Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer stands as a prominent global cause of mortality, with chemotherapy using synthetic drugs being the predominant treatment method. Despite its high success rate, this approach is constrained by substantial side effects. Herbal medicines, known for their diverse bioactive components, exhibit promising anticancer attributes. The drug delivery systems can improve the precision of delivering these herbal compounds, enhancing efficacy while minimizing potential side effects. Various platforms, such as nanoparticle-based carriers, liposomes, and polymeric micelles, are investigated for encapsulating and delivering herbal components to cancer cells. These systems not only enhance the bioavailability of herbal compounds but also facilitate controlled release, sustained drug circulation, and improved cellular uptake. This comprehensive review focuses on the recent advancement in the field of drug delivery systems employed in the delivery of plant-derived anticancer compounds. It categorizes carriers into organic and inorganic nanoparticles, addressing their application in enhancing the safety and efficacy of plant-derived anticancer compounds alongside associated challenges. The review concludes by outlining recent investigations into drug delivery systems aimed at increasing the efficacy of plant-derived anticancer compounds. Future research in this field should emphasize experiments in animal models and potential clinical translation.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266315985240710063754
2024-07-31
2026-02-02
Loading full text...

Full text loading...

References

  1. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑910647931
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. NurgaliK. JagoeR.T. AbaloR. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?Front. Pharmacol.2018924510.3389/fphar.2018.0024529623040
    [Google Scholar]
  4. WallingtonM. SaxonE.B. BombM. SmittenaarR. WickendenM. McPhailS. RashbassJ. ChaoD. DewarJ. TalbotD. PeakeM. PerrenT. WilsonC. DodwellD. 30-day mortality after systemic anticancer treatment for breast and lung cancer in England: A population-based, observational study.Lancet Oncol.20161791203121610.1016/S1470‑2045(16)30383‑727599138
    [Google Scholar]
  5. Garcia-OliveiraP. Fraga-CorralM. PereiraA.G. Lourenço-LopesC. Jimenez-LopezC. PrietoM.A. Simal-GandaraJ. Scientific basis for the industrialization of traditionally used plants of the Rosaceae family.Food Chem.202033012719710.1016/j.foodchem.2020.12719732540521
    [Google Scholar]
  6. Ali AbdallaY.O. SubramaniamB. NyamathullaS. ShamsuddinN. ArshadN.M. MunK.S. Natural products for cancer therapy: A review of their mechanism of actions and toxicity in the past decade.J Trop Med20222022579435010.1155/2022/5794350
    [Google Scholar]
  7. ShahZ. GoharU.F. JamshedI. MushtaqA. MukhtarH. Zia-UI-HaqM. TomaS.I. ManeaR. MogaM. PopoviciB. Podophyllotoxin: History, recent advances and future prospects.Biomolecules202111460310.3390/biom1104060333921719
    [Google Scholar]
  8. MoudiM. GoR. YienC.Y.S. NazreM. Vinca alkaloids.Int. J. Prev. Med.20134111231123524404355
    [Google Scholar]
  9. LazzeroniM. Guerrieri-GonzagaA. GandiniS. JohanssonH. SerranoD. CazzanigaM. AristarcoV. MacisD. MoraS. CaldarellaP. PaganiG. PruneriG. RivaA. PetrangoliniG. MorazzoniP. DeCensiA. BonanniB. A presurgical study of lecithin formulation of green tea extract in women with early breast cancer.Cancer Prev. Res.201710636337010.1158/1940‑6207.CAPR‑16‑029828400479
    [Google Scholar]
  10. BanerjeeS. JiC. MayfieldJ.E. GoelA. XiaoJ. DixonJ.E. GuoX. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2.Proc. Natl. Acad. Sci.2018115328155816010.1073/pnas.180679711529987021
    [Google Scholar]
  11. CirciobanD. LedetiA. VlaseG. MoacaA. LedetiI. FarcasC. VlaseT. DeheleanC. Thermal degradation, kinetic analysis and evaluation of biological activity on human melanoma for artemisinin.J. Therm. Anal. Calorim.2018134174174810.1007/s10973‑018‑7497‑z
    [Google Scholar]
  12. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms2013317731261749
    [Google Scholar]
  13. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  14. Dehghani NazhvaniA. SarafrazN. AskariF. HeidariF. RazmkhahM. Anti-cancer effects of traditional medicinal herbs on oral squamous cell carcinoma.Asian Pac. J. Cancer Prev.202021247948410.31557/APJCP.2020.21.2.47932102527
    [Google Scholar]
  15. CraggG.M. NewmanD.J. Plants as a source of anti-cancer agents.J. Ethnopharmacol.20051001-2727910.1016/j.jep.2005.05.01116009521
    [Google Scholar]
  16. JibrilA.B. KwartengM.A. ChovancovaM. A demographic analysis of consumers’ preference for green products.Proceedings of 6th International Scientific Conference Contemporary Issues in Business, Management and Economics EngineeringVilnius Gediminas Technical University: Vilnius Gediminas Technical University2019Available from: http://cibmee.vgtu.lt/index.php/verslas/2019/paper/view/449
    [Google Scholar]
  17. ReinM.J. RenoufM. Cruz-HernandezC. Actis-GorettaL. ThakkarS.K. da Silva PintoM. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy.Br. J. Clin. Pharmacol.201375358860210.1111/j.1365‑2125.2012.04425.x22897361
    [Google Scholar]
  18. MouhidL. Corzo-MartínezM. TorresC. VázquezL. RegleroG. FornariT. Ramírez de MolinaA. Improving in vivo efficacy of bioactive molecules: An overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems.J. Oncol.2017201713410.1155/2017/735197628555156
    [Google Scholar]
  19. JiaW. ZhouL. LiL. ZhouP. ShenZ. Nano-based drug delivery of polyphenolic compounds for cancer treatment: progress, opportunities, and challenges.Pharmaceuticals202316110110.3390/ph1601010136678599
    [Google Scholar]
  20. CrommelinD.J.A. van HoogevestP. StormG. The role of liposomes in clinical nanomedicine development. What now? Now what?J. Control. Release202031825626310.1016/j.jconrel.2019.12.02331846618
    [Google Scholar]
  21. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  22. ColoneM. CalcabriniA. StringaroA. Drug delivery systems of natural products in oncology.Molecules20202519456010.3390/molecules2519456033036240
    [Google Scholar]
  23. AbbasiR. ShinehG. MobarakiM. DoughtyS. TayebiL. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review.J. Nanopart. Res.20232534310.1007/s11051‑023‑05690‑w36875184
    [Google Scholar]
  24. ZhaoZ. UkidveA. KimJ. MitragotriS. Targeting strategies for tissue-specific drug delivery.Cell2020181115116710.1016/j.cell.2020.02.00132243788
    [Google Scholar]
  25. ThomasO.S. WeberW. Overcoming physiological barriers to nanoparticle delivery : Are we there yet?Front. Bioeng. Biotechnol.2019741510.3389/fbioe.2019.0041531921819
    [Google Scholar]
  26. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  27. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  28. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.02720797419
    [Google Scholar]
  29. JiaY. SunJ. YangJ. ChenC. ZhangZ. YangK. ShenP. QuS. HeB. SongY. HanX. Tumor microenvironment-responsive nanoherb delivery system for synergistically inhibition of cancer stem cells.ACS Appl. Mater. Interfaces20231513163291634210.1021/acsami.2c1902936946515
    [Google Scholar]
  30. DirisalaA. UchidaS. TohK. LiJ. OsawaS. TockaryT. A. LiuX. AbbasiS. HayashiK. MochidaY. FukushimaS. KinohH. OsadaK. KataokaK. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines.Sci Adv2020626eabb813310.1126/sciadv.abb8133
    [Google Scholar]
  31. Kumar KhannaV. Targeted delivery of nanomedicines.ISRN Pharmacol.201220121910.5402/2012/57139422577576
    [Google Scholar]
  32. WangC. FengL. YangX. WangF. LuW. Folic acid-conjugated liposomal vincristine for multidrug resistant cancer therapy.Asian J. Pharmac. Sci.20138211812710.1016/j.ajps.2013.07.01536108329
    [Google Scholar]
  33. Caldeira de Araújo LopesS. Vinícius Melo NovaisM. Salviano TeixeiraC. Honorato-SampaioK. Tadeu PereiraM. FerreiraL.A.M. BragaF.C. Cristina OliveiraM. Preparation, physicochemical characterization, and cell viability evaluation of long-circulating and pH-sensitive liposomes containing ursolic acid.BioMed Res. Int.201320131710.1155/2013/46714723984367
    [Google Scholar]
  34. DebnathS.K. SrivastavaR. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects.Front. Nanotechnol.2021364456410.3389/fnano.2021.644564
    [Google Scholar]
  35. MohajeriM. BehnamB. SahebkarA. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials.J. Cell. Physiol.2019234129831910.1002/jcp.2689930078182
    [Google Scholar]
  36. YangK. FengL. LiuZ. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy.Adv. Drug Deliv. Rev.2016105Pt B22824110.1016/j.addr.2016.05.01527233212
    [Google Scholar]
  37. MohanH. FaganA. GiordaniS. Carbon nanomaterials (CNMs) in cancer therapy: A database of CNM-based nanocarrier systems.Pharmaceutics2023155154510.3390/pharmaceutics1505154537242787
    [Google Scholar]
  38. LiH. ZhangN. HaoY. WangY. JiaS. ZhangH. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo .Drug Deliv.20192611017102610.1080/10717544.2019.167282931578087
    [Google Scholar]
  39. LiuZ. ChenK. DavisC. SherlockS. CaoQ. ChenX. DaiH. Drug delivery with carbon nanotubes for in vivo cancer treatment.Cancer Res.200868166652666010.1158/0008‑5472.CAN‑08‑146818701489
    [Google Scholar]
  40. NamC.W. KangS.J. KangY.K. KwakM.K. Cell growth inhibition and apoptosis by SDS-solubilized single-walled carbon nanotubes in normal rat kidney epithelial cells.Arch. Pharm. Res.201134466166910.1007/s12272‑011‑0417‑421544732
    [Google Scholar]
  41. GarrigaR. Herrero-ContinenteT. PalosM. CebollaV.L. OsadaJ. MuñozE. Rodríguez-YoldiM.J. Toxicity of carbon nanomaterials and their potential application as drug delivery systems: in vitro Studies in Caco-2 and MCF-7 cell lines.Nanomaterials2020108161710.3390/nano1008161732824730
    [Google Scholar]
  42. MahorA SinghPP BharadwajP SharmaN YadavS RosenholmJM Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology.C20217119
    [Google Scholar]
  43. RungrotmongkolT. ArsawangU. IamsamaiC. VongachariyaA. DubasS.T. RuktanonchaiU. SoottitantawatA. HannongbuaS. Increased dispersion and solubility of carbon nanotubes noncovalently modified by the polysaccharide biopolymer, chitosan: MD simulations.Chem. Phys. Lett.20115071-313413710.1016/j.cplett.2011.03.06632226088
    [Google Scholar]
  44. KamN.W.S. LiuZ. DaiH. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing.J. Am. Chem. Soc.200512736124921249310.1021/ja053962k16144388
    [Google Scholar]
  45. SheoranS. AroraS. SamsonrajR. GovindaiahP. vureeS. Lipid-based nanoparticles for treatment of cancer.Heliyon202285e0940310.1016/j.heliyon.2022.e0940335663739
    [Google Scholar]
  46. XuP. YinQ. ShenJ. ChenL. YuH. ZhangZ. LiY. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS.Int. J. Pharm.20134541213010.1016/j.ijpharm.2013.06.05323830941
    [Google Scholar]
  47. MengJ. GuoF. XuH. LiangW. WangC. YangX.D. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo .Sci. Rep.2016612239010.1038/srep2239026947928
    [Google Scholar]
  48. CaoC. WangQ. LiuY. Lung cancer combination therapy: doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers.Drug Des. Devel. Ther.2019131087109810.2147/DDDT.S19800331118562
    [Google Scholar]
  49. KhanT. GuravP. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs.Front. Pharmacol.20188100210.3389/fphar.2017.0100229479316
    [Google Scholar]
  50. LiL. AhmedB. MehtaK. KurzrockR. Liposomal curcumin with and without oxali-platin: Effects on cell growth, apoptosis, and angiogenesis in colorectal cancer.Mol. Cancer Ther.200761276128210.1158/1535‑7163.MCT‑06‑055617431105
    [Google Scholar]
  51. WongK.E. NgaiS.C. ChanK.G. LeeL.H. GohB.H. ChuahL.H. Curcumin nanoformulations for colorectal cancer: A review.Front. Pharmacol.20191015210.3389/fphar.2019.0015230890933
    [Google Scholar]
  52. ZhaoY.N. CaoY.N. SunJ. LiangZ. WuQ. CuiS.H. ZhiD.F. GuoS.T. ZhenY.H. ZhangS.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes.J. Mater. Chem. B Mater. Biol. Med.202081273710.1039/C9TB02051A31746932
    [Google Scholar]
  53. AfsharzadehM. HashemiM. MokhtarzadehA. AbnousK. RamezaniM. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment.Artif. Cells Nanomed. Biotechnol.20184661095111010.1080/21691401.2017.137667528954547
    [Google Scholar]
  54. BonifácioB.V. SilvaP.B. RamosM.A. NegriK.M. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: A review.Int. J. Nanomedicine20149Dec11524363556
    [Google Scholar]
  55. SchaffazickS.R. GuterresS.S. FreitasL.L. PohlmannA.R. Characterization and physicochemical stability of nanoparticulate polymeric systems for drug delivery.Quim. Nova200326572673710.1590/S0100‑40422003000500017
    [Google Scholar]
  56. SannaV. SinghC.K. JashariR. AdhamiV.M. ChamcheuJ.C. RadyI. SechiM. MukhtarH. SiddiquiI.A. Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy.Sci. Rep.2017714157310.1038/srep4157328145499
    [Google Scholar]
  57. FonsecaM. JarakI. VictorF. DominguesC. VeigaF. FigueirasA. Polymersomes as the next attractive generation of drug delivery systems: definition, synthesis and applications.Materials202417231910.3390/ma1702031938255485
    [Google Scholar]
  58. TuguntaevG. Ikechukwu OkekeC. XuJ. LiC. WangP. Nanoscale polymersomes as anti-cancer drug carriers applied for pharmaceutical delivery.CPD201622192857286510.2174/1381612822666160217142319
    [Google Scholar]
  59. VermaR.K. YuW. ShrivastavaA. ShankarS. SrivastavaR.K. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice.Sci. Rep.2016613274310.1038/srep3274327624879
    [Google Scholar]
  60. Chandra BoinpellyV. VermaR.K. SrivastavS. SrivastavaR.K. ShankarS. α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway.J. Cell. Mol. Med.20202419113431135410.1111/jcmm.1573132830433
    [Google Scholar]
  61. LiuY. YuF. DaiS. MengT. ZhuY. QiuG. WenL. ZhouX. YuanH. HuF. All-trans retinoic acid and doxorubicin delivery by folic acid modified polymeric micelles for the modulation of pin1-mediated dox-induced breast cancer stemness and metastasis.Mol. Pharm.202118113966397810.1021/acs.molpharmaceut.1c0022034579532
    [Google Scholar]
  62. HuK. ZhouH. LiuY. LiuZ. LiuJ. TangJ. LiJ. ZhangJ. ShengW. ZhaoY. WuY. ChenC. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells.Nanoscale20157188607861810.1039/C5NR01084E25898852
    [Google Scholar]
  63. YokoyamaM. Polymeric micelles as drug carriers: their lights and shadows.J. Drug Target.201422757658310.3109/1061186X.2014.93468825012065
    [Google Scholar]
  64. SabziA. RahmaniA. EdalatiM. KahrobaH. DadpourM.R. SalehiR. ZarebkohanA. Targeted co-delivery of curcumin and doxorubicin by citric acid functionalized Poly (ε-caprolactone) based micelle in MDA-MB-231 cell.Colloids Surf. B Biointerfaces202019411122510.1016/j.colsurfb.2020.11122532622253
    [Google Scholar]
  65. LvL QiuK YuX ChenC QinF ShiY Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer.j biomed nanotechnol.2016125973985
    [Google Scholar]
  66. ChenL.C. ChenY.C. SuC.Y. WongW.P. SheuM.T. HoH.O. Development and characterization of lecithin-based self-assembling mixed polymeric micellar (saMPMs) drug delivery systems for curcumin.Sci. Rep.2016613712210.1038/srep3712227848996
    [Google Scholar]
  67. HuangY. LuJ. GaoX. LiJ. ZhaoW. SunM. StolzD.B. VenkataramananR. RohanL.C. LiS. PEG-derivatized embelin as a dual functional carrier for the delivery of paclitaxel.Bioconjug. Chem.20122371443145110.1021/bc300046822681537
    [Google Scholar]
  68. Abdel-RahmanM.A. Al-AbdA.M. Thermoresponsive dendrimers based on oligoethylene glycols: Design, synthesis and cytotoxic activity against MCF-7 breast cancer cells.Eur. J. Med. Chem.20136984885410.1016/j.ejmech.2013.09.01924121308
    [Google Scholar]
  69. EscalanteP.I. QuiñonesL.A. ContrerasH.R. Epithelial-mesenchymal transition and micrornas in colorectal cancer chemoresistance to FOLFOX.Pharmaceutics20211317510.3390/pharmaceutics1301007533429840
    [Google Scholar]
  70. ThiagarajanG. RayA. MaluginA. GhandehariH. PAMAM- camptothecin conjugate inhibits proliferation and induces nuclear fragmentation in colorectal carcinoma cells.Pharm. Res.201027112307231610.1007/s11095‑010‑0179‑620552256
    [Google Scholar]
  71. MadaanK. LatherV. PanditaD. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid.Drug Deliv.201623125426210.3109/10717544.2014.91056424845475
    [Google Scholar]
  72. KhakinahadY. SohrabiS. RaziS. NarmaniA. KhaleghiS. AsadiyunM. JafariH. MohammadnejadJ. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: A smart nano-device for suppression of breast cancer.Biomed. Eng. Lett.202212331732910.1007/s13534‑022‑00225‑z35892030
    [Google Scholar]
  73. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and Limitations of Dendrimers in Biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  74. HongS. ChoiD.W. KimH.N. ParkC.G. LeeW. ParkH.H. Protein-based nanoparticles as drug delivery systems.Pharmaceutics202012760410.3390/pharmaceutics1207060432610448
    [Google Scholar]
  75. DiazD. CareA. SunnaA. Bioengineering strategies for protein-based nanoparticles.Genes20189737010.3390/genes907037030041491
    [Google Scholar]
  76. TomaoS. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer.Int. J. Nanomedicine2009Apr9910.2147/IJN.S3061
    [Google Scholar]
  77. KarthikeyanS. HotiS.L. PrasadN.R. Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells.Biomed. Pharmacother.20157027428210.1016/j.biopha.2015.02.00625776512
    [Google Scholar]
  78. YapK.M. SekarM. FuloriaS. WuY.S. GanS.H. Mat RaniN.N.I. SubramaniyanV. KokareC. LumP.T. BegumM.Y. ManiS. MeenakshiD.U. SathasivamK.V. FuloriaN.K. drug delivery of natural products through nanocarriers for effective breast cancer therapy: a comprehensive review of literature.Int. J. Nanomedicine2021167891794110.2147/IJN.S32813534880614
    [Google Scholar]
  79. JainS. SaxenaN. SharmaM.K. ChatterjeeS. Metal nanoparticles and medicinal plants: Present status and future prospects in cancer therapy.Mater. Today Proc.20203166267310.1016/j.matpr.2020.06.602
    [Google Scholar]
  80. GhaffariM. DolatabadiJ.E.N. Nanotechnology for pharmaceuticals.Industrial Applications of Nanomaterials.Elsevier2019475502Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128157497000177 10.1016/B978‑0‑12‑815749‑7.00017‑7
    [Google Scholar]
  81. GreishK. PittalàV. TaurinS. TahaS. BahmanF. MathurA. JasimA. MohammedF. El-DeebI. FredericksS. Rashid-DoubellF. Curcumin–copper complex nanoparticles for the management of triple-negative breast cancer.Nanomaterials201881188410.3390/nano811088430388728
    [Google Scholar]
  82. YehM.K. ChenC.C. HsiehD.S. HuangK.J. ChanY.L. HongP.D. WuC-J. Improving anticancer efficacy of (-)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells.Drug Des. Devel. Ther.2014May45910.2147/DDDT.S58414
    [Google Scholar]
  83. ThipeV.C. AmiriK.P. BloebaumP. RaphaelA.K. KhoobchandaniM. KattiK.K. JurissonS.S. KattiK.V. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers.Int. J. Nanomedicine2019144413442810.2147/IJN.S20444331417252
    [Google Scholar]
  84. StolarczykE.U. StolarczykK. ŁaszczM. KubiszewskiM. MaruszakW. OlejarzW. BrykD. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties.Eur. J. Pharm. Sci.20179617618510.1016/j.ejps.2016.09.01927644892
    [Google Scholar]
  85. GovindarajuS. RoshiniA. LeeM.H. YunK. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells.Int. J. Nanomedicine2019145147515710.2147/IJN.S20977331371953
    [Google Scholar]
  86. El-RefaiA.A. GhoniemG. El-KhateebA.Y. HassaanM.M. Cytotoxicity of aqueous garlic and ginger metal nanoparticles extracts against tumor cell lines in vitro .Journal of Food and Dairy Sciences201892515810.21608/jfds.2018.35186
    [Google Scholar]
  87. SoniK. KohliK. Sulforaphane-decorated gold nanoparticle for anti-cancer activity: in vitro and in vivo studies.Pharm. Dev. Technol.201924442743810.1080/10837450.2018.150703830063165
    [Google Scholar]
  88. BrownS.D. NativoP. SmithJ.A. StirlingD. EdwardsP.R. VenugopalB. FlintD.J. PlumbJ.A. GrahamD. WheateN.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin.J. Am. Chem. Soc.2010132134678468410.1021/ja908117a20225865
    [Google Scholar]
  89. GibsonJ.D. KhanalB.P. ZubarevE.R. Paclitaxel-functionalized gold nanoparticles.J. Am. Chem. Soc.200712937116531166110.1021/ja075181k17718495
    [Google Scholar]
  90. MaheswariP. PonnusamyS. HarishS. GaneshM.R. HayakawaY. Hydrothermal synthesis of pure and bio modified TiO2: Characterization, evaluation of antibacterial activity against gram positive and gram negative bacteria and anticancer activity against KB Oral cancer cell line.Arab. J. Chem.20201313484349710.1016/j.arabjc.2018.11.020
    [Google Scholar]
  91. Mohamed IsaE.D. AhmadH. Abdul RahmanM.B. GillM.R. Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment.Pharmaceutics202113215210.3390/pharmaceutics1302015233498885
    [Google Scholar]
  92. Vallet-RegíM. ColillaM. Izquierdo-BarbaI. ManzanoM. Mesoporous silica nanoparticles for drug delivery: Current insights.Molecules20172314710.3390/molecules2301004729295564
    [Google Scholar]
  93. ChaudharyZ. SubramaniamS. KhanG.M. AbeerM.M. QuZ. JanjuaT. KumeriaT. BatraJ. PopatA. Encapsulation and controlled release of resveratrol within functionalized mesoporous silica nanoparticles for prostate cancer therapy.Front. Bioeng. Biotechnol.2019722510.3389/fbioe.2019.0022531620434
    [Google Scholar]
  94. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.16084426258053
    [Google Scholar]
  95. LinJ.T. YeQ.B. YangQ.J. WangG.H. Hierarchical bioresponsive nanocarriers for codelivery of curcumin and doxorubicin.Colloids Surf. B Biointerfaces20191809310110.1016/j.colsurfb.2019.04.02331035057
    [Google Scholar]
  96. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm1106057134207137
    [Google Scholar]
  97. SongY. CaiL. TianZ. WuY. ChenJ. Phytochemical curcumin-coformulated, silver-decorated melanin-like polydopamine/mesoporous silica composites with improved antibacterial and chemotherapeutic effects against drug-resistant cancer cells.ACS Omega2020525150831509410.1021/acsomega.0c0091232637781
    [Google Scholar]
  98. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  99. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
  100. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w33795852
    [Google Scholar]
  101. MogakiR. HashimP.K. OkuroK. AidaT. Guanidinium-based “molecular glues” for modulation of biomolecular functions.Chem. Soc. Rev.201746216480649110.1039/C7CS00647K29034942
    [Google Scholar]
  102. HashimP.K. AbdrabouS.S.M.A. Sub-100 nm carriers by template polymerization for drug delivery applications.Nanoscale Horiz.20249569370710.1039/D3NH00491K38497369
    [Google Scholar]
  103. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart. Mat. Med.20201101910.1016/j.smaim.2020.04.00134553138
    [Google Scholar]
  104. AlibolandiM. TaghdisiS.M. RamezaniP. Hosseini ShamiliF. FarzadS.A. AbnousK. RamezaniM. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo .Int. J. Pharm.20175191-235236410.1016/j.ijpharm.2017.01.04428126548
    [Google Scholar]
  105. WangJ. HeH. CooperR.C. GuiQ. YangH. Drug-conjugated dendrimer hydrogel enables sustained drug release via a self-cleaving mechanism.Mol. Pharm.20191651874188010.1021/acs.molpharmaceut.8b0120730974947
    [Google Scholar]
  106. BaraniM. MirzaeiM. Torkzadeh-MahaniM. Adeli-sardouM. Evaluation of carum-loaded niosomes on breast cancer cells:physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay.Sci. Rep.201991713910.1038/s41598‑019‑43755‑w31073144
    [Google Scholar]
  107. GaoH.W. ChangK.F. HuangX.F. LinY.L. WengJ.C. LiaoK.W. TsaiN.M. Antitumor Effect of n-butylidenephthalide encapsulated on B16/F10 melanoma cells in vitro with a polycationic liposome containing pei and polyethylene glycol complex.Molecules20182312322410.3390/molecules2312322430563276
    [Google Scholar]
  108. LuizM.T. DutraJ.A.P. RibeiroT.C. CarvalhoG.C. SábioR.M. MarchettiJ.M. ChorilliM. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy.Colloids Surf. A Physicochem. Eng. Asp.202264512893510.1016/j.colsurfa.2022.128935
    [Google Scholar]
  109. GrebinykA. PrylutskaS. GrebinykS. EvstigneevM. KrysiukI. SkaternaT. HorakI. SunY. DrobotL. MatyshevskaO. PrylutskyyY. RitterU. FrohmeM. Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo .Cancer Nanotechnol.20211212410.1186/s12645‑021‑00096‑6
    [Google Scholar]
  110. Al-JanabiA.H.A. Hayati RoodbariN. Homayouni TabriziM. Investigating the anticancer and anti-angiogenic effects of graphene oxide nanoparticles containing 6-gingerol modified with chitosan and folate.Cancer Nanotechnol.20231416910.1186/s12645‑023‑00222‑6
    [Google Scholar]
  111. PredarskaI. SaoudM. DračaD. MorganI. KomazecT. EichhornT. MihajlovićE. DunđerovićD. MijatovićS. Maksimović-IvanićD. Hey-HawkinsE. KaluđerovićG.N. Mesoporous silica nanoparticles enhance the anticancer efficacy of platinum(IV)-phenolate conjugates in breast cancer cell lines.Nanomaterials20221221376710.3390/nano1221376736364539
    [Google Scholar]
  112. GreenM.R. ManikhasG.M. OrlovS. AfanasyevB. MakhsonA.M. BharP. HawkinsM.J. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer.Ann. Oncol.20061781263126810.1093/annonc/mdl10416740598
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266315985240710063754
Loading
/content/journals/ctmc/10.2174/0115680266315985240710063754
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test