Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

1,4-Dihydropyridines (1,4-DHPs) serve as versatile scaffolds in medicinal chemistry, exhibiting multitarget potential with anticancer, cardiovascular, antioxidant, anti-inflammatory, antimicrobial, and analgesic effects. Structural modifications enhance their binding affinity, bioavailability, and selectivity.

Aim

This review aims to explore the broad therapeutic potential of 1,4-DHPs by analyzing their biological activities and structure-activity relationships (SAR). Additionally, it seeks to provide medicinal chemists with insights into key structural modifications that can optimize their pharmacological efficacy.

Methods

A comprehensive literature search was conducted in PubMed, ScienceDirect, Elsevier, and Google Scholar, prioritizing peer-reviewed studies from the last decade. Inclusion criteria focused on pharmacological properties, SAR, and therapeutic potential of 1,4-DHPs, while non-peer-reviewed or irrelevant studies were excluded. Data extraction analyzed SAR trends, emphasizing the impact of structural modifications on binding affinity, bioavailability, and biological activity.

Results

The review highlights that specific modifications in aromatic substituents, ester groups, and heterocyclic rings play a crucial role in enhancing the biological activity and selectivity of 1,4-DHPs. Their ability to modulate key enzymes and receptors contributes to their effectiveness as multitarget agents. Comparative SAR analysis provides evidence of the potential of 1,4-DHPs as next-generation therapeutics.

Conclusion

1,4-DHPs offer a promising framework for drug development, with the potential to address complex, multifactorial diseases. By understanding and optimizing SAR, medicinal chemists can design more selective and potent 1,4-DHP-based drugs. Future research should focus on refining these structural modifications to unlock their full therapeutic potential.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266375345250414050338
2025-04-30
2025-12-29
Loading full text...

Full text loading...

References

  1. AhmedN. SiddiquiZ.N. KhanW.A. HamidH. Catalytic synthesis and application of heterocyclic and heteroatom compounds: Recent advances. In: Sustainable Green Catalytic Processes.Hoboken, New Jersey, USAWiley Online Library2024799610.1002/9781394212767.ch4
    [Google Scholar]
  2. ShuklaP.K. VermaA. MishraP. Significance of nitrogen heterocyclic nuclei in the search of pharmacological active compounds. In: New perspective in agricultural and human health; Bharti Publication: New Dehli2017100126
    [Google Scholar]
  3. KumariA. SinghR.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives.Bioorg. Chem.20198910302110.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  4. SilakariO. Key heterocycle cores for designing multitargeting molecules.AmsterdamElsevier2018
    [Google Scholar]
  5. Key Heterocyclic Cores for Smart Anticancer Drug-Design.North YorkshireBentham2022
    [Google Scholar]
  6. KumariA. SinghR.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR).Bioorg. Chem.20209610357810.1016/j.bioorg.2020.103578 31978684
    [Google Scholar]
  7. LingY. HaoZ.Y. LiangD. ZhangC.L. LiuY.F. WangY. The expanding role of pyridine and dihydropyridine scaffolds in drug design.Drug Des. Devel. Ther.2021154289433810.2147/DDDT.S329547 34675489
    [Google Scholar]
  8. MishraA.P. BajpaiA. RaiA.K. 1, 4-Dihydropyridine: A dependable heterocyclic ring with the promising and the most anticipable therapeutic effects.Mini Rev. Med. Chem.201919151219125410.2174/1389557519666190425184749 31735158
    [Google Scholar]
  9. PattanS.R. ParateA.N. SirishaK. Chemical and pharmacological significance of 1,4-DHPs: A review.IDrugs200744227290
    [Google Scholar]
  10. KhoshneviszadehM. EdrakiN. JavidniaK. AlborziA. PourabbasB. MardanehJ. MiriR. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents.Bioorg. Med. Chem.20091741579158610.1016/j.bmc.2008.12.070 19162489
    [Google Scholar]
  11. KaurP. SharmaH. RanaR. PrasadD.N. SinghR.K. Comparative study of various green chemistry approaches for the efficient synthesis of 1,4-dihydropyridines.Asian J. Chem.2012241256495651
    [Google Scholar]
  12. IoanP. CarosatiE. MicucciM. CrucianiG. BroccatelliF. ZhorovB.S. ChiariniA. BudriesiR. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 1): Action in ion channels and GPCRs.Curr. Med. Chem.201118324901492210.2174/092986711797535173 22050742
    [Google Scholar]
  13. SinghR.K. SahoreK. RanaR. KumarS. PrasadD.N. Current development on catalytic synthesis and pharmacological applications of 1,4-DHPs.Iran. J. Catal.201664389408
    [Google Scholar]
  14. A, P.; Makam, P. 1,4-Dihydropyridine: Synthetic advances, medicinal and insecticidal properties.RSC Adv.20221245292532929010.1039/D2RA04589C 36320730
    [Google Scholar]
  15. Fátima Silva LagoD.A. BenedictoD.D.F.C. SilvaD.L. ThomasiS.S. 1,4-Dihydropyridine derivatives: An overview of synthesis conditions and biological tests.Curr. Org. Chem.202327181567161010.2174/0113852728264228231013074432
    [Google Scholar]
  16. PathakS. JainS. PratapA. A review on synthesis and biological potential of dihydropyridines.Lett. Drug Des. Discov.2024211153310.2174/1570180820666230508100955
    [Google Scholar]
  17. The global challenge of cancer.Nat. Can.2020111210.1038/s43018‑019‑0023‑9 35121840
    [Google Scholar]
  18. AltieriF. GrilloC. MaceroniM. ChichiarelliS. DNA damage and repair: From molecular mechanisms to health implications.Antioxid. Redox Signal.200810589193810.1089/ars.2007.1830 18205545
    [Google Scholar]
  19. SinghR.K. KumarS. PrasadD.N. BhardwajT.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.Eur. J. Med. Chem.201815140143310.1016/j.ejmech.2018.04.001 29649739
    [Google Scholar]
  20. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. FalcoD.V. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  21. AnaikuttiP. MakamP. Dual active 1, 4-dihydropyridine derivatives: Design, green synthesis and in vitro anti-cancer and anti-oxidant studies.Bioorg. Chem.202010510437910.1016/j.bioorg.2020.104379 33113411
    [Google Scholar]
  22. SurendrakumarR. IdhayadhullaA. GovindasamyT. ElangovanN. AldosariE. IslamM.S. Synthesis of new 1,4-dihydropyridine derivative, anti-cancer, bacterial activity, molecular docking and adsorption, distribution, metabolism and excretion analysis.Future Med. Chem.202416222371238210.1080/17568919.2024.2403960 39440485
    [Google Scholar]
  23. MohamedM.F. IbrahimN.S. ElwahyA.H.M. AbdelhamidI.A. A molecular studies on novel antitumour Bis 1,4-Dihydropyridine derivatives against lung carcinoma and their limited side effects on normal melanocytes.Anticancer. Agents Med. Chem.201918152156216810.2174/1871520618666181019095007 30338746
    [Google Scholar]
  24. GandomiF. DilmaghaniK.A. MassoumiB. AhrabiY.S. Synthesis, characterization and molecular docking study of novel 1,4-dihydropyridine derivatives as antimicrobial and anticancer Agents.Russ. J. Bioorganic Chem.20234951089109910.1134/S1068162023050163
    [Google Scholar]
  25. WernerP. SzemerédiN. SpenglerG. HilgerothA. Evaluation of novel benzo-annelated 1,4-DHPs as MDR modulators in cancer Cells.Anticancer. Agents Med. Chem.202424141047105510.2174/0118715206314406240502054139 38706362
    [Google Scholar]
  26. KhanN.A. RashidF. JadoonM.S.K. JalilS. KhanZ.A. OrfaliR. PerveenS. Al-TaweelA. IqbalJ. ShahzadS.A. Design, synthesis, and biological evaluation of novel dihydropyridine and pyridine analogs as potent human tissue nonspecific alkaline phosphatase inhibitors with anticancer activity: Ros and dna damage-induced apoptosis.Molecules20222719623510.3390/molecules27196235 36234774
    [Google Scholar]
  27. KarthikaC. SureshkumarR. ZehraviM. AkterR. AliF. RamproshadS. MondalB. TagdeP. AhmedZ. KhanF.S. RahmanM.H. CavaluS. Multidrug resistance of cancer cells and the vital role of p-glycoprotein.Life202212689710.3390/life12060897 35743927
    [Google Scholar]
  28. PatelD. SethiN. PatelP. ShahS. PatelK. Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: A comprehensive review.Eur. J. Pharm. Biopharm.202419811426710.1016/j.ejpb.2024.114267 38514020
    [Google Scholar]
  29. FiruziO. JavidniaK. MansourabadiE. SasoL. MehdipourA.R. MiriR. Reversal of multidrug resistance in cancer cells by novel asymmetrical 1,4-dihydropyridines.Arch. Pharm. Res.201336111392140210.1007/s12272‑013‑0149‑8 23674129
    [Google Scholar]
  30. ShekariF. SadeghpourH. JavidniaK. SasoL. NazariF. FiruziO. MiriR. Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells.Eur. J. Pharmacol.201574623324410.1016/j.ejphar.2014.10.058 25445037
    [Google Scholar]
  31. Razzaghi-AslN. MiriR. FiruziO. Assessment of the cytotoxic effect of a series of 1,4-dihydropyridine derivatives against human cancer cells.Iran. J. Pharm. Res.2016153413420 27980576
    [Google Scholar]
  32. NejatiM. SadeghpourH. RanjbarS. JavidniaK. EdrakiN. SasoL. FiruziO. MiriR. Unsymmetric dihydropyridines bearing 2-pyridyl methyl carboxylate as modulators of P-glycoprotein; synthesis and biological evaluation in resistant and non-resistant cancer cells.Can. J. Chem.201997860361410.1139/cjc‑2018‑0351
    [Google Scholar]
  33. SinghR.K. PrasadD.N. BhardwajT.R. Hybrid pharmacophore-based drug design, synthesis, and antiproliferative activity of 1,4-dihydropyridines-linked alkylating anticancer agents.Med. Chem. Res.20152441534154510.1007/s00044‑014‑1236‑1
    [Google Scholar]
  34. MollazadehaS. SahebkaA. KalaliniabF. BehravanJ. Bioorg. Chem.20199110315610.1016/j.bioorg.2019.103156 31416030
    [Google Scholar]
  35. DoringH. KreutzerD. RitterC. HilgerothA. Discovery of novel symmetrical 1,4-DHPs as inhibitors of multi-drug resistant (MRP4) efflux for anticancer therapy.Molecules20212610.3390/molecules26010018 33375210
    [Google Scholar]
  36. SidhomP.A. El-BastawissyE. AbeerA. SalamaA.A. Revisiting ageless antiques; synthesis, biological evaluation, docking simulation and mechanistic insights of 1,4-DHPs as anticancer agents.Bioorg. Chem.202111410505410.1016/j.bioorg.2021.105054 34146919
    [Google Scholar]
  37. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers 2017955210.3390/cancers9050052 28513565
    [Google Scholar]
  38. SinghR.K., Ed. Protein Kinases - Promising Targets for Anticancer Drug Research.London, UKIntechOpen202110.5772/intechopen.82939
    [Google Scholar]
  39. QiangZ. WanJ. ChenX. WangH. Mechanisms and therapeutic targets of ErbB family receptors in hepatocellular carcinoma: A narrative review.Transl. Cancer Res.20241363156317810.21037/tcr‑24‑837 38988928
    [Google Scholar]
  40. SteelmanL.S. FitzgeraldT. LertpiriyapongK. CoccoL. FolloM.Y. MartelliA.M. NeriL.M. MarmiroliS. LibraM. CandidoS. NicolettiF. ScalisiA. FengaC. DrobotL. RakusD. GizakA. LaidlerP. Dulinska-LitewkaJ. BaseckeJ. MijatovicS. Maksimovic-IvanicD. MontaltoG. CervelloM. MilellaM. TafuriA. DemidenkoZ. AbramsS.L. McCubreyJ.A. Critical roles of EGFR family members in breast cancer and breast cancer stem cells: Targets for therapy.Curr. Pharm. Des.201622162358238810.2174/1381612822666160304151011 26947958
    [Google Scholar]
  41. SruthiA.S.V.L. FaizanS. VikramH. VeenaN.G. SusilA. HarindranathH. KumarV.S. ShivarajuK.V. KumarP.B.R. A multifaceted approach for the development of novel Hantzsch 1,4-dihydropyridines as anticancer agents: Rational design, parallel synthesis, analysis, cytotoxicity and EGFR/HER2 inhibition studies.Results in Chemistry.2024710141310.1016/j.rechem.2024.101413
    [Google Scholar]
  42. KourJ. KhannaK. SinghA.D. DhimanS. BhardwajT. DeviK. SharmaN. OhriP. BhardwajR. Calcium’s multifaceted functions: From nutrient to secondary messenger during stress.S. Afr. J. Bot.202315224726310.1016/j.sajb.2022.11.048
    [Google Scholar]
  43. CooperD. DimriM. Calcium channels. In: StatPearls.Treasure Island, (FL)StatPearls Publishing2023
    [Google Scholar]
  44. SaddalaM.S. KandimallaR. AdiP.J. BhashyamS.S. AsupatriU.R. Novel 1, 4-dihydropyridines for L-type calcium channel as antagonists for cadmium toxicity.Sci. Rep.2017714521110.1038/srep45211 28345598
    [Google Scholar]
  45. TriggleD.J. Calcium channel antagonists: Clinical uses—Past, present and future.Biochem. Pharmacol.20077411910.1016/j.bcp.2007.01.016 17276408
    [Google Scholar]
  46. BansalR. JainP. NarangG. KaurA. CalleC. CarronR. Synthesis of ethyl methyl 4-aryl-1,4-dihydropyridine-3,5-dicarboxylates as potential calcium channel blockers for hypertension.Lett. Drug Des. Discov.202320101632164410.2174/1570180819666220619123247
    [Google Scholar]
  47. KarmakarS. BasakH.K. PaswanU. SahaS. MandalS.K. Chatterjee, A In silico screening, synthesis, characterisation and dft-based electronic properties of dihydropyridine-based molecule as l-type calcium channel blocker.Curr. Comp. Aided Drug Des.202420711301146
    [Google Scholar]
  48. SainiK.K. RaniR. Muskan KhannaN. MehtaB. KumarR. An overview of recent advances in hantzsch’s multicomponent synthesis of 1,4- dihydropyridines: A class of prominent calcium channel blockers.Curr. Org. Chem.202327211912910.2174/1385272827666230403112419
    [Google Scholar]
  49. ZareF. HashemiH. HassaniB. FazelR. MiriR. SadeghpourH. Synthesis, biological evaluation, in silico admet and molecular docking of new 1,4‐dihydropyridine derivatives bearing ether substitution as calcium channel blockers.ChemistrySelect2023821e20220451510.1002/slct.202204515
    [Google Scholar]
  50. van de WaterbeemdH. SmithD.A. BeaumontK. WalkerD.K. Property-based design: Optimization of drug absorption and pharmacokinetics.J. Med. Chem.20014491313133310.1021/jm000407e 11311053
    [Google Scholar]
  51. NavidpourL. MiriR. ShafieeA. Synthesis and calcium channel antagonist activity of new 1,4-dihydropyridine derivatives containing lipophilic 4-imidazolyl substituents.Arzneimittelforschung2004549499504 15500195
    [Google Scholar]
  52. MiriR. JavidniaK. SarkarzadehH. HemmateenejadB. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1,4-dihydropyridines as calcium channel antagonist.Bioorg. Med. Chem.200614144842484910.1016/j.bmc.2006.03.016 16603367
    [Google Scholar]
  53. HosseiniM. MiriR. AminiM. MirkhaniH. HemmateenejadB. GhodsiS. AlipourE. ShafieeA. Synthesis, QSAR and calcium channel antagonist activity of new 1,4-dihydropyridine derivatives containing 1-methyl-4,5-dichloroimidazolyl substituents.Arch. Pharm. 20073401054955610.1002/ardp.200600211 17849444
    [Google Scholar]
  54. BulbulB. OzturkG. Condensed 1,4-DHPs with various esters and their calcium channel antagonist activities.Eur. J. Med. Chem.20094452052205810.1016/j.ejmech.2008.10.008 19013690
    [Google Scholar]
  55. SadekB. FahelelbomK.M.S. MorusciagL. ElzS. Synthesis and calcium channel blocking activity of 1, 4-dihydropyridine derivatives containing ester substitute and phenyl carbamoyl group.Am. J. Appl. Sci.20118430330910.3844/ajassp.2011.303.309
    [Google Scholar]
  56. RucinsM. KaldreD. PajusteK. FernandesM.A.S. VicenteJ.A.F. KlimaviciusaL. JaschenkoE. Kanepe-LapsaI. ShestakovaI. PlotnieceM. GostevaM. SobolevA. JansoneB. MucenieceR. KlusaV. PlotnieceA. Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives.C. R. Chim.2013171698010.1016/j.crci.2013.07.003
    [Google Scholar]
  57. DomrachevaI. Kanepe-LapsaI. VilskerstsR. BruvereI. BisenieksE. VelenaA. TurovskaB. DubursG. 4-pyridinio-1,4-DHPs as calcium ion transport modulators: Antagonist, agonist, and dual action.Oxid. Med. Cell. Longev.2020202011410.1155/2020/2075815 32308799
    [Google Scholar]
  58. AngonaP.I. DanielS. MartinH. BonetA. WnorowskiA. MajM. JóźwiakK. SilvaT.B. RefouveletB. BorgesF. Marco-ContellesJ. IsmailiL. Design, synthesis and biological evaluation of new antioxidant and neuroprotective multitarget directed ligands able to block calcium channels.Molecules2020256132910.3390/molecules25061329 32183349
    [Google Scholar]
  59. YelshanskayaM.V. NadezhdinK.D. KurnikovaM.G. SobolevskyA.I. Structure and function of the calcium‐selective TRP channel TRPV6.J. Physiol.2021599102673269710.1113/JP279024 32073143
    [Google Scholar]
  60. Jafari-ChermahiniM.T. TavakolH. One‐pot synthesis of hantzsch 1,4‐dihydropyridines by a series of iron oxide nanoparticles: Putative synthetic TRPV6 calcium channel blockers.ChemistrySelect2021692360236510.1002/slct.202004390
    [Google Scholar]
  61. ShahidiF. ZhongY. Measurement of antioxidant activity.J. Funct. Foods20151875778110.1016/j.jff.2015.01.047
    [Google Scholar]
  62. GoyalS. ThirumalD. SinghS. KumarD. SinghI. KumarG. SindhuR.K. . In: Basics of antioxidants and their importance.Antioxidants2024120
    [Google Scholar]
  63. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  64. SiseinE.A. Biochemistry of free radicals and antioxidants.Scholars Acad. J. Biosci.201422110118
    [Google Scholar]
  65. KhanM.A. KolaV.B. NoorB. The antioxidant activity of dihydropyridine derivatives.Curr. Res. Bioorg. Org. Chem.2020312410.29011/2639‑4685.100024
    [Google Scholar]
  66. AlamiM. FulopT. BoumezoughK. KhalilA. ZerifE. BerrouguiH. Oxidative Stress in Neurodegenerative Diseases.Biomarkers of Oxidative Stress: Clinical Aspects of Oxidative Stress.ChamSpringer20247110210.1007/978‑3‑031‑69962‑7_4
    [Google Scholar]
  67. MalekR. MajM. WnorowskiA. JóźwiakK. MartinH. IriepaI. MoraledaI. ChabchoubF. Marco-ContellesJ. IsmailiL. Multi-target 1,4-dihydropyridines showing calcium channel blockade and antioxidant capacity for Alzheimer’s disease therapy.Bioorg. Chem.20199110320510.1016/j.bioorg.2019.103205 31446330
    [Google Scholar]
  68. Selli̇tepeH.E. Doğanİ.S. EroğluG. BarutB. ÖzelA. Synthesis, characterization and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives.J. Res. Phar.201923460861610.12991/jrp.2019.168
    [Google Scholar]
  69. SuntresZ.E. Liposomal antioxidants for protection against oxidant‐induced damage.J. Toxicol.2011201111610.1155/2011/152474 21876690
    [Google Scholar]
  70. CabreraC.D.D. Santa-HelenaE. LealH.P. MouraD.R.R. NeryL.E.M. GonçalvesC.A.N. RussowskyD. Montes D’OcaM.G. Synthesis and antioxidant activity of new lipophilic dihydropyridines.Bioorg. Chem.20198411610.1016/j.bioorg.2018.11.009 30471487
    [Google Scholar]
  71. BeckhauserT.F. Francis-OliveiraJ. PasqualeD.R. Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity.J. Exp. Neurosci.201610sSuppl. 1234810.4137/JEN.S39887 27625575
    [Google Scholar]
  72. MichalskaP. MayoP. Fernández-MendívilC. TentiG. DuarteP. BuendiaI. RamosM.T. LópezM.G. MenéndezJ.C. LeónR. Antioxidant, Anti-inflammatory and neuroprotective profiles of novel 1,4-dihydropyridine derivatives for the treatment of alzheimer’s disease.Antioxidants20209865010.3390/antiox9080650 32708053
    [Google Scholar]
  73. HadiH.A. SuwaidiJ.A. Endothelial dysfunction in diabetes mellitus.Vasc. Health Risk Manag.200736853876 18200806
    [Google Scholar]
  74. NakamuraM. SadoshimaJ. Cardiomyopathy in obesity, insulin resistance and diabetes.J. Physiol.2020598142977299310.1113/JP276747 30869158
    [Google Scholar]
  75. KatiyarS. AhmadS. KumarA. AnsariA. BisenA.C. AhmadI. GulzarF. BhattaR.S. TamrakarA.K. SashidharaK.V. Design, synthesis, and biological evaluation of 1,4-dihydropyridine–Indole as a potential antidiabetic agent via GLUT4 translocation.J. Med. Chem.20246714119571197410.1021/acs.jmedchem.4c00570 39013034
    [Google Scholar]
  76. PraveenkumarE. GurrapuN. KolluriK.P. YerraguntaV. KunduruR.B. SubhashiniN.J.P. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors.Bioorg. Chem.20199010305610.1016/j.bioorg.2019.103056 31276952
    [Google Scholar]
  77. AminuK.S. UzairuA. AbechiS.E. ShallangwaG.A. UmarA.B. Activity prediction, structure-based drug design, molecular docking, and pharmacokinetic studies of 1,4-DHPs derivatives as amylase inhibitors.J. Taibah Univ. Med. Sci.2024192270286 38234713
    [Google Scholar]
  78. BagreA. PatelP.R. NaqviS. JainK. Emerging concerns of infectious diseases and drug delivery challenges. In: Nanotheranostics for Treatment and Diagnosis of Infectious Diseases.Amsterdam, NetherlandsElsevier202212310.1016/B978‑0‑323‑91201‑3.00013‑X
    [Google Scholar]
  79. PulingamT. ParumasivamT. GazzaliA.M. SulaimanA.M. CheeJ.Y. LakshmananM. ChinC.F. SudeshK. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome.Eur. J. Pharm. Sci.202217010610310.1016/j.ejps.2021.106103 34936936
    [Google Scholar]
  80. LiP. SahoreK. LiuJ. SinghR.K. Singh. Synthesis and antimicrobial evaluation of 2-aminobenzophenone linked 1, 4-dihydropyridine derivatives.Asian J. Chem.201426165291529410.14233/ajchem.2014.17403
    [Google Scholar]
  81. KapriA. GuptaN. NainS. Therapeutic potential of pyrazole containing compounds: An Updated Review.Pharm. Chem. J.202458225226710.1007/s11094‑024‑03141‑x
    [Google Scholar]
  82. VijeshA.M. IsloorA.M. PeethambarS.K. ShivanandaK.N. ArulmoliT. IsloorN.A. Hantzsch reaction: Synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents.Eur. J. Med. Chem.201146115591559710.1016/j.ejmech.2011.09.026 21968373
    [Google Scholar]
  83. PrakashO. HussainK. KumarR. WadhwaD. SharmaC. AnejaK.R. Synthesis and antimicrobial evaluation of new 1,4-dihydro-4-pyrazolylpyridines and 4-pyrazolylpyridines.Org. Med. Chem. Lett.201111510.1186/2191‑2858‑1‑5 22373350
    [Google Scholar]
  84. SohalS.H. KaurM. KhareR. p-TSA catalyzed, one-pot synthesis and antimicrobial evaluation of some novel fused dipyrazolo-1,4-dihydropyridine derivatives.Amer. J. Org. Chem.2014422125
    [Google Scholar]
  85. RajputA.P. GiraseP.D. Synthesis, characterization and microbial screening of isoxazole derivatives of 2, 6- dichloro-1-(N-substituted phenyl)-1, 4-dihydropyridine-3,5-dicarbaldeyhde.Int. J. Chemt. Res.2011243841
    [Google Scholar]
  86. MurthyY.L.N. RajackA. RamjiT.M. babuJ.J. PraveenC. LakshmiA.K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines.Bioorg. Med. Chem. Lett.201222186016602310.1016/j.bmcl.2012.05.003 22901391
    [Google Scholar]
  87. SinghH. SindhuJ. KhuranaJ.M. SharmaC. AnejaK.R. A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-DHPs and their biological and photophysical studies.Aust. J. Chem.2013669108810.1071/CH13217
    [Google Scholar]
  88. OlejníkováP. SvorcL. OlšovskáD. PanákováA. VihonskáZ. KovaryováK. MarchalínS. Antimicrobial activity of novel c2-substituted 1,4-dihydropyridine analogues.Sci. Pharm.201482222123210.3797/scipharm.1311‑04 24959401
    [Google Scholar]
  89. MorbaleT.S. ShindeS.S. JadhavD.S. Modified eggshell catalyzed, one-pot synthesis and antimicrobial evaluation of 1, 4-dihydropyridines and polyhydroquinolines.Pharm. Lett.2015712169182
    [Google Scholar]
  90. SingalaP.M. ShahV.H. One-pot synthesis of some novel N-aryl-1,4-DHPs derivatives bearing nitrogen mustard.Inter. Lett. Chem.2015486167
    [Google Scholar]
  91. MahmoodiN.O. RamzanpourS. PirbastiG.F. One-pot multi-component synthesis of 1,4-dihydropyridines using Zn(2+) @KSF and evaluating their antibacterial and antioxidant activities.Arch. Pharm.2015348427528210.1002/ardp.201400414 25708128
    [Google Scholar]
  92. NkosiS.M. AnandK. AnandakumarS. SinghS. ChuturgoonA.A. GenganR.M. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of novel quinoline bearing dihydropyridines.J. Photochem. Photobiol. B201616526627610.1016/j.jphotobiol.2016.10.009 27871033
    [Google Scholar]
  93. ElumalaiK. ElumalaiM. EluriK. SrinivasanS. AliA.M. ReddyV.B. SarangiS.P. Facile synthesis, spectral characterization, antimicrobial and in vitro cytotoxicity of novel N3,N5-diisonicotinyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarbohydrazide derivatives.Bull. Fac. Pharm. Cairo Univ.2016541778610.1016/j.bfopcu.2016.01.003
    [Google Scholar]
  94. ZiaieM. DilmaghaniA.K. TukmechiA. Synthesis and biological evaluation of 1,2,4-triazoles and 1,3,4-oxadiazoles derivatives linked to 1,4-DHPs scaffold.Acta Chim. Slov.201764489590110.17344/acsi.2017.3506 29318321
    [Google Scholar]
  95. AhamedA. ArifI.A. MateenM. KumarS.R. IdhayadhullaA. Antimicrobial, anticoagulant, and cytotoxic evaluation of multidrug resistance of new 1,4-dihydropyridine derivatives.Saudi J. Biol. Sci.20182561227123510.1016/j.sjbs.2018.03.001 30174527
    [Google Scholar]
  96. ShanmugamK. VijayabaskaranM. SambathkumarR. JayaramanS. Design, synthesis and docking studies of derivatives of 1,4-dihydropyridine as antibacterial agents.World J. Pharm. Res.2022911961211
    [Google Scholar]
  97. GündüzM.G. DengizC. AslanK.E. BogojevicS.S. Nikodinovic-RunicJ. Attaching azoles to Hantzsch 1,4-dihydropyridines: Synthesis, theoretical investigation of nonlinear optical properties, antimicrobial evaluation and molecular docking studies.J. Mol. Struct.2022124713131610.1016/j.molstruc.2021.131316
    [Google Scholar]
  98. GoswamiA. KaurN. KaurM. SinghK. SohalH.S. HanH. BhowmikP.K. Facile one-pot synthesis and anti-microbial activity of novel 1,4-dihydropyridine derivatives in aqueous micellar solution under microwave irradiation.Molecules2024295111510.3390/molecules29051115 38474626
    [Google Scholar]
  99. ArsyadM.H. SyafinaI. HapsahH. HervinaH. Knowing and understanding the tuberculosis (Tb) disease of the lung (literature review).Inter. J. Nat. Sci. Stud. Devel.202412568510.55299/ijoss.v1i2.15
    [Google Scholar]
  100. SultanaZ.Z. HoqueF.U. BeyeneJ. IslamA.U. KhanM.H. AhmedS. HawladerD.H. HossainA. HIV infection and multidrug resistant tuberculosis: A systematic review and meta-analysis.BMC Infect. Dis.20212113
    [Google Scholar]
  101. LeowattanaW. LeowattanaP. LeowattanaT. Tuberculosis of the spine.World J. Orthop.202314527529310.5312/wjo.v14.i5.275 37304201
    [Google Scholar]
  102. GevariyaH. DesaiB. VoraV. ShahA. Synthesis of some new unsymmetrical 1,4-derivatives as potent antitubercular agents.Heterocycl. Commun.20017548148410.1515/HC.2001.7.5.481
    [Google Scholar]
  103. VenugopalaK.N. DebP.K. PillayM. ChopraD. ChandrashekharappaS. MorsyM.A. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. KandeelM. VenugopalaR. MohanlallV. 4-Aryl-1,4-Dihydropyridines as potential enoyl-acyl carrier protein reductase inhibitors: Antitubercular activity and molecular docking study.Curr. Top. Med. Chem.202121429530610.2174/1568026620666201102121606 33138763
    [Google Scholar]
  104. SirishaK. AchaiahG. ReddyV.M. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines.Arch. Pharm. 2010343634235210.1002/ardp.200900243 20496343
    [Google Scholar]
  105. MohammadpourF. EskenatiS. GhazviniK.N. Synthesis and in vitro evaluation of the antimycobacterial activity of N-aryl-1,4-dihydropyridine-3,5-dicarboxamides.J. Sci. I. R. Iran2012232129138
    [Google Scholar]
  106. DesaiN.C. TrivediA.R. SomaniH.C. BhattK.A. Design, synthesis, and biological evaluation of 1,4-dihydropyridine derivatives as potent antitubercular agents.Chem. Biol. Drug Des.201586337037710.1111/cbdd.12502 25534154
    [Google Scholar]
  107. BaydarE. GündüzM.G. KrishnaV.S. ŞimşekR. SriramD. YıldırımS.Ö. ButcherR.J. ŞafakC. Synthesis, crystal structure and antimycobacterial activities of 4-indolyl-1,4-dihydropyridine derivatives possessing various ester groups.Res. Chem. Intermed.201743127471748910.1007/s11164‑017‑3087‑0
    [Google Scholar]
  108. KumarR.S. IdhayadhullaA. NasserA.A.J. SelvinJ. Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives.Eur. J. Med. Chem.201146280481010.1016/j.ejmech.2010.12.006 21220179
    [Google Scholar]
  109. TentiG. EgeaJ. VillarroyaM. LeonR. FernandezJ.C. Identification of 4,6-diaryl-1,4-DHPs as a new class of neuroprotective agents.MedChemComm20134359010.1039/c3md20345j
    [Google Scholar]
  110. BabuN.M. ElumalaiK. SrinivasanS. EluriK. ElumalaiM. SivannanS. Synthesis and anticholinesterase activity of a novel series of acetazolamide condensed 1,4-dihydropyridines.Carb. Res. Conver.20192319119710.1016/j.crcon.2019.10.002
    [Google Scholar]
  111. SubudhiB.B. PandaP.K. Synthesis and antiulcer activity of 1,4-DHPs and their mannich bases with sulphanilamide.Indian J. Chem.200948B725728
    [Google Scholar]
  112. AkbarI. RadhakrishnanS. MeenakshisundaramK. ManilalA. Design of 1,4-dihydropyridine hybrid benzamide derivatives: Synthesis and evaluation of analgesic activity and their molecular docking studies.Drug Des. Develop. Ther.202240214039
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266375345250414050338
Loading
/content/journals/ctmc/10.2174/0115680266375345250414050338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test