Skip to content
2000
image of Designing 1,4-Dihydropyridines-Based Multitarget Therapeutics: Recent Advances and Future Directions

Abstract

Background

1,4-Dihydropyridines (1,4-DHPs) serve as versatile scaffolds in medicinal chemistry, exhibiting multitarget potential with anticancer, cardiovascular, antioxidant, anti-inflammatory, antimicrobial, and analgesic effects. Structural modifications enhance their binding affinity, bioavailability, and selectivity.

Aim

This review aims to explore the broad therapeutic potential of 1,4-DHPs by analyzing their biological activities and structure-activity relationships (SAR). Additionally, it seeks to provide medicinal chemists with insights into key structural modifications that can optimize their pharmacological efficacy.

Methods

A comprehensive literature search was conducted in PubMed, ScienceDirect, Elsevier, and Google Scholar, prioritizing peer-reviewed studies from the last decade. Inclusion criteria focused on pharmacological properties, SAR, and therapeutic potential of 1,4-DHPs, while non-peer-reviewed or irrelevant studies were excluded. Data extraction analyzed SAR trends, emphasizing the impact of structural modifications on binding affinity, bioavailability, and biological activity.

Results

The review highlights that specific modifications in aromatic substituents, ester groups, and heterocyclic rings play a crucial role in enhancing the biological activity and selectivity of 1,4-DHPs. Their ability to modulate key enzymes and receptors contributes to their effectiveness as multitarget agents. Comparative SAR analysis provides evidence of the potential of 1,4-DHPs as next-generation therapeutics.

Conclusion

1,4-DHPs offer a promising framework for drug development, with the potential to address complex, multifactorial diseases. By understanding and optimizing SAR, medicinal chemists can design more selective and potent 1,4-DHP-based drugs. Future research should focus on refining these structural modifications to unlock their full therapeutic potential.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266375345250414050338
2025-04-30
2025-10-09
Loading full text...

Full text loading...

References

  1. Ahmed N. Siddiqui Z.N. Khan W.A. Hamid H. Catalytic synthesis and application of heterocyclic and heteroatom compounds: Recent advances. Sustainable Green Catalytic Processes Hoboken, New Jersey, USA Wiley Online Library 2024 79 96 10.1002/9781394212767.ch4
    [Google Scholar]
  2. Shukla P.K. Verma A. Mishra P. Significance of nitrogen heterocyclic nuclei in the search of pharmacological active compounds. New perspective in agricultural and human health New Dehli Bharti Publication 2017 100 126
    [Google Scholar]
  3. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019 89 103021 10.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  4. Silakari O. Key heterocycle cores for designing multitargeting molecules. Amsterdam Elsevier 2018
    [Google Scholar]
  5. Key Heterocyclic Cores for Smart Anticancer Drug-Design. North Yorkshire Bentham 2022
    [Google Scholar]
  6. Kumari A. Singh R.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg. Chem. 2020 96 103578 10.1016/j.bioorg.2020.103578 31978684
    [Google Scholar]
  7. Ling Y. Hao Z.Y. Liang D. Zhang C.L. Liu Y.F. Wang Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther. 2021 15 4289 4338 10.2147/DDDT.S329547 34675489
    [Google Scholar]
  8. Mishra A.P. Bajpai A. Rai A.K. 1, 4-Dihydropyridine: A dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev. Med. Chem. 2019 19 15 1219 1254 10.2174/1389557519666190425184749 31735158
    [Google Scholar]
  9. Pattan S.R. Parate A.N. Sirisha K. Chemical and pharmacological significance of 1,4-DHPs: A review. IDrugs 2007 44 22 72 90
    [Google Scholar]
  10. Khoshneviszadeh M. Edraki N. Javidnia K. Alborzi A. Pourabbas B. Mardaneh J. Miri R. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents. Bioorg. Med. Chem. 2009 17 4 1579 1586 10.1016/j.bmc.2008.12.070 19162489
    [Google Scholar]
  11. Kaur P. Sharma H. Rana R. Prasad D.N. Singh R.K. Comparative study of various green chemistry approaches for the efficient synthesis of 1,4-dihydropyridines. Asian J. Chem. 2012 24 12 5649 5651
    [Google Scholar]
  12. Ioan P. Carosati E. Micucci M. Cruciani G. Broccatelli F. Zhorov B.S. Chiarini A. Budriesi R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 1): Action in ion channels and GPCRs. Curr. Med. Chem. 2011 18 32 4901 4922 10.2174/092986711797535173 22050742
    [Google Scholar]
  13. Singh R.K. Sahore K. Rana R. Kumar S. Prasad D.N. Current development on catalytic synthesis and pharmacological applications of 1,4-DHPs. Iran. J. Catal. 2016 6 4 389 408
    [Google Scholar]
  14. A P. Makam P. 1,4-Dihydropyridine: Synthetic advances, medicinal and insecticidal properties. RSC Adv. 2022 12 45 29253 29290 10.1039/D2RA04589C 36320730
    [Google Scholar]
  15. Fátima Silva Lago D.A. Benedicto D.D.F.C. Silva D.L. Thomasi S.S. 1,4-Dihydropyridine derivatives: An overview of synthesis conditions and biological tests. Curr. Org. Chem. 2023 27 18 1567 1610 10.2174/0113852728264228231013074432
    [Google Scholar]
  16. Pathak S. Jain S. Pratap A. A review on synthesis and biological potential of dihydropyridines. Lett. Drug Des. Discov. 2024 21 1 15 33 10.2174/1570180820666230508100955
    [Google Scholar]
  17. The global challenge of cancer. Nat. Can. 2020 1 1 1 2 10.1038/s43018‑019‑0023‑9 35121840
    [Google Scholar]
  18. Altieri F. Grillo C. Maceroni M. Chichiarelli S. DNA damage and repair: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008 10 5 891 938 10.1089/ars.2007.1830 18205545
    [Google Scholar]
  19. Singh R.K. Kumar S. Prasad D.N. Bhardwaj T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem. 2018 151 401 433 10.1016/j.ejmech.2018.04.001 29649739
    [Google Scholar]
  20. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. Falco D.V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  21. Anaikutti P. Makam P. Dual active 1, 4-dihydropyridine derivatives: Design, green synthesis and in vitro anti-cancer and anti-oxidant studies. Bioorg. Chem. 2020 105 104379 10.1016/j.bioorg.2020.104379 33113411
    [Google Scholar]
  22. Surendrakumar R. Idhayadhulla A. Govindasamy T. Elangovan N. Aldosari E. Islam M.S. Synthesis of new 1,4-dihydropyridine derivative, anti-cancer, bacterial activity, molecular docking and adsorption, distribution, metabolism and excretion analysis. Future Med. Chem. 2024 16 22 2371 2382 10.1080/17568919.2024.2403960 39440485
    [Google Scholar]
  23. Mohamed M.F. Ibrahim N.S. Elwahy A.H.M. Abdelhamid I.A. A molecular studies on novel antitumour Bis 1,4-Dihydropyridine derivatives against lung carcinoma and their limited side effects on normal melanocytes. Anticancer. Agents Med. Chem. 2019 18 15 2156 2168 10.2174/1871520618666181019095007 30338746
    [Google Scholar]
  24. Gandomi F. Dilmaghani K.A. Massoumi B. Ahrabi Y.S. Synthesis, characterization and molecular docking study of novel 1,4-dihydropyridine derivatives as antimicrobial and anticancer Agents. Russ. J. Bioorganic Chem. 2023 49 5 1089 1099 10.1134/S1068162023050163
    [Google Scholar]
  25. Werner P. Szemerédi N. Spengler G. Hilgeroth A. Evaluation of novel benzo-annelated 1,4-DHPs as MDR modulators in cancer Cells. Anticancer. Agents Med. Chem. 2024 24 14 1047 1055 10.2174/0118715206314406240502054139 38706362
    [Google Scholar]
  26. Khan N.A. Rashid F. Jadoon M.S.K. Jalil S. Khan Z.A. Orfali R. Perveen S. Al-Taweel A. Iqbal J. Shahzad S.A. Design, synthesis, and biological evaluation of novel dihydropyridine and pyridine analogs as potent human tissue nonspecific alkaline phosphatase inhibitors with anticancer activity: Ros and dna damage-induced apoptosis. Molecules 2022 27 19 6235 10.3390/molecules27196235 36234774
    [Google Scholar]
  27. Karthika C. Sureshkumar R. Zehravi M. Akter R. Ali F. Ramproshad S. Mondal B. Tagde P. Ahmed Z. Khan F.S. Rahman M.H. Cavalu S. Multidrug resistance of cancer cells and the vital role of p-glycoprotein. Life 2022 12 6 897 10.3390/life12060897 35743927
    [Google Scholar]
  28. Patel D. Sethi N. Patel P. Shah S. Patel K. Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: A comprehensive review. Eur. J. Pharm. Biopharm. 2024 198 114267 10.1016/j.ejpb.2024.114267 38514020
    [Google Scholar]
  29. Firuzi O. Javidnia K. Mansourabadi E. Saso L. Mehdipour A.R. Miri R. Reversal of multidrug resistance in cancer cells by novel asymmetrical 1,4-dihydropyridines. Arch. Pharm. Res. 2013 36 11 1392 1402 10.1007/s12272‑013‑0149‑8 23674129
    [Google Scholar]
  30. Shekari F. Sadeghpour H. Javidnia K. Saso L. Nazari F. Firuzi O. Miri R. Cytotoxic and multidrug resistance reversal activities of novel 1,4-dihydropyridines against human cancer cells. Eur. J. Pharmacol. 2015 746 233 244 10.1016/j.ejphar.2014.10.058 25445037
    [Google Scholar]
  31. Razzaghi-Asl N. Miri R. Firuzi O. Assessment of the cytotoxic effect of a series of 1,4-dihydropyridine derivatives against human cancer cells. Iran. J. Pharm. Res. 2016 15 3 413 420 27980576
    [Google Scholar]
  32. Nejati M. Sadeghpour H. Ranjbar S. Javidnia K. Edraki N. Saso L. Firuzi O. Miri R. Unsymmetric dihydropyridines bearing 2-pyridyl methyl carboxylate as modulators of P-glycoprotein; synthesis and biological evaluation in resistant and non-resistant cancer cells. Can. J. Chem. 2019 97 8 603 614 10.1139/cjc‑2018‑0351
    [Google Scholar]
  33. Singh R.K. Prasad D.N. Bhardwaj T.R. Hybrid pharmacophore-based drug design, synthesis, and antiproliferative activity of 1,4-dihydropyridines-linked alkylating anticancer agents. Med. Chem. Res. 2015 24 4 1534 1545 10.1007/s00044‑014‑1236‑1
    [Google Scholar]
  34. Mollazadeha S. Sahebka A. Kalaliniab F. Behravan J. Bioorg. Chem. 2019 91 103156 10.1016/j.bioorg.2019.103156 31416030
    [Google Scholar]
  35. Doring H. Kreutzer D. Ritter C. Hilgeroth A. Discovery of novel symmetrical 1,4-DHPs as inhibitors of multi-drug resistant (MRP4) efflux for anticancer therapy. Molecules 2021 26 10.3390/molecules26010018 33375210
    [Google Scholar]
  36. Sidhom P.A. El-Bastawissy E. Abeer A. Salama A.A. Revisiting ageless antiques; synthesis, biological evaluation, docking simulation and mechanistic insights of 1,4-DHPs as anticancer agents. Bioorg. Chem. 2021 114 105054 10.1016/j.bioorg.2021.105054 34146919
    [Google Scholar]
  37. Wee P. Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017 9 5 52 10.3390/cancers9050052 28513565
    [Google Scholar]
  38. Singh R.K. Protein Kinases - Promising Targets for Anticancer Drug Research. London, UK IntechOpen 2021 10.5772/intechopen.82939
    [Google Scholar]
  39. Qiang Z. Wan J. Chen X. Wang H. Mechanisms and therapeutic targets of ErbB family receptors in hepatocellular carcinoma: A narrative review. Transl. Cancer Res. 2024 13 6 3156 3178 10.21037/tcr‑24‑837 38988928
    [Google Scholar]
  40. Steelman L.S. Fitzgerald T. Lertpiriyapong K. Cocco L. Follo M.Y. Martelli A.M. Neri L.M. Marmiroli S. Libra M. Candido S. Nicoletti F. Scalisi A. Fenga C. Drobot L. Rakus D. Gizak A. Laidler P. Dulinska-Litewka J. Basecke J. Mijatovic S. Maksimovic-Ivanic D. Montalto G. Cervello M. Milella M. Tafuri A. Demidenko Z. Abrams S.L. McCubrey J.A. Critical roles of EGFR family members in breast cancer and breast cancer stem cells: Targets for therapy. Curr. Pharm. Des. 2016 22 16 2358 2388 10.2174/1381612822666160304151011 26947958
    [Google Scholar]
  41. Sruthi A.S.V.L. Faizan S. Vikram H. Veena N.G. Susil A. Harindranath H. Kumar V.S. Shivaraju K.V. Kumar P.B.R. A multifaceted approach for the development of novel Hantzsch 1,4-dihydropyridines as anticancer agents: Rational design, parallel synthesis, analysis, cytotoxicity and EGFR/HER2 inhibition studies. Results in Chemistry 2024 7 101413 10.1016/j.rechem.2024.101413
    [Google Scholar]
  42. Kour J. Khanna K. Singh A.D. Dhiman S. Bhardwaj T. Devi K. Sharma N. Ohri P. Bhardwaj R. Calcium’s multifaceted functions: From nutrient to secondary messenger during stress. S. Afr. J. Bot. 2023 152 247 263 10.1016/j.sajb.2022.11.048
    [Google Scholar]
  43. Cooper D. Dimri M. Calcium channels. StatPearls Treasure Island (FL) StatPearls Publishing 2023
    [Google Scholar]
  44. Saddala M.S. Kandimalla R. Adi P.J. Bhashyam S.S. Asupatri U.R. Novel 1, 4-dihydropyridines for L-type calcium channel as antagonists for cadmium toxicity. Sci. Rep. 2017 7 1 45211 10.1038/srep45211 28345598
    [Google Scholar]
  45. Triggle D.J. Calcium channel antagonists: Clinical uses—Past, present and future. Biochem. Pharmacol. 2007 74 1 1 9 10.1016/j.bcp.2007.01.016 17276408
    [Google Scholar]
  46. Bansal R. Jain P. Narang G. Kaur A. Calle C. Carron R. Synthesis of ethyl methyl 4-aryl-1,4-dihydropyridine-3,5-dicarboxylates as potential calcium channel blockers for hypertension. Lett. Drug Des. Discov. 2023 20 10 1632 1644 10.2174/1570180819666220619123247
    [Google Scholar]
  47. Karmakar S Basak HK Paswan U Saha S Mandal SK Chatterjee A In silico screening, synthesis, characterisation and dft-based electronic properties of dihydropyridine-based molecule as l-type calcium channel blocker. Curr. Comp. Aided Drug Des. 2024 20 7 1130 1146
    [Google Scholar]
  48. Saini K.K. Rani R. Muskan Khanna N. Mehta B. Kumar R. An overview of recent advances in hantzsch’s multicomponent synthesis of 1,4- dihydropyridines: A class of prominent calcium channel blockers. Curr. Org. Chem. 2023 27 2 119 129 10.2174/1385272827666230403112419
    [Google Scholar]
  49. Zare F. Hashemi H. Hassani B. Fazel R. Miri R. Sadeghpour H. Synthesis, biological evaluation, in silico admet and molecular docking of new 1,4‐dihydropyridine derivatives bearing ether substitution as calcium channel blockers. ChemistrySelect 2023 8 21 e202204515 10.1002/slct.202204515
    [Google Scholar]
  50. van de Waterbeemd H. Smith D.A. Beaumont K. Walker D.K. Property-based design: Optimization of drug absorption and pharmacokinetics. J. Med. Chem. 2001 44 9 1313 1333 10.1021/jm000407e 11311053
    [Google Scholar]
  51. Navidpour L. Miri R. Shafiee A. Synthesis and calcium channel antagonist activity of new 1,4-dihydropyridine derivatives containing lipophilic 4-imidazolyl substituents. Arzneimittelforschung 2004 54 9 499 504 15500195
    [Google Scholar]
  52. Miri R. Javidnia K. Sarkarzadeh H. Hemmateenejad B. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1,4-dihydropyridines as calcium channel antagonist. Bioorg. Med. Chem. 2006 14 14 4842 4849 10.1016/j.bmc.2006.03.016 16603367
    [Google Scholar]
  53. Hosseini M. Miri R. Amini M. Mirkhani H. Hemmateenejad B. Ghodsi S. Alipour E. Shafiee A. Synthesis, QSAR and calcium channel antagonist activity of new 1,4-dihydropyridine derivatives containing 1-methyl-4,5-dichloroimidazolyl substituents. Arch. Pharm. 2007 340 10 549 556 10.1002/ardp.200600211 17849444
    [Google Scholar]
  54. Bulbul B. Ozturk G. Condensed 1,4-DHPs with various esters and their calcium channel antagonist activities. Eur. J. Med. Chem. 2009 44 5 2052 2058 10.1016/j.ejmech.2008.10.008 19013690
    [Google Scholar]
  55. Sadek B. Fahelelbom K.M.S. Morusciag L. Elz S. Synthesis and calcium channel blocking activity of 1, 4-dihydropyridine derivatives containing ester substitute and phenyl carbamoyl group. Am. J. Appl. Sci. 2011 8 4 303 309 10.3844/ajassp.2011.303.309
    [Google Scholar]
  56. Rucins M. Kaldre D. Pajuste K. Fernandes M.A.S. Vicente J.A.F. Klimaviciusa L. Jaschenko E. Kanepe-Lapsa I. Shestakova I. Plotniece M. Gosteva M. Sobolev A. Jansone B. Muceniece R. Klusa V. Plotniece A. Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives. C. R. Chim. 2013 17 1 69 80 10.1016/j.crci.2013.07.003
    [Google Scholar]
  57. Domracheva I. Kanepe-Lapsa I. Vilskersts R. Bruvere I. Bisenieks E. Velena A. Turovska B. Duburs G. 4-pyridinio-1,4-DHPs as calcium ion transport modulators: Antagonist, agonist, and dual action. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/2075815 32308799
    [Google Scholar]
  58. Angona P.I. Daniel S. Martin H. Bonet A. Wnorowski A. Maj M. Jóźwiak K. Silva T.B. Refouvelet B. Borges F. Marco-Contelles J. Ismaili L. Design, synthesis and biological evaluation of new antioxidant and neuroprotective multitarget directed ligands able to block calcium channels. Molecules 2020 25 6 1329 10.3390/molecules25061329 32183349
    [Google Scholar]
  59. Yelshanskaya M.V. Nadezhdin K.D. Kurnikova M.G. Sobolevsky A.I. Structure and function of the calcium‐selective TRP channel TRPV6. J. Physiol. 2021 599 10 2673 2697 10.1113/JP279024 32073143
    [Google Scholar]
  60. Jafari-Chermahini M.T. Tavakol H. One‐pot synthesis of hantzsch 1,4‐dihydropyridines by a series of iron oxide nanoparticles: Putative synthetic TRPV6 calcium channel blockers. ChemistrySelect 2021 6 9 2360 2365 10.1002/slct.202004390
    [Google Scholar]
  61. Shahidi F. Zhong Y. Measurement of antioxidant activity. J. Funct. Foods 2015 18 757 781 10.1016/j.jff.2015.01.047
    [Google Scholar]
  62. Goyal S. Thirumal D. Singh S. Kumar D. Singh I. Kumar G. Sindhu R.K. Basics of antioxidants and their importance. Antioxidants 2024 1 20
    [Google Scholar]
  63. Pisoschi A.M. Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015 97 55 74 10.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  64. Sisein E.A. Biochemistry of free radicals and antioxidants. Scholars Acad. J. Biosci. 2014 2 2 110 118
    [Google Scholar]
  65. Khan M.A. Kola V.B. Noor B. The antioxidant activity of dihydropyridine derivatives. Curr. Res. Bioorg. Org. Chem. 2020 3 124 10.29011/2639‑4685.100024
    [Google Scholar]
  66. Alami M. Fulop T. Boumezough K. Khalil A. Zerif E. Berrougui H. Oxidative Stress in Neurodegenerative Diseases. Biomarkers of Oxidative Stress: Clinical Aspects of Oxidative Stress. Cham Springer 2024 71 102 10.1007/978‑3‑031‑69962‑7_4
    [Google Scholar]
  67. Malek R. Maj M. Wnorowski A. Jóźwiak K. Martin H. Iriepa I. Moraleda I. Chabchoub F. Marco-Contelles J. Ismaili L. Multi-target 1,4-dihydropyridines showing calcium channel blockade and antioxidant capacity for Alzheimer’s disease therapy. Bioorg. Chem. 2019 91 103205 10.1016/j.bioorg.2019.103205 31446330
    [Google Scholar]
  68. Selli̇tepe H.E. Doğan İ.S. Eroğlu G. Barut B. Özel A. Synthesis, characterization and investigation of cholinesterase enzyme inhibition and antioxidant activities of some 4-aryl-1,4-dihydropyridine derivatives. J. Res. Phar. 2019 23 4 608 616 10.12991/jrp.2019.168
    [Google Scholar]
  69. Suntres Z.E. Liposomal antioxidants for protection against oxidant‐induced damage. J. Toxicol. 2011 2011 1 16 10.1155/2011/152474 21876690
    [Google Scholar]
  70. Cabrera C.D.D. Santa-Helena E. Leal H.P. Moura D.R.R. Nery L.E.M. Gonçalves C.A.N. Russowsky D. Montes D’Oca M.G. Synthesis and antioxidant activity of new lipophilic dihydropyridines. Bioorg. Chem. 2019 84 1 16 10.1016/j.bioorg.2018.11.009 30471487
    [Google Scholar]
  71. Beckhauser T.F. Francis-Oliveira J. Pasquale D.R. Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity. J. Exp. Neurosci. 2016 10s Suppl. 1 23 48 10.4137/JEN.S39887 27625575
    [Google Scholar]
  72. Michalska P. Mayo P. Fernández-Mendívil C. Tenti G. Duarte P. Buendia I. Ramos M.T. López M.G. Menéndez J.C. León R. Antioxidant, Anti-inflammatory and neuroprotective profiles of novel 1,4-dihydropyridine derivatives for the treatment of alzheimer’s disease. Antioxidants 2020 9 8 650 10.3390/antiox9080650 32708053
    [Google Scholar]
  73. Hadi H.A. Suwaidi J.A. Endothelial dysfunction in diabetes mellitus. Vasc. Health Risk Manag. 2007 3 6 853 876 18200806
    [Google Scholar]
  74. Nakamura M. Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J. Physiol. 2020 598 14 2977 2993 10.1113/JP276747 30869158
    [Google Scholar]
  75. Katiyar S. Ahmad S. Kumar A. Ansari A. Bisen A.C. Ahmad I. Gulzar F. Bhatta R.S. Tamrakar A.K. Sashidhara K.V. Design, synthesis, and biological evaluation of 1,4-dihydropyridine–Indole as a potential antidiabetic agent via GLUT4 translocation. J. Med. Chem. 2024 67 14 11957 11974 10.1021/acs.jmedchem.4c00570 39013034
    [Google Scholar]
  76. Praveenkumar E. Gurrapu N. Kolluri K.P. Yerragunta V. Kunduru R.B. Subhashini N.J.P. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors. Bioorg. Chem. 2019 90 103056 10.1016/j.bioorg.2019.103056 31276952
    [Google Scholar]
  77. Aminu K.S. Uzairu A. Abechi S.E. Shallangwa G.A. Umar A.B. Activity prediction, structure-based drug design, molecular docking, and pharmacokinetic studies of 1,4-DHPs derivatives as amylase inhibitors, J. Taibah. Univ. Med. Sc 2024 19 2 270 286 38234713
    [Google Scholar]
  78. Bagre A. Patel P.R. Naqvi S. Jain K. Emerging concerns of infectious diseases and drug delivery challenges. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases Amsterdam, Netherlands Elsevier 2022 1 23 10.1016/B978‑0‑323‑91201‑3.00013‑X
    [Google Scholar]
  79. Pulingam T. Parumasivam T. Gazzali A.M. Sulaiman A.M. Chee J.Y. Lakshmanan M. Chin C.F. Sudesh K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022 170 106103 10.1016/j.ejps.2021.106103 34936936
    [Google Scholar]
  80. Li P. Sahore K. Liu J. Singh R.K. Singh. Synthesis and antimicrobial evaluation of 2-aminobenzophenone linked 1, 4-dihydropyridine derivatives. Asian J. Chem. 2014 26 16 5291 5294 10.14233/ajchem.2014.17403
    [Google Scholar]
  81. Kapri A. Gupta N. Nain S. Therapeutic potential of pyrazole containing compounds: An Updated Review. Pharm. Chem. J. 2024 58 2 252 267 10.1007/s11094‑024‑03141‑x
    [Google Scholar]
  82. Vijesh A.M. Isloor A.M. Peethambar S.K. Shivananda K.N. Arulmoli T. Isloor N.A. Hantzsch reaction: Synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur. J. Med. Chem. 2011 46 11 5591 5597 10.1016/j.ejmech.2011.09.026 21968373
    [Google Scholar]
  83. Prakash O. Hussain K. Kumar R. Wadhwa D. Sharma C. Aneja K.R. Synthesis and antimicrobial evaluation of new 1,4-dihydro-4-pyrazolylpyridines and 4-pyrazolylpyridines. Org. Med. Chem. Lett. 2011 1 1 5 10.1186/2191‑2858‑1‑5 22373350
    [Google Scholar]
  84. Sohal S.H. Kaur M. Khare R. p-TSA catalyzed, one-pot synthesis and antimicrobial evaluation of some novel fused dipyrazolo-1,4-dihydropyridine derivatives. Amer. J. Org. Chem. 2014 4 2 21 25
    [Google Scholar]
  85. Rajput A.P. Girase P.D. Synthesis, characterization and microbial screening of isoxazole derivatives of 2, 6- dichloro-1-(N-substituted phenyl)-1, 4-dihydropyridine-3,5-dicarbaldeyhde. Int. J. Chemt. Res. 2011 2 4 38 41
    [Google Scholar]
  86. Murthy Y.L.N. Rajack A. Ramji T.M. babu J.J. Praveen C. Lakshmi A.K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines. Bioorg. Med. Chem. Lett. 2012 22 18 6016 6023 10.1016/j.bmcl.2012.05.003 22901391
    [Google Scholar]
  87. Singh H. Sindhu J. Khurana J.M. Sharma C. Aneja K.R. A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-DHPs and their biological and photophysical studies. Aust. J. Chem. 2013 66 9 1088 10.1071/CH13217
    [Google Scholar]
  88. Olejníková P. Svorc L. Olšovská D. Panáková A. Vihonská Z. Kovaryová K. Marchalín S. Antimicrobial activity of novel c2-substituted 1,4-dihydropyridine analogues. Sci. Pharm. 2014 82 2 221 232 10.3797/scipharm.1311‑04 24959401
    [Google Scholar]
  89. Morbale T.S. Shinde S.S. Jadhav D.S. Modified eggshell catalyzed, one-pot synthesis and antimicrobial evaluation of 1, 4-dihydropyridines and polyhydroquinolines. Pharm. Lett. 2015 7 12 169 182
    [Google Scholar]
  90. Singala P.M. Shah V.H. One-pot synthesis of some novel N-aryl-1,4-DHPs derivatives bearing nitrogen mustard. Inter. Lett. Chem. 2015 48 61 67
    [Google Scholar]
  91. Mahmoodi N.O. Ramzanpour S. Pirbasti G.F. One-pot multi-component synthesis of 1,4-dihydropyridines using Zn(2+) @KSF and evaluating their antibacterial and antioxidant activities. Arch. Pharm. 2015 348 4 275 282 10.1002/ardp.201400414 25708128
    [Google Scholar]
  92. Nkosi S.M. Anand K. Anandakumar S. Singh S. Chuturgoon A.A. Gengan R.M. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of novel quinoline bearing dihydropyridines. J. Photochem. Photobiol. B 2016 165 266 276 10.1016/j.jphotobiol.2016.10.009 27871033
    [Google Scholar]
  93. Elumalai K. Elumalai M. Eluri K. Srinivasan S. Ali A.M. Reddy V.B. Sarangi S.P. Facile synthesis, spectral characterization, antimicrobial and in vitro cytotoxicity of novel N3,N5-diisonicotinyl-2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarbohydrazide derivatives. Bull. Fac. Pharm. Cairo Univ. 2016 54 1 77 86 10.1016/j.bfopcu.2016.01.003
    [Google Scholar]
  94. Ziaie M. Dilmaghani A.K. Tukmechi A. Synthesis and biological evaluation of 1,2,4-triazoles and 1,3,4-oxadiazoles derivatives linked to 1,4-DHPs scaffold. Acta Chim. Slov. 2017 64 4 895 901 10.17344/acsi.2017.3506 29318321
    [Google Scholar]
  95. Ahamed A. Arif I.A. Mateen M. Kumar S.R. Idhayadhulla A. Antimicrobial, anticoagulant, and cytotoxic evaluation of multidrug resistance of new 1,4-dihydropyridine derivatives. Saudi J. Biol. Sci. 2018 25 6 1227 1235 10.1016/j.sjbs.2018.03.001 30174527
    [Google Scholar]
  96. Shanmugam K. Vijayabaskaran M. Sambathkumar R. Jayaraman S. Design, synthesis and docking studies of derivatives of 1,4-dihydropyridine as antibacterial agents. World J. Pharm. Res. 2022 9 1196 1211
    [Google Scholar]
  97. Gündüz M.G. Dengiz C. Aslan K.E. Bogojevic S.S. Nikodinovic-Runic J. Attaching azoles to Hantzsch 1,4-dihydropyridines: Synthesis, theoretical investigation of nonlinear optical properties, antimicrobial evaluation and molecular docking studies. J. Mol. Struct. 2022 1247 131316 10.1016/j.molstruc.2021.131316
    [Google Scholar]
  98. Goswami A. Kaur N. Kaur M. Singh K. Sohal H.S. Han H. Bhowmik P.K. Facile one-pot synthesis and anti-microbial activity of novel 1,4-dihydropyridine derivatives in aqueous micellar solution under microwave irradiation. Molecules 2024 29 5 1115 10.3390/molecules29051115 38474626
    [Google Scholar]
  99. Arsyad M.H. Syafina I. Hapsah H. Hervina H. Knowing and understanding the tuberculosis (Tb) disease of the lung (literature review). Inter. J. Nat. Sci. Stud. Devel. 2024 1 2 56 85 10.55299/ijoss.v1i2.15
    [Google Scholar]
  100. Sultana Z.Z. Hoque F.U. Beyene J. Islam A.U. Khan M.H. Ahmed S. Hawlader D.H. Hossain A. HIV infection and multidrug resistant tuberculosis: A systematic review and meta-analysis. BMC Infect. Dis. 2021 21 1 3
    [Google Scholar]
  101. Leowattana W. Leowattana P. Leowattana T. Tuberculosis of the spine. World J. Orthop. 2023 14 5 275 293 10.5312/wjo.v14.i5.275 37304201
    [Google Scholar]
  102. Gevariya H. Desai B. Vora V. Shah A. Synthesis of some new unsymmetrical 1,4-derivatives as potent antitubercular agents. Heterocycl. Commun. 2001 7 5 481 484 10.1515/HC.2001.7.5.481
    [Google Scholar]
  103. Venugopala K.N. Deb P.K. Pillay M. Chopra D. Chandrashekharappa S. Morsy M.A. Aldhubiab B.E. Attimarad M. Nair A.B. Sreeharsha N. Kandeel M. Venugopala R. Mohanlall V. 4-Aryl-1,4-Dihydropyridines as potential enoyl-acyl carrier protein reductase inhibitors: Antitubercular activity and molecular docking study. Curr. Top. Med. Chem. 2021 21 4 295 306 10.2174/1568026620666201102121606 33138763
    [Google Scholar]
  104. Sirisha K. Achaiah G. Reddy V.M. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines. Arch. Pharm. 2010 343 6 342 352 10.1002/ardp.200900243 20496343
    [Google Scholar]
  105. Mohammadpour F. Eskenati S. Ghazvini K.N. Synthesis and in vitro evaluation of the antimycobacterial activity of N-aryl-1,4-dihydropyridine-3,5-dicarboxamides. J. Sci. I. R. Iran 2012 23 2 129 138
    [Google Scholar]
  106. Desai N.C. Trivedi A.R. Somani H.C. Bhatt K.A. Design, synthesis, and biological evaluation of 1,4-dihydropyridine derivatives as potent antitubercular agents. Chem. Biol. Drug Des. 2015 86 3 370 377 10.1111/cbdd.12502 25534154
    [Google Scholar]
  107. Baydar E. Gündüz M.G. Krishna V.S. Şimşek R. Sriram D. Yıldırım S.Ö. Butcher R.J. Şafak C. Synthesis, crystal structure and antimycobacterial activities of 4-indolyl-1,4-dihydropyridine derivatives possessing various ester groups. Res. Chem. Intermed. 2017 43 12 7471 7489 10.1007/s11164‑017‑3087‑0
    [Google Scholar]
  108. Kumar R.S. Idhayadhulla A. Nasser A.A.J. Selvin J. Synthesis and anticoagulant activity of a new series of 1,4-dihydropyridine derivatives. Eur. J. Med. Chem. 2011 46 2 804 810 10.1016/j.ejmech.2010.12.006 21220179
    [Google Scholar]
  109. Tenti G. Egea J. Villarroya M. Leon R. Fernandez J.C. Identification of 4,6-diaryl-1,4-DHPs as a new class of neuroprotective agents. Med. Chem. Comm. 2013 4 3 590 10.1039/c3md20345j
    [Google Scholar]
  110. Babu N.M. Elumalai K. Srinivasan S. Eluri K. Elumalai M. Sivannan S. Synthesis and anticholinesterase activity of a novel series of acetazolamide condensed 1,4-dihydropyridines. Carb. Res. Conver. 2019 2 3 191 197 10.1016/j.crcon.2019.10.002
    [Google Scholar]
  111. Subudhi B.B. Panda P.K. Synthesis and antiulcer activity of 1,4-DHPs and their mannich bases with sulphanilamide. Indian J. Chem. 2009 48B 725 728
    [Google Scholar]
  112. Akbar I. Radhakrishnan S. Meenakshisundaram K. Manilal A. Design of 1,4-dihydropyridine hybrid benzamide derivatives: Synthesis and evaluation of analgesic activity and their molecular docking studies. Drug Des. Develop. Ther. 2022 4021 4039
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266375345250414050338
Loading
/content/journals/ctmc/10.2174/0115680266375345250414050338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test