201015448456
    [Google Scholar]
  71. SharmaA. SagguS.K. MishraR. KaurG. Anti-brain cancer activity of chloroform and hexane extracts of Tinospora cordifolia Miers: An in vitro perspective.Ann. Neurosci.2019261102010.5214/ans.0972.7531.26010431975767
    [Google Scholar]
  72. MayaN.A. DewanJ.F. RashidN. UddinM.A. TabassumH. Protective and curative effects of ethanol extract of Tinospora Cordifolia on Gentamicin-induced Nephrotoxicity in Rats.Mymensingh Med. J.202231243744235383764
    [Google Scholar]
  73. SivakumarV. Dhana RajanM.S. Antioxidant effect of Tinospora cordifolia extract in alloxan-induced diabetic rats.Indian J. Pharm. Sci.201072679579810.4103/0250‑474X.8460021969757
    [Google Scholar]
  74. SharmaV. GuptaR. Ameliorative effects of tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-B 1 in mice kidney.Toxicol. Int.2011182949810.4103/0971‑6580.8425921976812
    [Google Scholar]
  75. BanerjeeA MajiB MukherjeeS ChaudhuriK SealT In vitro antidiabetic and anti-oxidant activities of methanol extract of Tinospora sinensis.J. Appl. Biol. Biotechnol.201753061067
    [Google Scholar]
  76. JimohF.O. AdedapoA.A. AfolayanA.J. Comparison of the nutritive value, antioxidant and antibacterial activities of Sonchus asper and Sonchus oleraceus. Rec. Nat. Prod.2011512942
    [Google Scholar]
  77. PourmoradF. HosseinimehrS.J. ShahabimajdN. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants.Afr. J. Biotechnol.200651119
    [Google Scholar]
  78. HuE. LiT. LiZ. SuH. YanQ. WangL. LiH. ZhangW. TangT. WangY. Metabolomics reveals the effects of hydroxysafflor yellow A on neurogenesis and axon regeneration after experimental traumatic brain injury.Pharm. Biol.20236111054106410.1080/13880209.2023.222937937416997
    [Google Scholar]
  79. UpadhyayN. GanieS.A. AgnihotriR.K. SharmaR. Free radical scavenging activity of Tinospora cordifolia (Willd.) Miers.J. Pharmacogn. Phytochem.2014326369
    [Google Scholar]
  80. JainS. SherlekarB. BarikR. Evaluation of antioxidant potential of Tinospora cordifolia and Tinospora sinensis. Int. J. Pharm. Sci. Res.2010111122
    [Google Scholar]
  81. SinghR. PatidarM. Comparative antioxidant activity of aqueous extract o f Camellia sinensis and Tinospora cordifolia. Asian J Pharm Educat Res2017635559
    [Google Scholar]
  82. ChoudhryN. SinghS. SiddiquiM.B. KhatoonS. Impact of seasons and dioecy on therapeutic phytoconstituents of Tinospora cordifolia, a Rasayana drug.BioMed Res. Int.20142014190213825177701
    [Google Scholar]
  83. SaralaM. VeluV. AnandharamakrishnanC. SinghR.P. Spray drying of Tinospora cordifolia leaf and stem extract and evaluation of antioxidant activity.J. Food Sci. Technol.201249111912210.1007/s13197‑011‑0364‑623572835
    [Google Scholar]
  84. TyagiP. ChauhanA.K. SinghS.N. Sensory acceptability of value added cookies incorporated with Tinospora cordifolia (TC) stem powder; improvement in nutritional properties and antioxidant potential.J. Food Sci. Technol.20205782934294010.1007/s13197‑020‑04325‑532612299
    [Google Scholar]
  85. UpadhyayG. TewariL.M. TewariG. ChopraN. PandeyN.C. UpadhyayS.K. GahtoriR. Evaluation of antioxidant potential of stem and leaf extracts of Himalayan Tinospora cordifolia Hook. f. & Thomson.Open Bioactive Compd. J.2021912810.2174/1874847302109010002
    [Google Scholar]
  86. ManiD. KaushikA. HusainA. AwasthiH. SinghD.P. KhanR. Antioxidant and hepatoprotective potential of Swaras and Hima extracts of Tinospora cordifolia and Boerhavia diffusa in Swiss albino mice.Pharmacogn. Mag.2017135165810.4103/pm.pm_448_1629142429
    [Google Scholar]
  87. XavierA.R. DeepanchakravarthiD. BalrajM. In vitro antioxidant study of extracts of Tinospora cordifolia (Willd.) hook & Thoms.Int. J. Pharm. Pharm. Res.2018124115121
    [Google Scholar]
  88. DevkarS. DeshmukhS. PatilS. KoliS. KhochageP. ChouguleN. All rounder of ayurveda-Tinospora Cordifolia. Int. J. Pharma Sci.2023112580598
    [Google Scholar]
  89. RameshV. JayaprakashR. SridharM.P. SasikalaC. Antioxidant activity of ethanolic extract of Tinospora cordifolia on N-nitrosodiethylamine (diethylnitrosamine) induced liver cancer in male Wister albino rats.J. Pharm. Bioallied Sci.20157540.(Suppl. 1)10.4103/0975‑7406.15579126015745
    [Google Scholar]
  90. SubramanianM. ChintalwarG.J. ChattopadhyayS. Antioxidant properties of a Tinospora cordifolia polysaccharide against iron-mediated lipid damage and γ-ray induced protein damage.Redox Rep.20027313714310.1179/13510000212500037012189043
    [Google Scholar]
  91. ReddiK.K. TetaliS.D. Dry leaf extracts of Tinospora cordifolia (Willd.) Miers attenuate oxidative stress and inflammatory condition in human monocytic (THP-1) cells.Phytomedicine20196115283110.1016/j.phymed.2019.15283131035042
    [Google Scholar]
  92. Rafat HusainS. CillardJ. CillardP. Hydroxyl radical scavenging activity of flavonoids.Phytochemistry19872692489249110.1016/S0031‑9422(00)83860‑1
    [Google Scholar]
  93. PrasadK.N. DivakarS. ShivamurthyG.R. AradhyaS.M. Isolation of a free radical‐scavenging antioxidant from water spinach ( Ipomoea aquatica Forsk).J. Sci. Food Agric.20058591461146810.1002/jsfa.2125
    [Google Scholar]
  94. PremanathR. LakshmideviN. Studies on anti-oxidant activity of Tinospora cordifolia (Miers.) leaves using in vitro models.J. Am. Sci.2010610736743
    [Google Scholar]
  95. PathakP. VyasM. VyasH. NariaM. Rasayana effect of Guduchi Churna on the life span of Drosophila melanogaster. Ayu2016371677010.4103/ayu.AYU_11_1628827958
    [Google Scholar]
  96. CorzoL. Fernández-NovoaL. CarreraI. MartínezO. RodríguezS. AlejoR. CacabelosR. Nutrition, health, and disease: Role of selected marine and vegetal nutraceuticals.Nutrients202012374710.3390/nu1203074732168971
    [Google Scholar]
  97. JagetiaG.C. RaoS.K. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice.Biol. Pharm. Bull.200629346046610.1248/bpb.29.46016508146
    [Google Scholar]
  98. PandeyM. VermaR.K. SarafS.A. Nutraceuticals: New era of medicine and health.Asian J. Pharm. Clin. Res.2010311115
    [Google Scholar]
  99. ThippeswamyG. SheelaM.L. SalimathB.P. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-κβ and its DNA binding activity.Eur. J. Pharmacol.20085882-314115010.1016/j.ejphar.2008.04.02718513715
    [Google Scholar]
  100. AranhaI. ClementF. VenkateshY.P. Immunostimulatory properties of the major protein from the stem of the Ayurvedic medicinal herb, guduchi (Tinospora cordifolia).J. Ethnopharmacol.2012139236637210.1016/j.jep.2011.11.01322119223
    [Google Scholar]
  101. NairP.K.R. MelnickS.J. RamachandranR. EscalonE. RamachandranC. Mechanism of macrophage activation by (1,4)-α-d-glucan isolated from Tinospora cordifolia. Int. Immunopharmacol.20066121815182410.1016/j.intimp.2006.07.02817052672
    [Google Scholar]
  102. ChintalwarG. JainA. SipahimalaniA. BanerjiA. SumariwallaP. RamakrishnanR. SainisK. An immunologically active arabinogalactan from Tinospora cordifolia. Phytochemistry19995261089109310.1016/S0031‑9422(99)00386‑610643671
    [Google Scholar]
  103. DesaiV.R. RamkrishnanR. ChintalwarG.J. SainisK.B. G1-4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock.Int. Immunopharmacol.20077101375138610.1016/j.intimp.2007.06.00417673153
    [Google Scholar]
  104. GuptaP.K. RajanM.G.R. KulkarniS. Activation of murine macrophages by G1-4A, a polysaccharide from Tinospora cordifolia, in TLR4/MyD88 dependent manner.Int. Immunopharmacol.20175016817710.1016/j.intimp.2017.06.02528667885
    [Google Scholar]
  105. SohniY.R. BhattR.M. Activity of a crude extract formulation in experimental hepatic amoebiasis and in immunomodulation studies.J. Ethnopharmacol.1996542-311912410.1016/S0378‑8741(96)01457‑28953425
    [Google Scholar]
  106. RaghuR. SharmaD. RamakrishnanR. KhanamS. ChintalwarG.J. SainisK.B. Molecular events in the activation of B cells and macrophages by a non-microbial TLR4 agonist, G1-4A from Tinospora cordifolia. Immunol. Lett.20091231607110.1016/j.imlet.2009.02.00519428553
    [Google Scholar]
  107. AherV.D. WahiA. Pharmacological study of Tinospora cordifolia as an immunomodulator.Int. J. Curr. Pharm. Res.2010245254
    [Google Scholar]
  108. AlsuhaibaniS. KhanM.A. Immune‐stimulatory and therapeutic activity of Tinospora cordifolia: Double‐edged sword against salmonellosis.J. Immunol. Res.201720171910.1155/2017/178780329318160
    [Google Scholar]
  109. BalaM. PratapK. VermaP.K. SinghB. PadwadY. Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC.J. Ethnopharmacol.201517513113710.1016/j.jep.2015.08.00126253577
    [Google Scholar]
  110. DeviP. A review on Tinospora cordifolia: As an Immunomodulating agent.Himal J. Health Sci.202161410.22270/hjhs.v6i1.88
    [Google Scholar]
  111. HaqueM.A. JantanI. Abbas BukhariS.N. Tinospora species: An overview of their modulating effects on the immune system.J. Ethnopharmacol.2017207678510.1016/j.jep.2017.06.01328629816
    [Google Scholar]
  112. SinghS.S. PandeyS.C. SrivastavaS. GuptaV.S. PatroB. GhoshA.C. Chemistry and medicinal properties of Tinospora cordifolia (Guduchi).Indian J. Pharmacol.20033528391
    [Google Scholar]
  113. Mainzen PrinceP.S. PadmanabhanM. MenonV.P. Restoration of antioxidant defence by ethanolic Tinospora cordifolia root extract in alloxan‐induced diabetic liver and kidney.Phytother. Res.200418978578710.1002/ptr.156715478189
    [Google Scholar]
  114. RachanaS.B. BirlaH. TiwariA. Recent advancement on phytochemical and medicinal properties of Tinospora cordifolia: An Indian medicinal plant.Neuroquantology2022201237533778
    [Google Scholar]
  115. GhoshS. SahaS. Tinospora cordifolia: One plant, many roles.Anc. Sci. Life201231415115910.4103/0257‑7941.10734423661861
    [Google Scholar]
  116. DasS. G1-4A, an arabinogalactan polysaccharide derived from Tinospora cordifolia (Thunb.) Miers: A natural immunomodulator.Tradit. Med. Res.2022754210.53388/TMR20220929001
    [Google Scholar]
  117. PandeyV.K. ShankarB.S. SainisK.B. G1-4 A, an arabinogalactan polysaccharide from Tinospora cordifolia increases dendritic cell immunogenicity in a murine lymphoma model.Int. Immunopharmacol.201214464164910.1016/j.intimp.2012.09.02023079132
    [Google Scholar]
  118. SharmaM.E. JoshiS.U. Comparison of anti-oxidant activity of Andrographis paniculata and Tinospora cordifolia leaves.J Curr Chem Pharm Sc20111118
    [Google Scholar]
  119. VermaD.K. GK. KumarP. El-ShazlyM. Unmasking the many faces of Giloy (Tinospora cordifolia L.): A fresh look on its phytochemical and medicinal properties.Curr. Pharm. Des.202127222571258110.2174/138161282666620062511153032586250
    [Google Scholar]
  120. DhanasekaranM. BaskarA.A. IgnacimuthuS. AgastianP. DuraipandiyanV. Chemopreventive potential of Epoxy clerodane diterpene from Tinospora cordifolia against diethylnitrosamine-induced hepatocellular carcinoma.Invest. New Drugs200927434735510.1007/s10637‑008‑9181‑918853103
    [Google Scholar]
  121. ZhangD. SongJ. JingZ. QinH. WuY. ZhouJ. ZangX. Stimulus responsive nanocarrier for enhanced antitumor responses against hepatocellular carcinoma.Int. J. Nanomedicine202419133391335510.2147/IJN.S48646539679249
    [Google Scholar]
  122. UpadhyayaR. PandeyR.P. SharmaV. Verma AnitaK. Assessment of the multifaceted immunomodulatory potential of the aqueous extract of Tinospora cordifolia. Res J Chem Sci2011167179
    [Google Scholar]
  123. PushpP. SharmaN. JosephG.S. SinghR.P. Antioxidant activity and detection of (−)epicatechin in the methanolic extract of stem of Tinospora cordifolia. J. Food Sci. Technol.201350356757210.1007/s13197‑011‑0354‑824425954
    [Google Scholar]
  124. NamdevP. GuptaR.K. Herbal green tea formulation using Withania somnifera stems, Terminalia arjuna bark, Cinnamon bark and Tinospora cordifolia stems and nutritional & phytochemical analysis.J. Pharmacogn. Phytochem.201542282291
    [Google Scholar]
  125. JacobJ. KumarP. Ayurvedic herb, Tinospora cordifolia: Validation of anti-inflammatory and immunomodulatory activity by effect on inflammatory mediators, TNF-α and lipoxygenase isozymes.JPRBioMedRx Int J201319861864
    [Google Scholar]
  126. JennyJ. Dihydroxy berberine from Tinospora cordifolia: In silico evidences for the mechanism of anti-inflammatory action through dual inhibition of Lipoxygenase and Cyclooxygenase.Indian J. Biochem. Biophys.2021583244252
    [Google Scholar]
  127. AliH. DixitS. Extraction optimization of Tinospora cordifolia and assessment of the anticancer activity of its alkaloid palmatine.Scient. World J.20132013137621610.1155/2013/37621624379740
    [Google Scholar]
  128. AnsariJ.A. RastogiN. AhmadM.K. MahdiA.A. KhanA.R. ThakurR. SrivastavaV.K. MishraD.P. FatimaN. KhanH.J. WaseemM. ROS mediated pro-apoptotic effects of Tinospora cordifolia on breast cancer cells.Front. Biosci.2017918910027814592
    [Google Scholar]
  129. LudasA. InduS. HindujaS. NirmalaA.K. RajalakshmiM. Anti-cancer potential of polysaccharide isolated from methanolic extract of Tinospora cordifolia stem bark.Int. J. Pharm. Pharm. Sci.2019115434710.22159/ijpps.2019v11i5.19756
    [Google Scholar]
  130. GhateN.B. ChaudhuriD.I. MandalN.R. In vitro assessment of Tinospora cordifolia stem for its antioxidant, free radical scavenging and DNA protective potentials.Int J Pharm Bio Sci201341373388
    [Google Scholar]
  131. AhmadR. Anticancer potential of medicinal plants Withania somnifera, Tinospora cordifolia and Curcuma longa: A review.World Res. J. Med. Aromat Plant20153122789863
    [Google Scholar]
  132. AniqaA. KaurS. SadwalS. A review on the protective role of selected Ayurveda herbs against skin cancer.J. Drug Res. Ayurved. Sci.20238131810.4103/jdras.jdras_45_22
    [Google Scholar]
  133. KrishnakumariS. AmudhaM. Assessment of antioxidant potential of T. cordifolia (Stem extract) as a therapeutic strategy.Int. J. Curr. Res.201683682336827
    [Google Scholar]
  134. Sri DeviM. ChokkalingamP. HariR. P Muralidharan Analeptic efficacy of Tinospora cordifolia ethanolic leaf extract and its loaded Phytoniosome on enzymatic and non-enzymatic antioxidants in a rodent model of Polycystic ovary syndrome.Pharmacol. Res. Mod. Chin. Med.2023710025610.1016/j.prmcm.2023.100256
    [Google Scholar]
  135. GuptaP.K. ChakrabortyP. KumarS. SinghP.K. RajanM.G.R. SainisK.B. KulkarniS. G1-4A, a polysaccharide from Tinospora cordifolia inhibits the survival of Mycobacterium tuberculosis by modulating host immune responses in TLR4 dependent manner.PLoS One2016115015472510.1371/journal.pone.015472527148868
    [Google Scholar]
  136. BhattN. SharmaN. Medicinal importance of tinospora (tinospora cordifolia).Canad. J. Clin. Nutrit.2020819511210.14206/canad.j.clin.nutr.2020.01.07
    [Google Scholar]
  137. SrivastavaA.K. SinghV.K. Tinospora cordifolia (Giloy): A magical shrub.Asian J Adv Med Sci20212093101
    [Google Scholar]
  138. AkterR. RahmanM.R. AhmedZ.S. AfroseA. Plausibility of natural immunomodulators in the treatment of COVID-19–A comprehensive analysis and future recommendations.Heliyon2023961747810.1016/j.heliyon.2023.e1747837366526
    [Google Scholar]
  139. ThakkarS.S. ShelatF. ThakorP. Magical bullets from an indigenous Indian medicinal plant Tinospora cordifolia: An in silico approach for the antidote of SARS-CoV-2.Egypt. J. Petrol.2021301536610.1016/j.ejpe.2021.02.005
    [Google Scholar]
  140. SarkarA. MukherjeeS. SarkarD. ThakurS. NandyS. Molecular docking analysis of phytochemicals from tinospora cordifolia as potential inhibitor against SARS CoV- 2.Int. J. Res. Appl. Sci. Eng. Technol.202311143944210.22214/ijraset.2023.48592
    [Google Scholar]
  141. LiW. LiuX. LiuZ. XingQ. LiuR. WuQ. HuY. ZhangJ. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: A review.Front. Pharmacol.202415141640310.3389/fphar.2024.141640339021834
    [Google Scholar]
  142. DaiJ. GaoJ. DongH. Prognostic relevance and validation of ARPC1A in the progression of low-grade glioma.Aging20241614111621118410.18632/aging.20595239012280
    [Google Scholar]
  143. DarshaneP. PanditA. Ancient Indian and contemporary dietary factors to plausibly reduce chemotherapy induced leukopenia (CIL): A Comprehensive & Narrative Review.Int. J. Curr. Med. Pharm. Res.202397378385
    [Google Scholar]
  144. MasilamaniS.D. ChokkalingamP. HariR. Characterization, cytotoxicity and anti-oxidant studies of phytoniosome loaded with ethanolic leaf extract of tinospora cordifolia. Avicenna J. Med. Biotechnol.202315319620210.18502/ajmb.v15i3.1293037538243
    [Google Scholar]
  145. RawatK. SyedaS. ShrivastavaA. A novel role of Tinospora cordifolia in amelioration of cancer-induced systemic deterioration by taming neutrophil infiltration and hyperactivation.Phytomedicine202310815448810.1016/j.phymed.2022.15448836240606
    [Google Scholar]
  146. BalkrishnaA. DevR. KumarS. VarshneyA. Coronil effectively inhibits the interaction of clinically relevant Omicron mutants of SARS-CoV-2 spike proteins with human ACE2 receptor.Phytomed. Plus20255110070510.1016/j.phyplu.2024.100705
    [Google Scholar]
  147. MaruS. BelemkarS. Nurturing wellness: Development and evaluation of a novel herbal formulation with immunomodulatory activity.Pharmacogn. Mag.20250973129624131134510.1177/09731296241311345
    [Google Scholar]
  148. ZhaoY. YeX. XiongZ. IhsanA. AresI. MartínezM. Lopez-TorresB. Martínez-LarrañagaM.R. AnadónA. WangX. MartínezM.A. Cancer metabolism: The role of ROS in DNA damage and induction of apoptosis in cancer cells.Metabolites202313779610.3390/metabo1307079637512503
    [Google Scholar]
  149. GroverP. ThakurK. BhardwajM. MehtaL. RainaS.N. RajpalV.R. Phytotherapeutics in cancer: From potential drug candidates to clinical translation.Curr. Top. Med. Chem.202424121050107410.2174/011568026628251823123107531138279745
    [Google Scholar]
  150. MaycotteP. Sarmiento-SalinasF.L. García-MirandaA. Ovando-OvandoC.I. Robledo-CadenaD.X. Hernández-EsquivelL. Jasso-ChávezR. Marín-HernándezA. Metabolic and oxidative stress management heterogeneity in a panel of breast cancer cell lines.Metabolites202414843510.3390/metabo1408043539195531
    [Google Scholar]
  151. DongQ. JiangZ. Platinum–iron nanoparticles for oxygen-enhanced sonodynamic tumor cell suppression.Inorganics2024121233110.3390/inorganics12120331
    [Google Scholar]
  152. SinghR.P. BanerjeeS. KumarP.V.S. RaveeshaK.A. RaoA.R. Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice.Phytomedicine2006131-2748410.1016/j.phymed.2004.02.01316360936
    [Google Scholar]
  153. MishraR. ManchandaS. GuptaM. KaurT. SainiV. SharmaA. KaurG. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats.Sci. Rep.2016612556410.1038/srep2556427146164
    [Google Scholar]
  154. BhakshuLM YadavPR RatnamKV PanditaA PanditaD MurthyKS Tinospora cordifolia (Thunb.) Miers.Pot. Antican. Med. Plants2024203222
    [Google Scholar]
  155. MishraR. KaurG. Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas.PLoS One20138107876410.1371/journal.pone.007876424205314
    [Google Scholar]
  156. MishraR. KaurG. Tinospora cordifolia induces differentiation and senescence pathways in neuroblastoma cells.Mol. Neurobiol.201552171973310.1007/s12035‑014‑8892‑525280667
    [Google Scholar]
  157. MohanM.R. Indian medicinal plants used as immunomodulatory agents: A review.Int. J. Green Pharm.2019130419
    [Google Scholar]
  158. PatanapongpibulM. ChenQ.H. Immune modulation of Asian folk herbal medicines and related chemical components for cancer management.Curr. Med. Chem.201926173042306710.2174/092986732466617070511264428685684
    [Google Scholar]
  159. JagetiaG.C. NayakV. VidyasagarM.S. Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in cultured HeLa cells.Cancer Lett.19981271-2718210.1016/S0304‑3835(98)00047‑09619860
    [Google Scholar]
  160. LeyonP.V. KuttanG. Inhibitory effect of a polysaccharide from Tinospora cordifolia on experimental metastasis.J. Ethnopharmacol.2004902-323323710.1016/j.jep.2003.09.04615013186
    [Google Scholar]
  161. LeyonP.V. KuttanG. Effect of Tinospora cordifolia on the cytokine profile of angiogenesis-induced animals.Int. Immunopharmacol.20044131569157510.1016/j.intimp.2004.06.01515454110
    [Google Scholar]
  162. LinC.C. YangJ.S. ChenJ.T. FanS. YuF.S. YangJ.L. LuC.C. KaoM.C. HuangA.C. LuH.F. ChungJ.G. Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway.Anticancer Res.2007275A3371337817970083
    [Google Scholar]
  163. HoY.T. YangJ.S. LuC.C. ChiangJ.H. LiT.C. LinJ.J. LaiK.C. LiaoC.L. LinJ.G. ChungJ.G. Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model.Phytomedicine200916988789010.1016/j.phymed.2009.02.01519303753
    [Google Scholar]
  164. PatilS. AshiH. HosmaniJ. AlmalkiA.Y. AlhazmiY.A. MushtaqS. ParveenS. BaeshenH.A. VaradarajanS. RajA.T. PatilV.R. VyasN. Tinospora cordifolia (Thunb.) Miers (Giloy) inhibits oral cancer cells in a dose-dependent manner by inducing apoptosis and attenuating epithelial-mesenchymal transition.Saudi J. Biol. Sci.20212884553455910.1016/j.sjbs.2021.04.05634354441
    [Google Scholar]
  165. GaoT.H. LiaoW. LinL.T. ZhuZ.P. LuM.G. FuC.M. XieT. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications.Phytomedicine202210215409010.1016/j.phymed.2022.15409035580439
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266347636250505063601
Loading
/content/journals/ctmc/10.2174/0115680266347636250505063601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test