Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Traditional medicinal foods derived from natural sources have gained increasing attention in recent years due to their perceived health benefits and potential therapeutic properties and are deeply rooted in cultural practices. This review aimed at understanding their potential health benefits, emphasizes the need to identify the key bioactive substances in traditional home medicine. We have discussed the bioactive properties, molecular targets, and anti-cancer effects of various compounds such as curcumin, genistein, berberine, resveratrol, and, quercetin present in traditional medicinal foods. Our study highlights the potential of traditional medicinal food in the prevention and management of various health conditions, including cardiovascular diseases, cancer and neurodegenerative disorders as evident from studies and clinical trials. Additionally, our study explores the mechanistic action of various bioactive constituents of grapes, rosemary, barberry, turmeric and garlic that have been shown to interfere with cancer growth, proliferation, metastasis, angiogenesis, and induce apoptosis by targeting various pathways and the cell cycle. Additionally, a wide range of healing abilities of medicinal foods including their impact on cancer cells demonstrate their direct anti-tumor potential along with antioxidant and antiinflammatory properties. To summarize, the present review highlights that integrating the insights of contemporary science with the age-old wisdom of traditional medicine in a systematic way holds immense potential for developing alternate and effective approaches to cancer therapeutics and offering evidence-based dietary recommendations.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266328466240829045659
2024-09-09
2025-12-22
Loading full text...

Full text loading...

References

  1. ChanW.J.J. AdiwidjajaJ. McLachlanA.J. BoddyA.V. HarnettJ.E. Interactions between natural products and cancer treatments: underlying mechanisms and clinical importance.Cancer Chemother. Pharmacol.202391210311910.1007/s00280‑023‑04504‑z36707434
    [Google Scholar]
  2. GroverP. ThakurK. BhardwajM. MehtaL. RainaS.N. RajpalV.R. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation.Curr. Top. Med. Chem.202424121050107410.2174/011568026628251823123107531138279745
    [Google Scholar]
  3. FitzgeraldM. HeinrichM. BookerA. Medicinal plant analysis: A historical and regional discussion of emergent complex techniques.Front. Pharmacol.202010148010.3389/fphar.2019.0148031998121
    [Google Scholar]
  4. PetrovskaB. Historical review of medicinal plants′ usage.Pharmacogn. Rev.20126111510.4103/0973‑7847.9584922654398
    [Google Scholar]
  5. ThakurR.K. RajpalV.R. RaoS.R. SinghA. JoshiL. KaushalP. RainaS.N. Induction and evaluation of colchitetraploids of two species of Tinospora Miers, 1851.Comp. Cytogenet.202014221122910.3897/CompCytogen.v14i2.3339432509238
    [Google Scholar]
  6. ArumugamG. SwamyM. SinniahU. Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance.Molecules201621436910.3390/molecules2104036927043511
    [Google Scholar]
  7. GreenwellM. RahmanP.K. Medicinal plants: their use in anticancer treatment.Int. J. Pharm. Sci. Res.20156104103411226594645
    [Google Scholar]
  8. HussainM. ThakurR.K. KhazirJ. AhmedS. KhanM.I. RahiP. PeerL.A. Vppalayam ShanmugamP. KaurS. RainaS.N. ReshiZ.A. SehgalD. RajpalV.R. MirB.A. Traditional uses, Phytochemistry, Pharmacology, and Toxicology of the Genus Artemisia L. (Asteraceae) : A High-value Medicinal Plant.Curr. Top. Med. Chem.202424430134210.2174/156802662366623091410414137711006
    [Google Scholar]
  9. SaundersF.R. WallaceH.M. On the natural chemoprevention of cancer.Plant Physiol. Biochem.201048762162610.1016/j.plaphy.2010.03.00120347597
    [Google Scholar]
  10. SrinivasanK. Spices as influencers of body metabolism: an overview of three decades of research.Food Res. Int.2005381778610.1016/j.foodres.2004.09.001
    [Google Scholar]
  11. Abdel-SalaA.M. Functional foods: Hopefulness to good health.Am. J. Food Technol.201052869910.3923/ajft.2010.86.99
    [Google Scholar]
  12. Gurib-FakimA. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.00816105678
    [Google Scholar]
  13. OrganizationW.H. General Guidelines for Methodologies on Research and Evaluation of Traditional MedicineWorld Health Organization2000
    [Google Scholar]
  14. FabricantD. S. FarnsworthN. R. The value of plants used in traditional medicine for drug discovery.Environmental Health Perspectives2001109S16975
    [Google Scholar]
  15. ThakurR.K. RajpalV.R. ChaudharyM. SonkarA. RaoS.R. KaushalP. DubeyB.K. GoelS. RainaS.N. Bringing to light the preponderance and origin of spontaneous triploid cytotypes in medicinal Tinospora cordifolia: implications for genetic improvement.Nucleus202366324526010.1007/s13237‑023‑00437‑3
    [Google Scholar]
  16. ThakurR.K. RajpalV.R. RainaS.N. KumarP. SonkarA. JoshiL. UPLC-DAD assisted phytochemical quantitation reveals a sex, ploidy and ecogeography specificity in the expression levels of selected secondary metabolites in medicinal Tinospora cordifolia: implications for elites’ identification program.Curr. Top. Med. Chem.202020869870910.2174/156802662066620012410502731976836
    [Google Scholar]
  17. RasmussenL.H. Presence of the carcinogen ptaquiloside in fern-based food products and traditional medicine: Four cases of human exposure.Current Research in Food Science2021455756410.1016/j.crfs.2021.08.00434458862
    [Google Scholar]
  18. NakazibaR. Traditional Medicinal Vegetables in Northern Uganda: An ethnobotanical survey.Int J Food Sci.20212021558819610.1155/2021/5588196
    [Google Scholar]
  19. GeS. DuoL. WangJ. GegenZhula YangJ. LiZ. TuY. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status.J. Ethnopharmacol.202127111387710.1016/j.jep.2021.11387733515685
    [Google Scholar]
  20. RahmanM.M. MosaddikA. AlamA.H.M.K. Traditional foods with their constituent’s antiviral and immune system modulating properties.Heliyon202171e0595710.1016/j.heliyon.2021.e0595733462562
    [Google Scholar]
  21. HouY. WangX. ZhangY. WangS. MengX. Highland mate: Edible and functional foods in traditional medicine for the prevention and treatment of hypoxia-related symptoms.Curr. Opin. Pharmacol.20216030631410.1016/j.coph.2021.07.01834508939
    [Google Scholar]
  22. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.107719526528921
    [Google Scholar]
  23. Thomas-EapenN.E. Turmeric: the intriguing yellow spice with medicinal properties.Explore (NY)20095211411510.1016/j.explore.2008.12.00819272583
    [Google Scholar]
  24. DinelliG. MarottiI. BosiS. Di GioiaD. BiavatiB. CatizoneP. Physiologically Bioactive Compounds of Functional Foods, Herbs, and Dietary Supplements.Advances in Food Biochemistry200923928910.1201/9781420007695‑c8
    [Google Scholar]
  25. AnandU. Jacobo-HerreraN. AltemimiA. LakhssassiN. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery.Metabolites201991125810.3390/metabo911025831683833
    [Google Scholar]
  26. KanH. ZhangD. ChenW. WangS. HeZ. PangS. QuS. WangY. Identification of anti-inflammatory components in Panax ginseng of Sijunzi Decoction based on spectrum-effect relationship.Chin. Herb. Med.202315112313110.1016/j.chmed.2022.04.00336875431
    [Google Scholar]
  27. TotelinL. When foods become remedies in ancient Greece: The curious case of garlic and other substances.J. Ethnopharmacol.2015167303710.1016/j.jep.2014.08.01825173971
    [Google Scholar]
  28. YaoR. HeC. XiaoP. ‘Food and medicine continuum’ in the East and West: Old tradition and current regulation.Chin. Herb. Med.202215161436875443
    [Google Scholar]
  29. RastogiS. Ayurvedic Principles of Food and Nutrition: Translating Theory into EvidenceBased Practice.Ayurvedic Science of Food and Nutrition.Springer2013314
    [Google Scholar]
  30. KumarS. DobosG.J. RamppT. The significance of ayurvedic medicinal plants.J. Evid. Based Complementary Altern. Med.201722349450110.1177/215658721667139227707902
    [Google Scholar]
  31. CaliskanO. Mediterranean hawthorn fruit (Crataegus) species and potential usage.The mediterranean diet.Elsevier201562162810.1016/B978‑0‑12‑407849‑9.00055‑5
    [Google Scholar]
  32. KhanR.S. GrigorJ. WingerR. WinA. Functional food product development – Opportunities and challenges for food manufacturers.Trends Food Sci. Technol.2013301273710.1016/j.tifs.2012.11.004
    [Google Scholar]
  33. JarvisS. LiC. BogleR.G. Possible interaction between pomegranate juice and warfarin.Emerg. Med. J.2010271747510.1136/emj.2007.05585520029019
    [Google Scholar]
  34. KomperdaK.E. Potential interaction between pomegranate juice and warfarin.Pharmacotherapy20092981002100610.1592/phco.29.8.100219637955
    [Google Scholar]
  35. Rodríguez-FragosoL. Reyes-EsparzaJ. Fruit/vegetable-drug interactions: Effects on drug metabolizing enzymes and drug transporters.Drug DiscoveryInTech2013
    [Google Scholar]
  36. ÇamM. İçyerN.C. ErdoğanF. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development.Lebensm. Wiss. Technol.201455111712310.1016/j.lwt.2013.09.011
    [Google Scholar]
  37. SanguansriL. Ann AugustinM. Functional Food Product Development.201012310.1002/9781444323351.ch1
    [Google Scholar]
  38. SmithJ. CharterE. Functional Food Product DevelopmentBlackwell Publishing Ltd201010.1002/9781444323351
    [Google Scholar]
  39. FongH.H. 22 Integration of Herbal Medicine into Evidence-Based Clinical PracticeLester Packer2011453
    [Google Scholar]
  40. ZhangA. L. FongH. Integration of Herbal Medicine into Evidence-Based Clinical Practice: Current Status and Issues.Herbal Medicine: Biomolecular and Clinical Aspects2nd edBoca Raton (FL): CRC Press/Taylor & Francis2012
    [Google Scholar]
  41. CheC-T. GeorgeV. IjinuT. PushpangadanP. Andrae-MarobelaK. Traditional medicine.Pharmacognosy.Elsevier2024112810.1016/B978‑0‑443‑18657‑8.00037‑2
    [Google Scholar]
  42. RahamanM.M. HossainR. Herrera-BravoJ. IslamM.T. AtolaniO. AdeyemiO.S. OwolodunO.A. KambiziL. DaştanS.D. CalinaD. Sharifi-RadJ. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update.Food Sci. Nutr.20231141657167010.1002/fsn3.321737051367
    [Google Scholar]
  43. ChengY. WanS. YaoL. LinD. WuT. ChenY. ZhangA. LuC. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology.J. Ethnopharmacol.202330611616610.1016/j.jep.2023.11616636649850
    [Google Scholar]
  44. DeviW.D. BonysanaR. KapesaK. MukherjeeP.K. RajashekarY. Edible insects: as traditional medicine for human wellness.Future Foods2023
    [Google Scholar]
  45. BiJ. FangH. ZhangJ. LuL. GuX. ZhengY. A review on the application, phytochemistry and pharmacology of Polygonatum odoratum, an edible medicinal plant.Journal of Future Foods20233324025110.1016/j.jfutfo.2023.02.006
    [Google Scholar]
  46. SarkarT. SalauddinM. RoyA. SharmaN. SharmaA. YadavS. JhaV. RebezovM. KhayrullinM. ThiruvengadamM. ChungI.M. ShariatiM.A. Simal-GandaraJ. Minor tropical fruits as a potential source of bioactive and functional foods.Crit. Rev. Food Sci. Nutr.202363236491653510.1080/10408398.2022.203395335164626
    [Google Scholar]
  47. LinY.S. ChiuY.C. TsaiY.H. TsaiY.F. WangJ.Y. TsengL.M. ChiuJ.H. Different mechanisms involved in the berberine‐induced antiproliferation effects in triple‐negative breast cancer cell lines.J. Cell. Biochem.20191208135311354410.1002/jcb.2862830957305
    [Google Scholar]
  48. DuanZ. Stat3 expression and activation in ovarian cancer.Cancer Res.2006668_Suppl.11641164
    [Google Scholar]
  49. CaiY. LuoQ. SunM. CorkeH. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer.Life Sci.200474172157218410.1016/j.lfs.2003.09.04714969719
    [Google Scholar]
  50. ShanB. CaiY.Z. SunM. CorkeH. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents.J. Agric. Food Chem.200553207749775910.1021/jf051513y16190627
    [Google Scholar]
  51. DengG.F. ShenC. XuX.R. KuangR.D. GuoY.J. ZengL.S. GaoL.L. LinX. XieJ.F. XiaE.Q. LiS. WuS. ChenF. LingW.H. LiH.B. Potential of fruit wastes as natural resources of bioactive compounds.Int. J. Mol. Sci.20121378308832310.3390/ijms1307830822942704
    [Google Scholar]
  52. Ali RezaA.S.M. NasrinM.S. HossenM.A. RahmanM.A. JantanI. HaqueM.A. Sobarzo-SánchezE. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites.Crit. Rev. Food Sci. Nutr.202363225546557610.1080/10408398.2021.202113834955042
    [Google Scholar]
  53. YedjouC.G. GrigsbyJ. MbemiA. NelsonD. MildortB. LatinwoL. TchounwouP.B. The management of diabetes mellitus using medicinal plants and vitamins.Int. J. Mol. Sci.20232410908510.3390/ijms2410908537240430
    [Google Scholar]
  54. MaokaT. Carotenoids as natural functional pigments.J. Nat. Med.202074111610.1007/s11418‑019‑01364‑x31588965
    [Google Scholar]
  55. SainiRK. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements.Antioxidants202211879510.1007/s11418‑019‑01364‑x31588965
    [Google Scholar]
  56. DolganyukV. SukhikhS. KalashnikovaO. IvanovaS. KashirskikhE. ProsekovA. MichaudP. BabichO. Food Proteins: Potential Resources.Sustainability (Basel)2023157586310.3390/su15075863
    [Google Scholar]
  57. ImchenT. SinghK.S. Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry.Algal Res.20236910289810.1016/j.algal.2022.102898
    [Google Scholar]
  58. AshokkumarV. FloraG. SevananM. SripriyaR. ChenW.H. ParkJ.H. Rajesh banuJ. KumarG. Technological advances in the production of carotenoids and their applications– A critical review.Bioresour. Technol.202336712821510.1016/j.biortech.2022.12821536332858
    [Google Scholar]
  59. SiddeegA. AlKehayezN.M. Abu-HiamedH.A. Al-SaneaE.A. AL-FargaA.M. Mode of action and determination of antioxidant activity in the dietary sources: An overview.Saudi J. Biol. Sci.20212831633164410.1016/j.sjbs.2020.11.06433732049
    [Google Scholar]
  60. LoboV. PatilA. PhatakA. ChandraN. Free radicals, antioxidants and functional foods: Impact on human health.Pharmacogn. Rev.20104811812610.4103/0973‑7847.7090222228951
    [Google Scholar]
  61. FrankelE.N. MeyerA.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants.J. Sci. Food Agric.200080131925194110.1002/1097‑0010(200010)80:13<1925::AID‑JSFA714>3.0.CO;2‑4
    [Google Scholar]
  62. CadenasE. DaviesK.J.A. Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us.Free Radic. Biol. Med.2000293-422223010.1016/S0891‑5849(00)00317‑811035250
    [Google Scholar]
  63. PolumbrykM. IvanovS. PolumbrykO. Antioxidants in food systems. Mechanism of action.Food Technology2013
    [Google Scholar]
  64. Wallock-RichardsD. DohertyC.J. DohertyL. ClarkeD.J. PlaceM. GovanJ.R.W. CampopianoD.J. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex.PLoS One2014912e11272610.1371/journal.pone.011272625438250
    [Google Scholar]
  65. ShokrzadehM. EbadiA. Antibacterial Effect of Garlic (Allium sativum L.) on Staphylococcus aureus.Pakistan Journal of Biological Sciences200691577157910.3923/pjbs.2006.1577.1579
    [Google Scholar]
  66. JangH.J. LeeH.J. YoonD.K. JiD.S. KimJ.H. LeeC.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents.Food Sci. Biotechnol.201827121922510.1007/s10068‑017‑0246‑430263743
    [Google Scholar]
  67. PaurI. CarlsenM. H. HalvorsenB. L. BlomhoffR. Antioxidants in Herbs and Spices: Roles in Oxidative Stress and Redox Signaling.Herbal Medicine: Biomolecular and Clinical Aspects.2nd edBoca Raton (FL): CRC Press/Taylor & Francis2012
    [Google Scholar]
  68. KumarA. PrajapatiS. SharmaM. SinghT. ChoudharyN. BhartiA.C. SharmaR. GuptaP. Quantitative assessment of antioxidant potential of selected homeopathic preparations in clinical practice.Drug Metab. Pers. Ther.202338217919010.1515/dmpt‑2022‑016936577508
    [Google Scholar]
  69. TalibW.H. AlHurM.J. Al NaimatS. AhmadR.E. Al-YasariA.H. Al-DalaeenA. ThiabS. MahmodA.I. Anticancer effect of spices used in Mediterranean diet: Preventive and therapeutic potentials.Front. Nutr.2022990565810.3389/fnut.2022.90565835774546
    [Google Scholar]
  70. KaeferC.M. MilnerJ.A. The role of herbs and spices in cancer prevention.J. Nutr. Biochem.200819634736110.1016/j.jnutbio.2007.11.00318499033
    [Google Scholar]
  71. AghajanpourM. NazerM.R. ObeidaviZ. AkbariM. EzatiP. KorN.M. Functional foods and their role in cancer prevention and health promotion: a comprehensive review.Am. J. Cancer Res.20177474076928469951
    [Google Scholar]
  72. IslaM.I. EzquerM.E. LealM. MorenoM.A. ZampiniI.C. Flower beverages of native medicinal plants from Argentina (Acacia caven, Geoffroea decorticans and Larrea divaricata) as antioxidant and anti-inflammatory.J. Ethnopharmacol.202128111449010.1016/j.jep.2021.11449034363930
    [Google Scholar]
  73. Garcia-OliveiraP. BarralM. CarpenaM. GullónP. Fraga-CorralM. OteroP. PrietoM.A. Simal-GandaraJ. Traditional plants from Asteraceae family as potential candidates for functional food industry.Food Funct.20211272850287310.1039/D0FO03433A33683253
    [Google Scholar]
  74. LiuS.J. LvY-P. TangZ-S. ZhangY. XuH-B. ZhangD-B. CuiC-L. LiuH-B. SunH-H. SongZ-X. WeiS-M. Ziziphus jujuba Mill., a plant used as medicinal food: a review of its phytochemistry, pharmacology, quality control and future research.Phytochem. Rev.202120350754110.1007/s11101‑020‑09709‑1
    [Google Scholar]
  75. ShahbaziR. SharifzadF. BagheriR. AlsadiN. Yasavoli-SharahiH. MatarC. Antiinflammatory and immunomodulatory properties of fermented plant foods.Nutrients2021135151610.3390/nu1305151633946303
    [Google Scholar]
  76. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn533245271
    [Google Scholar]
  77. ShahrajabianM.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing.Curr. Org. Chem.202125232885290110.2174/1385272825666211110115656
    [Google Scholar]
  78. AntonangeliF. NataliniA. GarassinoM.C. SicaA. SantoniA. Di RosaF. Regulation of PD-L1 Expression by NF-κB in Cancer.Front. Immunol.20201158462610.3389/fimmu.2020.58462633324403
    [Google Scholar]
  79. HoeselB. SchmidJ.A. The complexity of NF-κB signaling in inflammation and cancer.Mol. Cancer20131218610.1186/1476‑4598‑12‑8623915189
    [Google Scholar]
  80. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  81. AlhazmiH.A. NajmiA. JavedS.A. SultanaS. Al BrattyM. MakeenH.A. MerayaA.M. AhsanW. MohanS. TahaM.M.E. KhalidA. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19.Front. Immunol.20211263755310.3389/fimmu.2021.63755334054806
    [Google Scholar]
  82. ShakoorH. FeehanJ. ApostolopoulosV. PlatatC. Al DhaheriA.S. AliH.I. IsmailL.C. BosevskiM. StojanovskaL. Immunomodulatory effects of dietary polyphenols.Nutrients202113372810.3390/nu1303072833668814
    [Google Scholar]
  83. van SteenwijkH.P. BastA. de BoerA. Immunomodulating effects of fungal betaglucans: From traditional use to medicine.Nutrients2021134133310.3390/nu1304133333920583
    [Google Scholar]
  84. YangF. ZhangY. TariqA. JiangX. AhmedZ. ZhihaoZ. IdreesM. AzizullahA. AdnanM. BussmannR.W. Food as medicine: A possible preventive measure against coronavirus disease ( COVID ‐19).Phytother. Res.202034123124313610.1002/ptr.677032468635
    [Google Scholar]
  85. WangL. YangR. YuanB. LiuY. LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb.Acta Pharm. Sin. B20155431031510.1016/j.apsb.2015.05.00526579460
    [Google Scholar]
  86. PatelS.S. AcharyaA. RayR.S. AgrawalR. RaghuwanshiR. JainP. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease.Crit. Rev. Food Sci. Nutr.202060688793910.1080/10408398.2018.155224430632782
    [Google Scholar]
  87. YangC.M. ChenY.W. ChiP.L. LinC.C. HsiaoL.D. Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts.Biochem. Pharmacol.2017132779110.1016/j.bcp.2017.03.00328288820
    [Google Scholar]
  88. LiZ. GengY-N. JiangJ-D. KongW-J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus.Evid Based Complement Alternat Med.2014201428926410.1155/2014/289264
    [Google Scholar]
  89. AminA.R. KassabR.B. Abdel MoneimA.E. AminH.K. Comparison among garlic, berberine, resveratrol, Hibiscus sabdariffa, genus zizyphus, hesperidin, red beetroot, catha edulis, portulaca oleracea, and mulberry leaves in the treatment of hypertension and type 2 DM: a comprehensive review.Natural Product Communications2020154
    [Google Scholar]
  90. JainS. TripathiS. TripathiP.K. Antioxidant and antiarthritic potential of berberine: In vitro and in vivo studies.Chin. Herb. Med.202315454955510.1016/j.chmed.2023.02.00738094017
    [Google Scholar]
  91. BhartiA.C. RajanP. JadliM. PandeD. SinghT. BhatA. Berberine as an Adjuvant and Sensitizer to Current Chemotherapy.Role of Nutraceuticals in Cancer Chemosensitization.Elsevier201822124010.1016/B978‑0‑12‑812373‑7.00011‑5
    [Google Scholar]
  92. JoshiH. GuptaD.S. KaurG. SinghT. RamniwasS. SakK. AggarwalD. ChhabraR.S. GuptaM. SainiA.K. TuliH.S. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies.Naunyn Schmiedebergs Arch. Pharmacol.2023396123443345810.1007/s00210‑023‑02625‑z37490121
    [Google Scholar]
  93. RuizP.A. BrauneA. HölzlwimmerG. Quintanilla-FendL. HallerD. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells.J. Nutr.200713751208121510.1093/jn/137.5.120817449583
    [Google Scholar]
  94. FuY. GaoR. CaoY. GuoM. WeiZ. ZhouE. LiY. YaoM. YangZ. ZhangN. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice.Int. Immunopharmacol.2014201545810.1016/j.intimp.2014.01.02424508537
    [Google Scholar]
  95. MengZ. YanC. DengQ. GaoD. NiuX. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways.Acta Pharmacol. Sin.201334790191110.1038/aps.2013.2423645013
    [Google Scholar]
  96. YounH.S. LeeJ.Y. FitzgeraldK.A. YoungH.A. AkiraS. HwangD.H. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex.J. Immunol.200517553339334610.4049/jimmunol.175.5.333916116226
    [Google Scholar]
  97. CianciulliA. CalvelloR. CavalloP. DragoneT. CarofiglioV. PanaroM.A. Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression.Toxicol. In Vitro20122671122112810.1016/j.tiv.2012.06.01522771391
    [Google Scholar]
  98. ElshaerM. ChenY. WangX.J. TangX. Resveratrol: An overview of its anti-cancer mechanisms.Life Sci.201820734034910.1016/j.lfs.2018.06.02829959028
    [Google Scholar]
  99. WanX. ChenX. LiuL. ZhaoY. HuangW.J. ZhangQ. MiaoG.G. ChenW. XieH.G. CaoC.C. Berberine ameliorates chronic kidney injury caused by atherosclerotic renovascular disease through the suppression of NFκB signaling pathway in rats.PLoS One201383e5979410.1371/journal.pone.005979423555784
    [Google Scholar]
  100. LiG. WangX. JiangT. GongJ. NiuL. LiN. Berberine prevents intestinal mucosal barrier damage during early phase of sepsis in rat through the toll-like receptors signaling pathway.Korean J. Physiol. Pharmacol.20151911710.4196/kjpp.2015.19.1.125605990
    [Google Scholar]
  101. HsuY.Y. ChenC.S. WuS.N. JongY.J. LoY.C. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells.Eur. J. Pharm. Sci.201246541542510.1016/j.ejps.2012.03.00422469516
    [Google Scholar]
  102. YangW.S. JeongD. YiY.S. LeeB.H. KimT.W. HtweK.M. KimY.D. YoonK.D. HongS. LeeW.S. ChoJ.Y. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1.J. Ethnopharmacol.201415131165117410.1016/j.jep.2013.12.03324378351
    [Google Scholar]
  103. BhaskarS. SudhakaranP.R. HelenA. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway.Cell. Immunol.201631013114010.1016/j.cellimm.2016.08.01127585526
    [Google Scholar]
  104. SpagnuoloC. MocciaS. RussoG.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders.Eur. J. Med. Chem.201815310511510.1016/j.ejmech.2017.09.00128923363
    [Google Scholar]
  105. KhanN. AdhamiV.M. MukhtarH. Apoptosis by dietary agents for prevention and treatment of cancer.Biochem. Pharmacol.200876111333133910.1016/j.bcp.2008.07.01518692026
    [Google Scholar]
  106. ShankarS. GanapathyS. ChenQ. SrivastavaR.K. Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis.Mol. Cancer2008711610.1186/1476‑4598‑7‑1618226269
    [Google Scholar]
  107. YuL. RiosE. CastroL. LiuJ. YanY. DixonD. Genistein: Dual role in women’s health.Nutrients2021139304810.3390/nu1309304834578926
    [Google Scholar]
  108. Sharifi-RadJ. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits.Oxid Med Cell Longev.202120213268136
    [Google Scholar]
  109. JinC.Y. ParkC. CheongJ. ChoiB.T. LeeT.H. LeeJ.D. LeeW.H. KimG.Y. RyuC.H. ChoiY.H. Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3.Cancer Lett.20072571566410.1016/j.canlet.2007.06.01917689858
    [Google Scholar]
  110. JinZ. El-DeiryW.S. Overview of cell death signaling pathways.Cancer Biol. Ther.20054214717110.4161/cbt.4.2.150815725726
    [Google Scholar]
  111. JoshiH. GuptaD.S. AbjaniN.K. KaurG. MohanC.D. KaurJ. AggarwalD. RaniI. RamniwasS. AbdulabbasH.S. GuptaM. TuliH.S. Genistein: a promising modulator of apoptosis and survival signaling in cancer.Naunyn Schmiedebergs Arch. Pharmacol.2023396112893291010.1007/s00210‑023‑02550‑137300702
    [Google Scholar]
  112. ZhongH. WangH. LiJ. HuangY. TRAIL-based gene delivery and therapeutic strategies.Acta Pharmacol. Sin.201940111373138510.1038/s41401‑019‑0287‑831444476
    [Google Scholar]
  113. ShiR.X. OngC.N. ShenH.M. Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells.Cancer Res.200565177815782310.1158/0008‑5472.CAN‑04‑387516140950
    [Google Scholar]
  114. TaraphdarA.K. RoyM. BhattacharyaR. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention.Curr. Sci.200113871396
    [Google Scholar]
  115. AliM. WaniS.U.D. SalahuddinM. S NM. KM. DeyT. ZargarM.I. SinghJ. Recent advance of herbal medicines in cancer- a molecular approach.Heliyon202392e1368410.1016/j.heliyon.2023.e1368436865478
    [Google Scholar]
  116. ShahrajabianM.H. SunW. ChengQ. Clinical aspects and health benefits of ginger ( Zingiber officinale ) in both traditional Chinese medicine and modern industry.Acta Agric. Scand. B Soil Plant Sci.201969654655610.1080/09064710.2019.1606930
    [Google Scholar]
  117. KhodaieL. SadeghpoorO. Ginger from ancient times to the new outlook.Jundishapur J. Nat. Pharm. Prod.2015101e1840210.17795/jjnpp‑1840225866718
    [Google Scholar]
  118. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  119. WheatJ. CurrieG. Herbal medicine for cancer patients: An evidence based review.Internet Journal of Alternative Medicine2008522830
    [Google Scholar]
  120. MalaguarneraL. Influence of Resveratrol on the Immune Response.Nutrients201911594610.3390/nu1105094631035454
    [Google Scholar]
  121. KitagishiY. KobayashiM. MatsudaS. Protection against Cancer with Medicinal Herbs via Activation of Tumor Suppressor.J Oncol.2012201223653010.1155/2012/236530
    [Google Scholar]
  122. SharmaP. SharmaR. TyagiR. Inhibitors of cyclin dependent kinases: useful targets for cancer treatment.Curr. Cancer Drug Targets200881537510.2174/15680090878349713118288944
    [Google Scholar]
  123. FischerP. LaneD. Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics.Curr. Med. Chem.20007121213124510.2174/092986700337404811032968
    [Google Scholar]
  124. RaoC.V. KurkjianC.D. YamadaH.Y. Mitosis-targeting natural products for cancer prevention and therapy.Curr. Drug Targets201213141820183010.2174/13894501280454553323140292
    [Google Scholar]
  125. Bailon-MoscosoN. Cevallos-SolorzanoG. Romero-BenavidesJ. Ramirez OrellanaM. Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies.Curr. Genomics201718210613110.2174/138920291766616080812564528367072
    [Google Scholar]
  126. FarajiP. Araj-KhodaeiM. GhaffariM. Ezzati Nazhad DolatabadiJ. Anticancer effects of Melissa officinalis: A traditional medicine.Ulum-i Daruyi202128335536410.34172/PS.2021.43
    [Google Scholar]
  127. AbazariM.F. NasiriN. KariziS.Z. NejatiF. Haghi-AminjanH. NorouziS. PiriP. EstakhrL. FaradonbehD.R. KohandaniM. DaliriK. SanadgolN. AskariH. An updated review of various medicinal applications of p-Co umaric acid: From antioxidative and anti-inflammatory properties to effects on cell cycle and proliferation.Mini Rev. Med. Chem.202121152187220110.2174/18755607MTEzjMzQo233459233
    [Google Scholar]
  128. KingstonD.G.I. Tubulin-interactive natural products as anticancer agents.J. Nat. Prod.200972350751510.1021/np800568j19125622
    [Google Scholar]
  129. YueQ.X. LiuX. GuoD.A. Microtubule-binding natural products for cancer therapy.Planta Med.201076111037104310.1055/s‑0030‑125007320577942
    [Google Scholar]
  130. MukhtarE. AdhamiV.M. MukhtarH. Targeting microtubules by natural agents for cancer therapy.Mol. Cancer Ther.201413227528410.1158/1535‑7163.MCT‑13‑079124435445
    [Google Scholar]
  131. LiuZ. XuP. WuT. ZengW. Microtubule-targeting Anticancer Agents from Marine Natural Substance.Anti-Cancer Agents in Medicinal Chemistry201414310.2174/187152061403140207163402
    [Google Scholar]
  132. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑935655306
    [Google Scholar]
  133. LiQ. ZhaoH. ChenW. HuangP. Berberine induces apoptosis and arrests the cell cycle in multiple cancer cell lines.Arch. Med. Sci.20231951530153710.5114/aoms/13296937732040
    [Google Scholar]
  134. AgnarelliA. NataliM. Garcia-GilM. PesiR. TozziM.G. IppolitoC. BernardiniN. VignaliR. BatistoniR. BianucciA.M. MarracciS. Cell-specific pattern of berberine pleiotropic effects on different human cell lines.Sci. Rep.2018811059910.1038/s41598‑018‑28952‑330006630
    [Google Scholar]
  135. SinghT. ChhokarA. ThakurK. AggarwalN. PragyaP. YadavJ. TripathiT. JadliM. BhatA. GuptaP. KhuranaA. Chandra BhartiA. Targeting aberrant expression of STAT3 and AP-1 oncogenic transcription factors and HPV oncoproteins in cervical cancer by Berberis aquifolium.Front. Pharmacol.20211275741410.3389/fphar.2021.75741434776976
    [Google Scholar]
  136. SinghT. KaushikM. MishraL.C. BehlC. SinghV. TuliH.S. Exosomal miRNAs as novel avenues for breast cancer treatment.Front. Genet.202314113477910.3389/fgene.2023.113477937035739
    [Google Scholar]
  137. YuanL. ZhangY. XiaJ. LiuB. ZhangQ. LiuJ. LuoL. PengZ. SongZ. ZhuR. Resveratrol induces cell cycle arrest via a p53-independent pathway in A549 cells.Mol. Med. Rep.20151142459246410.3892/mmr.2014.310025515619
    [Google Scholar]
  138. WuH. ChenL. ZhuF. HanX. SunL. ChenK. The cytotoxicity effect of resveratrol: cell cycle arrest and induced apoptosis of breast cancer 4T1 cells.Toxins (Basel)2019111273110.3390/toxins1112073131847250
    [Google Scholar]
  139. SinghS.K. BanerjeeS. AcostaE.P. LillardJ.W. SinghR. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway.Oncotarget2017810172161722810.18632/oncotarget.1530328212547
    [Google Scholar]
  140. AhmadN. AdhamiV.M. AfaqF. FeyesD.K. MukhtarH. Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells.Clin. Cancer Res.2001751466147311350919
    [Google Scholar]
  141. Filippi-ChielaE.C. VillodreE.S. ZaminL.L. LenzG. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells.PLoS One201166e2084910.1371/journal.pone.002084921695150
    [Google Scholar]
  142. MitraS. EmranT.B. ChandranD. ZidanB.M.R.M. DasR. MamadaS.S. MasyitaA. SalampeM. NainuF. KhandakerM.U. IdrisA.M. Simal-GandaraJ. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers.Front. Nutr.2022995193510.3389/fnut.2022.95193535990357
    [Google Scholar]
  143. SagarS.M. YanceD. WongR.K. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.Curr. Oncol.2006131142610.3747/co.v13i1.7717576437
    [Google Scholar]
  144. HoseinkhaniZ. NorooznezhadF. Rastegari-PouyaniM. MansouriK. Medicinal plants extracts with antiangiogenic activity: where is the link?Adv. Pharm. Bull.202010337037810.34172/apb.2020.04532665895
    [Google Scholar]
  145. AstinfeshanM. RasmiY. KheradmandF. KarimipourM. RahbarghaziR. AramwitP. NasirzadehM. DaeihassaniB. ShirpoorA. GholinejadZ. SabooryE. Curcumin inhibits angiogenesis in endothelial cells using downregulation of the PI3K/Akt signaling pathway.Food Biosci.201929869310.1016/j.fbio.2019.04.005
    [Google Scholar]
  146. ChoH.D. LeeK.W. WonY.S. KimJ.H. SeoK.I. Cultivated Orostachys japonicus extract inhibits VEGF-induced angiogenesis via regulation of VEGFR2 signaling pathway in vitro and in vivo.J. Ethnopharmacol.202025611266410.1016/j.jep.2020.11266432045685
    [Google Scholar]
  147. PanD. GongX. WangX. LiM. Role of active components of medicinal food in the regulation of angiogenesis.Front. Pharmacol.20211159405010.3389/fphar.2020.59405033716724
    [Google Scholar]
  148. BhatA. YadavJ. ThakurK. AggarwalN. TripathiT. ChhokarA. SinghT. JadliM. BhartiA.C. Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog–GLI signaling components.Cancer Cell Int.202121131910.1186/s12935‑021‑02026‑334167524
    [Google Scholar]
  149. AchudhanD. LiuS.C. LinY.Y. LeeH.P. WangS.W. HuangW.C. WuY.C. KuoY.H. TangC.H. Antcin K inhibits VEGF‐dependent angiogenesis in human rheumatoid arthritis synovial fibroblasts.J. Food Biochem.2022461e1402210.1111/jfbc.1402234841538
    [Google Scholar]
  150. TrabalziniL. TundisR. ValacchiG. EvelsonP.A. FinettiF. Editorial: Angiogenesis and Nutraceuticals.Front. Pharmacol.20221394315810.3389/fphar.2022.94315835707403
    [Google Scholar]
  151. ZhouX. GuoY. YangK. LiuP. WangJ. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing.J. Ethnopharmacol.202228211466210.1016/j.jep.2021.11466234555452
    [Google Scholar]
  152. LiJ. LiR. WuX. ZhengC. ShiuP.H.T. RangsinthP. LeeS.M.Y. LeungG.P.H. An update on the potential application of herbal medicine in promoting angiogenesis.Front. Pharmacol.20221392881710.3389/fphar.2022.92881735928282
    [Google Scholar]
  153. GhodratS. RashidmayvanM. KargozarS. FernsG.A. Ghayour-MobarhanM. The effects of medicinal herbs and phytochemicals on angiogenesis and models of wound healing.Biomaterials for Vasculogenesis and Angiogenesis.Elsevier202216318510.1016/B978‑0‑12‑821867‑9.00015‑9
    [Google Scholar]
  154. KolaP. MetowogoK. ManjulaS.N. KatawaG. ElkhenanyH. MruthunjayaK.M. Eklu-GadegbekuK. AklikokouK.A. Ethnopharmacological evaluation of antioxidant, anti-angiogenic, and anti-inflammatory activity of some traditional medicinal plants used for treatment of cancer in Togo/Africa.J. Ethnopharmacol.202228311467310.1016/j.jep.2021.11467334571077
    [Google Scholar]
  155. BhandarkarS.S. ArbiserJ.L. Curcumin as an inhibitor of angiogenesis.Adv Exp Med Biol.20075951859510.1007/978‑0‑387‑46401‑5_7
    [Google Scholar]
  156. FuZ. ChenX. GuanS. YanY. LinH. HuaZ.C. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway.Oncotarget2015623194691948210.18632/oncotarget.362526254223
    [Google Scholar]
  157. ZahediM. Salmani IzadiH. ArghidashF. GumprichtE. BanachM. SahebkarA. The effect of curcumin on hypoxia in the tumour microenvironment as a regulatory factor in cancer.Arch. Med. Sci.20231961616162938058727
    [Google Scholar]
  158. MeybodiS.M. RezaeiP. FarajiN. JamehbozorgK. AshnaS. ShokriF. GoleijP. MoradiS. KashianM. ArefnezhadR. SahebkarA. Curcumin and its novel formulations for the treatment of hepatocellular carcinoma: New trends and future perspectives in cancer therapy.J. Funct. Foods202310810570510.1016/j.jff.2023.105705
    [Google Scholar]
  159. ZhaoX. ZhangR. SongZ. YangK. HeH. JinL. ZhangW. Curcumin suppressed the proliferation and apoptosis of HPV ‐positive cervical cancer cells by directly targeting the E6 protein.Phytother. Res.2023ptr.786810.1002/ptr.786837157900
    [Google Scholar]
  160. ZhangX. ZhuL. WangX. ZhangH. WangL. XiaL. Basic research on curcumin in cervical cancer: Progress and perspectives.Biomed. Pharmacother.202316211459010.1016/j.biopha.2023.11459036965256
    [Google Scholar]
  161. ShiH. JingX. WeiX. PerezR.G. RenM. ZhangX. LouH. S ‐allyl cysteine activates the Nrf2‐dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo.J. Neurochem.2015133229830810.1111/jnc.1298625393425
    [Google Scholar]
  162. WangH.C. YangJ.H. HsiehS.C. SheenL.Y. Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis.J. Agric. Food Chem.201058117096710310.1021/jf100613x20459099
    [Google Scholar]
  163. LiC. Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells.Mediators Inflamm.2015201543469210.1155/2015/434692
    [Google Scholar]
  164. SongX. YueZ. NieL. ZhaoP. ZhuK. WangQ. Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/510362634745287
    [Google Scholar]
  165. MitraS. DasR. EmranT.B. LabibR.K. Noor-E-Tabassum IslamF. SharmaR. AhmadI. NainuF. ChidambaramK. AlhumaydhiF.A. ChandranD. CapassoR. WilairatanaP. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential.Front. Pharmacol.20221394396710.3389/fphar.2022.94396736071845
    [Google Scholar]
  166. KaschulaC.H. HunterR. CottonJ. TuveriR. NgarandeE. DzoboK. SchäferG. SiyoV. LangD. KuszaD.A. DaviesB. KatzA.A. ParkerM.I. The garlic compound ajoene targets protein folding in the endoplasmic reticulum of cancer cells.Mol. Carcinog.20165581213122810.1002/mc.2236426207910
    [Google Scholar]
  167. ChuY.L. HoC.T. ChungJ.G. RajasekaranR. SheenL.Y. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells.J. Agric. Food Chem.201260348363837110.1021/jf301298y22860996
    [Google Scholar]
  168. ZhangQ. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells.Cancer Chemother. Pharmacol.201881969977
    [Google Scholar]
  169. XiaoD. PintoJ.T. SohJ.W. DeguchiA. GundersenG.G. PalazzoA.F. YoonJ.T. ShirinH. WeinsteinI.B. Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase 1 activation.Cancer Res.200363206825683714583480
    [Google Scholar]
  170. AroraA. KalraN. ShuklaY. Regulation of p21/ras protein expression by diallyl sulfide in DMBA induced neoplastic changes in mouse skin.Cancer Lett.20062421283610.1016/j.canlet.2005.10.04916448747
    [Google Scholar]
  171. FengY. ZhuX. WangQ. JiangY. ShangH. CuiL. CaoY. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection.Malar. J.201211126810.1186/1475‑2875‑11‑26822873687
    [Google Scholar]
  172. Quintero-FabiánS. Ortuño-SahagúnD. Vázquez-CarreraM. López-RoaR.I. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.Mediators Inflamm.2013201338181510.1155/2013/381815
    [Google Scholar]
  173. AtalayM. GordilloG. RoyS. RovinB. BagchiD. BagchiM. SenC.K. Anti‐angiogenic property of edible berry in a model of hemangioma.FEBS Lett.20035441-325225710.1016/S0014‑5793(03)00509‑X12782326
    [Google Scholar]
  174. RoyS. KhannaS. AlessioH.M. ViderJ. BagchiD. BagchiM. SenC.K. Anti-angiogenic property of edible berries.Free Radic. Res.20023691023103210.1080/107157602100000666212448828
    [Google Scholar]
  175. TsakiroglouP. VandenAkkerN.E. Del Bo’C. RisoP. Klimis-ZacasD. Role of berry anthocyanins and phenolic acids on cell migration and angiogenesis: An updated overview.Nutrients2019115107510.3390/nu1105107531096573
    [Google Scholar]
  176. DuthieS.J. Berry phytochemicals, genomic stability and cancer: Evidence for chemoprotection at several stages in the carcinogenic process.Mol. Nutr. Food Res.200751666567410.1002/mnfr.20060025717487926
    [Google Scholar]
  177. ParkJ. JeongD. SongM. KimB. Recent advances in anti-metastatic approaches of herbal medicines in 5 major cancers: From traditional medicine to modern drug discovery.Antioxidants202110452710.3390/antiox1004052733801741
    [Google Scholar]
  178. AlsamriH. El HasasnaH. Al DhaheriY. EidA.H. AttoubS. IratniR. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3.Front. Oncol.2019974310.3389/fonc.2019.0074331456939
    [Google Scholar]
  179. YeL. JiaY. JiK. SandersA.J. XueK. JiJ. MasonM.D. JiangW.G. Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis.Oncol. Lett.20151031240125010.3892/ol.2015.345926622657
    [Google Scholar]
  180. MoriA. LehmannS. O’KellyJ. KumagaiT. DesmondJ.C. PervanM. McBrideW.H. KizakiM. KoefflerH.P. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells.Cancer Res.20066663222322910.1158/0008‑5472.CAN‑05‑008716540674
    [Google Scholar]
  181. PandeyP. KhanF. AlshammariN. SaeedA. AqilF. SaeedM. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management.Front. Pharmacol.202314115403410.3389/fphar.2023.115403437021043
    [Google Scholar]
  182. KaschulaC.H. TuveriR. NgarandeE. DzoboK. BarnettC. KuszaD.A. GrahamL.M. KatzA.A. RafudeenM.S. ParkerM.I. HunterR. SchäferG. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells.BMC Cancer201919124810.1186/s12885‑019‑5388‑830894168
    [Google Scholar]
  183. NgK.T.P. GuoD.Y. ChengQ. GengW. LingC.C. LiC.X. LiuX.B. MaY.Y. LoC.M. PoonR.T.P. FanS.T. ManK. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma.PLoS One201272e3165510.1371/journal.pone.003165522389672
    [Google Scholar]
  184. de GeusV. Ewing-GrahamP.C. de KoningW. de KoningM.N.C. van den BoschT.P.P. NiggA.L. van EijckC.H.J. JozwiakM. van BeekhuizenH.J. MustafaD.A.M. Identifying molecular changes in early cervical cancer samples of patients that developed metastasis.Front. Oncol.20221171507710.3389/fonc.2021.71507735087740
    [Google Scholar]
  185. PintoP.J.J. ChenM.J. Santos NetoE. FaloppaC.C. De BrotL. GuimaraesA.P.G. da CostaA.A.B.A. BaiocchiG. Prognostic factors in locally advanced cervical cancer with pelvic lymph node metastasis.Int. J. Gynecol. Cancer202232323924510.1136/ijgc‑2021‑00314035256409
    [Google Scholar]
  186. YeZ. ZhangY. LiangY. LangJ. ZhangX. ZangG. YuanD. TianG. XiaoM. YangJ. Cervical cancer metastasis and recurrence risk prediction based on deep convolutional neural network.Curr. Bioinform.202217216417310.2174/1574893616666210708143556
    [Google Scholar]
  187. GuaniB. MahiouK. CrestaniA. CibulaD. BudaA. GaillardT. MathevetP. KocianR. SniadeckiM. WydraD.G. FekiA. PaolettiX. LecuruF. BalayaV. Clinical impact of low-volume lymph node metastases in early-stage cervical cancer: A comprehensive meta-analysis.Gynecol. Oncol.2022164244645410.1016/j.ygyno.2021.12.01534949436
    [Google Scholar]
  188. PangS.S. MurphyM. MarkhamM.J. Current management of locally advanced and metastatic cervical cancer in the United States.JCO Oncol. Pract.202218641742210.1200/OP.21.0079535286157
    [Google Scholar]
  189. GennigensC. JerusalemG. LapailleL. De CuypereM. StreelS. KridelkaF. Ray-CoquardI. Recurrent or primary metastatic cervical cancer: current and future treatments.ESMO Open20227510057910.1016/j.esmoop.2022.10057936108558
    [Google Scholar]
  190. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  191. TuliH.S. SakK. GargV.K. KumarA. AdhikaryS. KaurG. ParasharN.C. ParasharG. MukherjeeT.K. SharmaU. JainA. MohapatraR.K. DhamaK. KumarM. SinghT. Ampelopsin targets in cellular processes of cancer: Recent trends and advances.Toxicol. Rep.202291614162310.1016/j.toxrep.2022.07.01336561961
    [Google Scholar]
  192. VermaP. Temozolomide and flavonoids against glioma: from absorption and metabolism to exosomal delivery.Naunyn Schmiedebergs Arch. Pharmacol.202311737566307
    [Google Scholar]
  193. AggarwalN. YadavJ. ChhakaraS. JanjuaD. TripathiT. ChaudharyA. ChhokarA. ThakurK. SinghT. BhartiA.C. Phytochemicals as potential chemopreventive and chemotherapeutic agents for emerging human papillomavirus–driven head and neck cancer: Current evidence and future prospects.Front. Pharmacol.20211269904410.3389/fphar.2021.69904434354591
    [Google Scholar]
  194. RamadanM.F. DurazzoA. LucariniM. Advances in Research on Food Bioactive Molecules and Health.Molecules20212624767810.3390/molecules2624767834946759
    [Google Scholar]
  195. QueroJ. Jiménez-MorenoN. EsparzaI. OsadaJ. CerradaE. Ancín-AzpilicuetaC. Rodríguez-YoldiM.J. Grape stem extracts with potential anticancer and antioxidant properties.Antioxidants202110224310.3390/antiox1002024333562442
    [Google Scholar]
  196. GoreG.G. SatishS. GanpuleA. SrivastavaS. AthavaleM. Garlic (Allium sativum) exhibits anticancer and anticancer stem cell activity on breast, prostate, colon, hepatic and cervical cancer cell lines.Int. J. Herb. Med.202199399
    [Google Scholar]
  197. YangQ.Q. ChengL-Z. ZhangT. YaronS. JiangH-X. SuiZ-Q. CorkeH. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa).Ind. Crops Prod.202015211256110.1016/j.indcrop.2020.112561
    [Google Scholar]
  198. ClothierR. Gómez-LechónM.J. Kinsner-OvaskainenA. Kopp-SchneiderA. O’ConnorJ.E. PrietoP. StanzelS. Comparative analysis of eight cytotoxicity assays evaluated within the ACuteTox Project.Toxicol. In Vitro20132741347135610.1016/j.tiv.2012.08.01522951948
    [Google Scholar]
  199. SamarghandianS. BoskabadyM. DavoodiS. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line.Pharmacogn. Mag.201062430931410.4103/0973‑1296.7179921120034
    [Google Scholar]
  200. BicasJ.L. Neri-NumaI.A. RuizA.L.T.G. De CarvalhoJ.E. PastoreG.M. Evaluation of the antioxidant and antiproliferative potential of bioflavors.Food Chem. Toxicol.20114971610161510.1016/j.fct.2011.04.01221540069
    [Google Scholar]
  201. HidalgoM. AmantF. BiankinA.V. BudinskáE. ByrneA.T. CaldasC. ClarkeR.B. de JongS. JonkersJ. MælandsmoG.M. Roman-RomanS. SeoaneJ. TrusolinoL. VillanuevaA. Patient-derived xenograft models: an emerging platform for translational cancer research.Cancer Discov.201449998101310.1158/2159‑8290.CD‑14‑000125185190
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266328466240829045659
Loading
/content/journals/ctmc/10.2174/0115680266328466240829045659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test