Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

For many centuries, traditional medicine has played an essential role in health care. The treatment of many illnesses, including cancer, has greatly benefited from using herbal remedies derived from traditional medicine. The bioactive compounds, such as curcumin, silibinin, berberine, ginseng, and others present in traditional medicine have shown a wide range of properties, such as anti-inflammatory, antimicrobial, anti-oxidant as well as potent anti-cancer properties both in laboratory studies and animal experiments ( and ). In this review, we mainly emphasized the anticancer role of bioactive compounds present in traditional medicine, such as curcumin, cardamonin, piperine, berberine, ginseng, silibinin, epigallocatechin gallate, and asafoetida. We also discussed molecular evidence of these compounds in chemoprevention and anticancer effects. These compounds have the potential to interfere with cancer growth, proliferation, metastasis, and angiogenesis and induce apoptosis by targeting different pathways and the cell cycle. This review article also focuses on how these compounds can help overcome drug resistance and enhance the availability of other clinically approved drugs. The usage of these compounds synergistically with other forms of treatment is also of great fascination to new and upcoming research. Finally, we have discussed the bioavailability of these compounds and strategies employed to improve them so their full potential can be exploited.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266302556240620054134
2024-07-02
2026-02-02
Loading full text...

Full text loading...

References

  1. CheC.T. GeorgeV. IjinuT.P. PushpangadanP. Andrae- MarobelaK. Traditional medicine.Pharmacognosy.Academic Press2024112810.1016/B978‑0‑443‑18657‑8.00037‑2
    [Google Scholar]
  2. KhanM.S.A. AhmadI. Herbal medicine: current trends and future prospects.New look to phytomedicine.Academic Press201931310.1016/B978‑0‑12‑814619‑4.00001‑X
    [Google Scholar]
  3. RehmJ. ShieldK.D. Alcohol use and cancer in the European Union.Eur. Addict. Res.20212711810.1159/00050701732417845
    [Google Scholar]
  4. MathurP. SathishkumarK. ChaturvediM. DasP. StephenS. Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India.Indian J. Med. Res.2022156459860710.4103/ijmr.ijmr_1821_2236510887
    [Google Scholar]
  5. DrakeT.M. KnightS.R. HarrisonE.M. SøreideK. Global inequities in precision medicine and molecular cancer research.Front. Oncol.2018834610.3389/fonc.2018.0034630234014
    [Google Scholar]
  6. PanditaD. PanditaA. WaniS.H. AbdelmohsenS.A.M. AlyousefH.A. AbdelbackiA.M.M. Al-YafrasiM.A. Al-ManaF.A. ElansaryH.O. Crosstalk of multi-omics platforms with plants of therapeutic importance.Cells2021106129610.3390/cells1006129634071113
    [Google Scholar]
  7. AmmonH. WahlM. Pharmacology of Curcuma longa.Planta Med.19915711710.1055/s‑2006‑9600042062949
    [Google Scholar]
  8. AmmonH. AnazodoM. SafayhiH. DhawanB. SrimalR. Curcumin: A potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL).Planta Med.199258222610.1055/s‑2006‑9614381326775
    [Google Scholar]
  9. AraújoC.A.C. LeonL.L. Biological activities of Curcuma longa L.Mem. Inst. Oswaldo Cruz200196572372810.1590/S0074‑0276200100050002611500779
    [Google Scholar]
  10. ChattopadhyayI. BiswasK. BandyopadhyayU. BanerjeeR.K. Turmeric and curcumin: Biological actions and medicinal applications.Curr. Sci.20048714453Available from: http://repository.ias.ac.in/5196/
    [Google Scholar]
  11. GrynkiewiczG. ŚlifirskiP. Curcumin and curcuminoids in quest for medicinal status.Acta Biochim. Pol.201259220121210.18388/abp.2012_213922590694
    [Google Scholar]
  12. AliI. HaqueA. SaleemK. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column.Anal. Methods2014682526253610.1039/C3AY41987H
    [Google Scholar]
  13. JoeB. RaoU.J.S.P. LokeshB.R. Presence of an acidic glycoprotein in the serum of arthritic rats: modulation by capsaicin and curcumin.Mol. Cell. Biochem.19971691/212513410.1023/A:10068779287039089639
    [Google Scholar]
  14. Chainani-WuN. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa).J. Altern. Complement. Med.20039116116810.1089/10755530332122303512676044
    [Google Scholar]
  15. AdamczakA. OżarowskiM. KarpińskiT.M. Curcumin, a natural antimicrobial agent with strain-specific activity.Pharmaceuticals202013715310.3390/ph1307015332708619
    [Google Scholar]
  16. AkT. Gülçinİ. Antioxidant and radical scavenging properties of curcumin.Chem. Biol. Interact.20081741273710.1016/j.cbi.2008.05.00318547552
    [Google Scholar]
  17. ShinM.S. YuJ.S. LeeJ. JiY.S. JoungH.J. HanY.M. YooH.H. KangK.S. A hydroxypropyl methylcellulose-based solid dispersion of curcumin with enhanced bioavailability and its hepatoprotective activity.Biomolecules20199728110.3390/biom907028131311168
    [Google Scholar]
  18. WójcikM. KrawczykM. WoźniakL.A. Antidiabetic activity of curcumin.Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome (Second Edition)Elsevier201838540110.1016/B978‑0‑12‑812019‑4.00031‑3
    [Google Scholar]
  19. KeihanianF. SaeidiniaA. BagheriR.K. JohnstonT.P. SahebkarA. Curcumin, hemostasis, thrombosis, and coagulation.J. Cell. Physiol.201823364497451110.1002/jcp.2624929052850
    [Google Scholar]
  20. RodriguesF.C. Anil KumarN.V. ThakurG. Developments in the anticancer activity of structurally modified curcumin: An up- to-date review.Eur. J. Med. Chem.20191777610410.1016/j.ejmech.2019.04.05831129455
    [Google Scholar]
  21. ZhouH. NingY. ZengG. ZhouC. DingX. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT.Oncol. Rep.20214541110.3892/or.2021.796233649826
    [Google Scholar]
  22. HeY. HeL. KhoshabaR. LüF. CaiC. ZhouF. LiaoD. CaoD. Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-mediated mechanism.Molecules20192422417910.3390/molecules2422417931752145
    [Google Scholar]
  23. GuoH. XuY.-M. YeZ.-Q. YuJ.-H. HuX.-Y. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IκBα, c-Jun and androgen receptor.Die Pharmaz.Int. J. Pharmac. Sci.201368643143410.1691/ph.2013.2861
    [Google Scholar]
  24. SongG. MaoY.B. CaiQ.F. YaoL.M. OuyangG.L. BaoS.D. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression.Braz. J. Med. Biol. Res.200538121791179810.1590/S0100‑879X200500120000716302093
    [Google Scholar]
  25. JayakumarS. PatwardhanR.S. PalD. SinghB. SharmaD. KutalaV.K. SandurS.K. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity.Free Radic. Biol. Med.201711353053810.1016/j.freeradbiomed.2017.10.37829080841
    [Google Scholar]
  26. ChenM. TanA. LiJ. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR Signaling.Nutr. Cancer202375272673310.1080/01635581.2022.213939836346025
    [Google Scholar]
  27. MudduluruG. George-WilliamJ.N. MuppalaS. AsanganiI.A. KumarswamyR. NelsonL.D. AllgayerH. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer.Biosci. Rep.201131318519710.1042/BSR2010006520815812
    [Google Scholar]
  28. GaoS. YangJ. ChenC. ChenJ. YeL. WangL. WuJ. XingC. YuK. Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells.J. Exp. Clin. Cancer Res.20123112710.1186/1756‑9966‑31‑2722449094
    [Google Scholar]
  29. LimT.G. LeeS.Y. HuangZ. LimD.Y. ChenH. JungS.K. BodeA.M. LeeK.W. DongZ. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2.Cancer Prev. Res.20147446647410.1158/1940‑6207.CAPR‑13‑038724550143
    [Google Scholar]
  30. ZhangW. CuiN. YeJ. YangB. SunY. KuangH. Curcumin’s prevention of inflammation-driven early gastric cancer and its molecular mechanism.Chin. Herb. Med.202214224425310.1016/j.chmed.2021.11.00336117672
    [Google Scholar]
  31. ChenH.W. LeeJ.Y. HuangJ.Y. WangC.C. ChenW.J. SuS.F. HuangC.W. HoC.C. ChenJ.J.W. TsaiM.F. YuS.L. YangP.C. Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1.Cancer Res.200868187428743810.1158/0008‑5472.CAN‑07‑673418794131
    [Google Scholar]
  32. LiY. ZhangS. GengJ.X. HuX.Y. Curcumin inhibits human non-small cell lung cancer A549 cell proliferation through regulation of Bcl-2/Bax and cytochrome C.Asian Pac. J. Cancer Prev.20131484599460210.7314/APJCP.2013.14.8.459924083709
    [Google Scholar]
  33. LiM. GuoT. LinJ. HuangX. KeQ. WuY. FangC. HuC. Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway.J. Ethnopharmacol.202228311468910.1016/j.jep.2021.11468934592340
    [Google Scholar]
  34. GuoJ. LiW. ShiH. XieX. LiL. TangH. WuM. KongY. YangL. GaoJ. LiuP. WeiW. XieX. Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a.Mol. Cell. Biochem.20133821-210311110.1007/s11010‑013‑1723‑623771315
    [Google Scholar]
  35. ShakibaeiM. MobasheriA. LuedersC. BuschF. ShayanP. GoelA. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways.PLoS One201382e5721810.1371/journal.pone.005721823451189
    [Google Scholar]
  36. ParkB.H. LimJ.E. JeonH.G. Il SeoS. LeeH.M. ChoiH.Y. JeonS.S. JeongB.C. Curcumin potentiates antitumor activity of cisplatin in bladder cancer cell lines via ROS-mediated activation of ERK1/2.Oncotarget2016739638706388610.18632/oncotarget.1156327564099
    [Google Scholar]
  37. ZhanY. ChenY. LiuR. ZhangH. ZhangY. Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling.Arch. Pharm. Res.20143781086109510.1007/s12272‑013‑0311‑324318305
    [Google Scholar]
  38. Lev-AriS. StrierL. KazanovD. Madar-ShapiroL. Dvory- SobolH. PinchukI. MarianB. LichtenbergD. ArberN. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells.Clin. Cancer Res.200511186738674410.1158/1078‑0432.CCR‑05‑017116166455
    [Google Scholar]
  39. ZhouX. WangW. LiP. ZhengZ. TuY. ZhangY. YouT. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo .Oncol. Res.2016231293410.3727/096504015X1445256348601126802648
    [Google Scholar]
  40. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  41. LvL. QiuK. YuX. ChenC. QinF. ShiY. OuJ. ZhangT. ZhuH. WuJ. LiuC. LiG. Amphiphilic copolymeric micelles for doxorubicin and curcumin Co-Delivery to reverse multidrug resistance in breast cancer.J. Biomed. Nanotechnol.201612597398510.1166/jbn.2016.223127305819
    [Google Scholar]
  42. AggarwalB.B. YuanW. LiS. GuptaS.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.Mol. Nutr. Food Res.20135791529154210.1002/mnfr.20120083823847105
    [Google Scholar]
  43. ParkS.Y. KimY.H. KimY. LeeS.J. Aromatic-turmerone attenuates invasion and expression of MMP-9 and COX-2 through inhibition of NF-κB activation in TPA-induced breast cancer cells.J. Cell. Biochem.2012113123653366210.1002/jcb.2423822740037
    [Google Scholar]
  44. Stojanović-RadićZ. PejčićM. DimitrijevićM. AleksićA. Piperine : A major Principle of Black Pepper: A review of its bioactivity and studies.Appl. Sci.2019920427010.3390/app9204270
    [Google Scholar]
  45. TakooreeH. AumeeruddyM. Z. RengasamyK. R. VenugopalaK. N. JeewonR. ZenginG. MahomoodallyM. F. A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications.Crit. Rev. Food. Sci. Nutrit.201959sup1S210S24310.1080/10408398.2019.1565489
    [Google Scholar]
  46. SelvendiranK. BanuS.M. SakthisekaranD. Protective effect of piperine on benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice.Clin. Chim. Acta20043501-2737810.1016/j.cccn.2004.07.00415530462
    [Google Scholar]
  47. SelvendiranK. SenthilnathanP. MageshV. SakthisekaranD. Modulatory effect of Piperine on mitochondrial antioxidant system in Benzo(a)pyrene-induced experimental lung carcinogenesis.Phytomedicine2004111858910.1078/0944‑7113‑0035514971727
    [Google Scholar]
  48. MeghwalM. GoswamiT.K. Piper nigrum and piperine: An update.Phytother. Res.20132781121113010.1002/ptr.497223625885
    [Google Scholar]
  49. HassanW. RehmanS. NoreenH. ZafarM. Piper nigrum protects against Fe (II) mediated lipid peroxidation in phopholipids liposomes: Analytical and biochemical analysis.Lett. Appl. NanoBioSci.20211042729274110.33263/LIANBS104.27292741
    [Google Scholar]
  50. SrinivasanK. Black pepper (Piper nigrum) and its bioactive compound, piperine.In Molecular targets and therapeutic uses of spices: Modern uses for ancient medicineWorld Scientific2009256410.1142/9789812837912_0002
    [Google Scholar]
  51. DerosaG. MaffioliP. SahebkarA. Piperine and its role in chronic diseases.Adv Exp Med Biol201692817318410.1007/978‑3‑319‑41334‑1_8
    [Google Scholar]
  52. ShrivastavaP. VaibhavK. TabassumR. KhanA. IshratT. KhanM.M. AhmadA. IslamF. SafhiM.M. IslamF. Anti-apoptotic and Anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s Rat model.J. Nutr. Biochem.201324468068710.1016/j.jnutbio.2012.03.01822819561
    [Google Scholar]
  53. TawaniA. AmanullahA. MishraA. KumarA. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences.Sci. Rep.2016613923910.1038/srep3923927995955
    [Google Scholar]
  54. Seshachala1U. TallapragadaP. Anti microbial and antioxidant activity of pepper extracts.Res. J. Biotechnol.2013816571
    [Google Scholar]
  55. HaqI.U. ImranM. NadeemM. TufailT. GondalT.A. MubarakM.S. Piperine: A review of its biological effects.Phytother. Res.202135268070010.1002/ptr.685532929825
    [Google Scholar]
  56. SurendranS. BabuM. JosephJ. PadmaU.D. Facilitatory effect of Piperine on the Anticonvulsant effect of Sodium valproate against Pentylenetetrazole induced Seizures in mice.Res. J. Pharm. Technol.202013265165210.5958/0974‑360X.2020.00124.9
    [Google Scholar]
  57. BuranratB. JunkingM. Piperine suppresses growth and migration of human breast cancer cells through attenuation of Rac1 expression.Asian Pac. J. Trop. Biomed.20221213910.4103/2221‑1691.333211
    [Google Scholar]
  58. LiS. NguyenT.T. UngT.T. SahD.K. ParkS.Y. LakshmananV.K. JungY.D. Piperine attenuates lithocholic acid-stimulated interleukin-8 by suppressing Src/EGFR and reactive oxygen species in human colorectal cancer cells.Antioxidants202211353010.3390/antiox1103053035326180
    [Google Scholar]
  59. RatherR.A. BhagatM. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.201861010.3389/fcell.2018.0001029497610
    [Google Scholar]
  60. SelvendiranK. ThirunavukkarasuC. SinghJ.P.V. PadmavathiR. SakthisekaranD. Chemopreventive effect of piperine on mitochondrial TCA cycle and phase-I and glutathione-metabolizing enzymes in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice.Mol. Cell. Biochem.20052711-210110610.1007/s11010‑005‑5615‑215881660
    [Google Scholar]
  61. YaffeP.B. DoucetteC.D. WalshM. HoskinD.W. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells.Exp. Mol. Pathol.201394110911410.1016/j.yexmp.2012.10.00823063564
    [Google Scholar]
  62. LaiL. FuQ. LiuY. JiangK. GuoQ. ChenQ. YanB. WangQ. ShenJ. Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model.Acta Pharmacol. Sin.201233452353010.1038/aps.2011.20922388073
    [Google Scholar]
  63. SrivastavaS. DewanganJ. MishraS. DivakarA. ChaturvediS. WahajuddinM. KumarS. RathS.K. Piperine and Celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/β-catenin signaling pathway.Phytomedicine20218415348410.1016/j.phymed.2021.15348433667839
    [Google Scholar]
  64. FofariaN.M. KimS.H. SrivastavaS.K. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation.PLoS One201495e9429810.1371/journal.pone.009429824804719
    [Google Scholar]
  65. JoardarN. ShitP. HalderS. DebnathU. SahaS. MisraA.K. JanaK. Sinha BabuS.P. Disruption of redox homeostasis with synchronized activation of apoptosis highlights the antifilarial efficacy of novel piperine derivatives: An in vitro mechanistic approach.Free Radic. Biol. Med.202116934336010.1016/j.freeradbiomed.2021.04.02633895288
    [Google Scholar]
  66. OuyangD. ZengL. PanH. XuL. WangY. LiuK. HeX. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy.Food Chem. Toxicol.20136042443010.1016/j.fct.2013.08.00723939040
    [Google Scholar]
  67. DoucetteC.D. HilchieA.L. LiwskiR. HoskinD.W. Piperine, a dietary phytochemical, inhibits angiogenesis.J. Nutr. Biochem.201324123123910.1016/j.jnutbio.2012.05.00922902327
    [Google Scholar]
  68. ZadorozhnaM. TataranniT. MangieriD. Piperine: role in prevention and progression of cancer.Mol. Biol. Rep.20194655617562910.1007/s11033‑019‑04927‑z31273611
    [Google Scholar]
  69. SiddiquiS. AhamadM.S. JafriA. AfzalM. ArshadM. Piperine triggers apoptosis of human oral squamous carcinoma through cell cycle arrest and mitochondrial oxidative stress.Nutr. Cancer201769579179910.1080/01635581.2017.131026028426244
    [Google Scholar]
  70. SelvendiranK. Prince Vijeya SinghJ. SakthisekaranD. in vivo effect of piperine on serum and tissue glycoprotein levels in benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice.Pulm. Pharmacol. Ther.200619210711110.1016/j.pupt.2005.04.00215975841
    [Google Scholar]
  71. SelvendiranK. SinghJ.P.V. KrishnanK.B. SakthisekaranD. Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice.Fitoterapia2003741-210911510.1016/S0367‑326X(02)00304‑012628402
    [Google Scholar]
  72. WangY.M. LinW. ChaiS.C. WuJ. OngS.S. Schuetze.g. ChenT. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1.Toxicol. Appl. Pharmacol.201327219610710.1016/j.taap.2013.05.01423707768
    [Google Scholar]
  73. ManayiA. NabaviS.M. SetzerW.N. JafariS. Piperine as a potential anti-cancer agent: A review on preclinical studies.Curr. Med. Chem.201925374918492810.2174/092986732466617052312065628545378
    [Google Scholar]
  74. BhardwajR.K. GlaeserH. BecquemontL. KlotzU. GuptaS.K. FrommM.F. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4.J. Pharmacol. Exp. Ther.2002302264565010.1124/jpet.102.03472812130727
    [Google Scholar]
  75. SehgalA. KumarM. JainM. DhawanD.K. Combined effects of curcumin and piperine in ameliorating benzo(a)pyrene induced DNA damage.Food Chem. Toxicol.201149113002300610.1016/j.fct.2011.07.05821827816
    [Google Scholar]
  76. GunasekaranV. ElangovanK. Niranjali DevarajS. Targeting hepatocellular carcinoma with piperine by radical-mediated mitochondrial pathway of apoptosis: An in vitro and in vivo study.Food Chem. Toxicol.201710510611810.1016/j.fct.2017.03.02928341137
    [Google Scholar]
  77. FattahA. MorovatiA. NiknamZ. MashouriL. AsadiA. Tvangar RiziS. AbbasiM. ShakeriF. AbazariO. The synergistic combination of cisplatin and piperine induces apoptosis in MCF-7 cell line.Iran. J. Public Health20215051037104710.18502/ijph.v50i5.612134183962
    [Google Scholar]
  78. MakhovP. GolovineK. CanterD. KutikovA. SimhanJ. CorlewM.M. UzzoR.G. KolenkoV.M. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity.Prostate201272666166710.1002/pros.2146921796656
    [Google Scholar]
  79. HanS. LiuH. YangL. CuiL. XuY. Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB.Biomed. Pharmacother.2017961403141010.1016/j.biopha.2017.11.02229169726
    [Google Scholar]
  80. BolatZ.B. İşlekZ. DemirB.N. YilmazE.N. ŞahınF. ÜçışıkM.H. Curcumin- and Piperine-Loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model.Front. Bioeng. Biotechnol.202085010.3389/fbioe.2020.0005032117930
    [Google Scholar]
  81. MaliniT. ManimaranR.R. ArunakaranJ. AruldhasM.M. GovindarajuluP. Effects of piperine on testis of albino rats.J. Ethnopharmacol.199964321922510.1016/S0378‑8741(98)00128‑710363836
    [Google Scholar]
  82. QuijiaC.R. ChorilliM. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems.Phytother. Res.202236114716310.1002/ptr.729134559416
    [Google Scholar]
  83. TurriniE. SestiliP. FimognariC. Overview of the anticancer potential of the “King of Spices” Piper nigrum and its main constituent piperine.Toxins2020121274710.3390/toxins1212074733256185
    [Google Scholar]
  84. KongW. LiC. QiQ. ShenJ. ChangK. Cardamonin induces G2/M arrest and apoptosis via activation of the JNK–FOXO3a pathway in breast cancer cells.Cell Biol. Int.202044117718810.1002/cbin.1121731393045
    [Google Scholar]
  85. ShrivastavaS. JeengarM.K. ThummuriD. KovalA. KatanaevV.L. MarepallyS. NaiduV.G.M. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition.Biofactors201743215216910.1002/biof.131527580587
    [Google Scholar]
  86. JinJ. QiuS. WangP. LiangX. HuangF. WuH. ZhangB. ZhangW. TianX. XuR. ShiH. WuX. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming.J. Exp. Clin. Cancer Res.201938137710.1186/s13046‑019‑1351‑431455352
    [Google Scholar]
  87. ZhangJ. SikkaS. SiveenK.S. LeeJ.H. UmJ.Y. KumarA.P. ChinnathambiA. AlharbiS.A. BasappaB. RangappaK.S. SethiG. AhnK.S. Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer.Apoptosis201722115816810.1007/s10495‑016‑1313‑727900636
    [Google Scholar]
  88. ZhouX. ZhouR. LiQ. JieX. HongJ. ZongY. DongX. ZhangS. LiZ. WuG. Cardamonin inhibits the proliferation and metastasis of non-small-cell lung cancer cells by suppressing the PI3K/Akt/mTOR pathway.Anticancer Drugs201930324125010.1097/CAD.000000000000070930640793
    [Google Scholar]
  89. ParkS. GwakJ. HanS.J. OhS. Cardamonin suppresses the proliferation of colon cancer cells by promoting β-catenin degradation.Biol. Pharm. Bull.20133661040104410.1248/bpb.b13‑0015823538439
    [Google Scholar]
  90. LuT. ZhengC. FanZ. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression.Pharm. Biol.20226011011102110.1080/13880209.2022.206982335645356
    [Google Scholar]
  91. YinT.F. WangM. QingY. LinY.M. WuD. Research progress on chemopreventive effects of phytochemicals on colorectal cancer and their mechanisms.World J. Gastroenterol.201622317058706810.3748/wjg.v22.i31.705827610016
    [Google Scholar]
  92. KimB.M. KimD.H. ParkJ.H. SurhY.J. NaH.K. Ginsenoside RG3 inhibits constitutive activation of NF-KB signaling in human breast cancer (MDA-MB-231) cells: ERK and AKT as potential upstream targets.J. Cancer Prev.2014191233010.15430/JCP.2014.19.1.2325337569
    [Google Scholar]
  93. GeG. YanY. CaiH. Ginsenoside RH2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells.Biol. Pharm. Bull.201740122117212410.1248/bpb.b17‑0046328966297
    [Google Scholar]
  94. LiQ. LiB. DongC. WangY. LiQ. 20(S)-Ginsenoside Rh2 suppresses proliferation and migration of hepatocellular carcinoma cells by targeting EZH2 to regulate CDKN2A-2B gene cluster transcription.Eur. J. Pharmacol.201781517318010.1016/j.ejphar.2017.09.02328928088
    [Google Scholar]
  95. ZhangZ. DuG.J. WangC.Z. WenX.D. CalwayT. LiZ. HeT.C. DuW. BissonnetteM. MuschM. ChangE. YuanC.S. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions.Int. J. Mol. Sci.20131422980299510.3390/ijms1402298023434653
    [Google Scholar]
  96. ZouJ. SuH. ZouC. LiangX. FeiZ. Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling.J. Biochem. Mol. Toxicol.2020346e2248010.1002/jbt.2248032104955
    [Google Scholar]
  97. KimS. YouD. JeongY. YuJ. KimS.W. NamS.J. LeeJ.E. Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells.Phytomedicine201850434910.1016/j.phymed.2018.08.00430466991
    [Google Scholar]
  98. YaoM. FanX. YuanB. TakagiN. LiuS. HanX. RenJ. LiuJ. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell.BMC Complement. Altern. Med.201919121610.1186/s12906‑019‑2615‑431412862
    [Google Scholar]
  99. HsuW.H. HsiehY.S. KuoH.C. TengC.Y. HuangH.I. WangC.J. YangS.F. LiouY.S. KuoW.H. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL.Arch. Toxicol.2007811071972810.1007/s00204‑006‑0169‑y17673978
    [Google Scholar]
  100. LiL. WangX. SharvanR. GaoJ. QuS. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways.Biomed. Pharmacother.2017951225123110.1016/j.biopha.2017.09.01028931215
    [Google Scholar]
  101. ChenQ. ShiJ. DingZ. XiaQ. ZhengT. RenY. LiM. FanL. Berberine induces apoptosis in non-small-cell lung cancer cells by upregulating miR-19a targeting tissue factor.Cancer Manag. Res.2019119005901510.2147/CMAR.S20767731695492
    [Google Scholar]
  102. ByunH.J. DarvinP. KangD.Y. SpN. JoungY.H. ParkJ.H. KimS.J. YangY.M. Silibinin downregulates MMP2 expression via Jak2/STAT3 pathway and inhibits the migration and invasive potential in MDA-MB-231 cells.Oncol. Rep.20173763270327810.3892/or.2017.558828440514
    [Google Scholar]
  103. RugambaA. KangD.Y. SpN. JoE.S. LeeJ.M. BaeS.W. JangK.J. Silibinin regulates tumor progression and tumorsphere formation by suppressing PD-L1 expression in Non-Small cell lung cancer (NSCLC) cells.Cells2021107163210.3390/cells1007163234209829
    [Google Scholar]
  104. RainaK. AgarwalC. AgarwalR. Effect of silibinin in human colorectal cancer cells: Targeting the activation of NF-κB signaling.Mol. Carcinog.201352319520610.1002/mc.2184322086675
    [Google Scholar]
  105. WuK. ZengJ. ZhuG. ZhangL. ZhangD. LiL. FanJ. WangX. HeD. Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression.Acta Pharmacol. Sin.20093081162116810.1038/aps.2009.9419578386
    [Google Scholar]
  106. HongO.Y. NohE.M. JangH.Y. LeeY.R. LeeB.K. JungS.H. KimJ.S. YounH.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the β-catenin signaling pathway.Oncol. Lett.201714144144610.3892/ol.2017.610828693189
    [Google Scholar]
  107. KhiewkamropP. SurangkulD. SrikummoolM. RichertL. PekthongD. ParhiraS. SomranJ. SrisawangP. Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells.FEBS Open Bio202212593795810.1002/2211‑5463.1339135243817
    [Google Scholar]
  108. HuangS.F. HorngC.T. HsiehY.S. HsiehY.H. ChuS.C. ChenP.N. Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells.Food Chem. Toxicol.20169411010.1016/j.fct.2016.05.00927224248
    [Google Scholar]
  109. QinJ. FuM. WangJ. HuangF. LiuH. HuangfuM. YuD. LiuH. LiX. GuanX. ChenX. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin‑3‑gallate in ovarian cancer.Oncol. Rep.20204361885189610.3892/or.2020.757132236585
    [Google Scholar]
  110. LongZ. FengG. ZhaoN. WuL. ZhuH. Isoferulic acid inhibits human leukemia cell growth through induction of G2/M‑phase arrest and inhibition of Akt/mTOR signaling.Mol. Med. Rep.20202131035104210.3892/mmr.2020.1092631922221
    [Google Scholar]
  111. GaoJ. YuH. GuoW. KongY. Gu LiQ. YangS. ZhangY. WangY. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells.Cancer Cell Int.201818110210.1186/s12935‑018‑0595‑y30013454
    [Google Scholar]
  112. YueS.J. ZhangP.X. ZhuY. LiN.G. ChenY.Y. LiJ.J. ZhangS. JinR.Y. YanH. ShiX.Q. TangY.P. DuanJ.A. A ferulic acid derivative FXS-3 inhibits proliferation and metastasis of human lung cancer A549 Cells via Positive JNK signaling pathway and negative ERK/p38, AKT/mTOR and MEK/ERK signaling pathways.Molecules20192411216510.3390/molecules2411216531181779
    [Google Scholar]
  113. EroğluC. SeçmeM. BağcıG. DodurgaY. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines.Tumour Biol.201536129437944610.1007/s13277‑015‑3689‑326124008
    [Google Scholar]
  114. LinY. XuJ. LiaoH. LiL. PanL. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway.Tumour Biol.20143543305331010.1007/s13277‑013‑1433‑424272201
    [Google Scholar]
  115. SingletaryK. Cardamom.Nutr. Today2022571384910.1097/NT.0000000000000507
    [Google Scholar]
  116. Al-ZuhairH. el-SayehB. AmeenH.A. al-ShooraH. Pharmacological studies of cardamom oil in animals.Pharmacol. Res.1996341-2798210.1006/phrs.1996.00678981560
    [Google Scholar]
  117. BishtV.K. NegiJ.S. BhA.K. Amomum subulatum Roxb: Traditional, phytochemical and biological activities-An overview.Afr. J. Agric. Res.201162410.5897/AJAR11.745
    [Google Scholar]
  118. GilaniA.H. JabeenQ. KhanA. ShahA.J. Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom.J. Ethnopharmacol.2008115346347210.1016/j.jep.2007.10.01518037596
    [Google Scholar]
  119. GilaniA.H. KhanA. KhanA. BashirS. RehmanN. MandukhailS.R. Pharmacological basis for the medicinal use of Holarrhena antidysenterica in gut motility disorders.Pharm. Biol.201048111240124610.3109/1388020100372796020822397
    [Google Scholar]
  120. AshokkumarK. MuruganM. DhanyaM.K. WarkentinT.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton] : A critical review.J. Ethnopharmacol.202024611224410.1016/j.jep.2019.11224431541721
    [Google Scholar]
  121. NawazJ. RasulA. ShahM.A. HussainG. RiazA. SarfrazI. ZafarS. AdnanM. KhanA.H. SelamoğluZ. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways.Life Sci.202025011759110.1016/j.lfs.2020.11759132224026
    [Google Scholar]
  122. BajgaiS.P. PrachyawarakornV. MahidolC. RuchirawatS. KittakoopP. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis.Phytochemistry201172162062206710.1016/j.phytochem.2011.07.00221802698
    [Google Scholar]
  123. QinY. SunC.Y. LuF.R. ShuX.R. YangD. ChenL. SheX.M. GreggN.M. GuoT. HuY. Cardamonin exerts potent activity against multiple myeloma through blockade of NF-κB pathway in vitro.Leuk. Res.201236451452010.1016/j.leukres.2011.11.01422226224
    [Google Scholar]
  124. ChenH. ShiD. NiuP. ZhuY. ZhouJ. Anti-inflammatory effects of cardamonin in ovarian cancer cells are mediated via MTOR suppression.Planta Med.201884161183119010.1055/a‑0626‑742629772587
    [Google Scholar]
  125. YamamotoN. KawabataK. SawadaK. UedaM. FukudaI. KawasakiK. MurakamiA. AshidaH. Cardamonin stimulates glucose uptake through translocation of glucose transporter-4 in L6 myotubes.Phytother. Res.20112581218122410.1002/ptr.341621305634
    [Google Scholar]
  126. LiaoN.C. ShihY.L. ChouJ.S. ChenK.W. ChenY.L. LeeM.H. PengS.F. LeuS.J. ChungJ.G. Cardamonin induces cell cycle arrest, apoptosis and alters apoptosis associated gene expression in WEHI-3 mouse leukemia cells.Am. J. Chin. Med.201947363565610.1142/S0192415X1950033231023073
    [Google Scholar]
  127. FusiF. CavalliM. MulhollandD. CrouchN. CoombesP. DawsonG. BovaS. SgaragliG. SaponaraS. Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes.J. Pharmacol. Exp. Ther.2010332253154010.1124/jpet.109.16126519923439
    [Google Scholar]
  128. LópezS.N. FurlánR.L.E. ZacchinoS.A. Detection of antifungal compounds in Polygonum ferrugineum Wedd. extracts by bioassay-guided fractionation. Some evidences of their mode of action.J. Ethnopharmacol.2011138263363610.1016/j.jep.2011.09.03822001591
    [Google Scholar]
  129. ShiD. NiuP. HengX. ChenL. ZhuY. ZhouJ. Autophagy induced by cardamonin is associated with mTORC1 inhibition in SKOV3 cells.Pharmacol. Rep.201870590891610.1016/j.pharep.2018.04.00530099297
    [Google Scholar]
  130. WuN. LiuJ. ZhaoX. YanZ. JiangB. WangL. CaoS. ShiD. LinX. Cardamonin induces apoptosis by suppressing STAT3 signaling pathway in glioblastoma stem cells.Tumour Biol.201536129667967610.1007/s13277‑015‑3673‑y26150336
    [Google Scholar]
  131. ShiD. ZhuY. NiuP. ZhouJ. ChenH. Raptor mediates the antiproliferation of cardamonin by mTORC1 inhibition in SKOV3 cells.OncoTargets Ther.20181175776710.2147/OTT.S15506529445291
    [Google Scholar]
  132. ShiD. ZhaoD. NiuP. ZhuY. ZhouJ. ChenH. Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells.BMC Complement. Altern. Med.201818131710.1186/s12906‑018‑2380‑930514289
    [Google Scholar]
  133. XueZ. NiuP. ShiD. LiuY. DengJ. ChenY. Cardamonin inhibits angiogenesis by MTOR downregulation in SKOV3 cells.Planta Medica20158201/02707510.1055/s‑0035‑1557901
    [Google Scholar]
  134. NiuP.G. ZhangY.X. ShiD.H. LiuY. ChenY.Y. DengJ. Cardamonin inhibits metastasis of Lewis lung carcinoma cells by decreasing MTOR activity.PLoS One2015105e012777810.1371/journal.pone.012777825996501
    [Google Scholar]
  135. TangY. FangQ. ShiD. NiuP. ChenY. DengJ. mTOR inhibition of cardamonin on antiproliferation of A549 cells is involved in a FKBP12 independent fashion.Life Sci.2014991-2445110.1016/j.lfs.2014.01.06624508654
    [Google Scholar]
  136. JiangF.S. TianS.S. LuJ.J. DingX.H. QianC.D. DingB. DingZ.S. JinB. Cardamonin regulates MIR-21 expression and suppresses angiogenesis induced by vascular endothelial growth factor.BioMed Res. Int.201520151810.1155/2015/50158126266258
    [Google Scholar]
  137. JiaD. TanY. LiuH. OoiS. LiL. WrightK. BennettS. AddisonC.L. WangL. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo .Oncotarget20167177178510.18632/oncotarget.581926506421
    [Google Scholar]
  138. LuS. LinC. ChengX. HuaH. XiangT. HuangY. HuangX. Cardamonin reduces chemotherapy resistance of colon cancer cells via the TSP50/NF‑κB pathway in vitro .Oncol. Lett.20181569641964610.3892/ol.2018.858029928339
    [Google Scholar]
  139. NiuP. ShiD. ZhangS. ZhuY. ZhouJ. Cardamonin enhances the anti-proliferative effect of cisplatin on ovarian cancer.Oncol. Lett.20181533991399710.3892/ol.2018.774329456744
    [Google Scholar]
  140. DingQ. NiuP. ZhuY. ChenH. ShiD. Cardamonin inhibits the expression of P-glycoprotein and enhances the anti-proliferation of paclitaxel on SKOV3-Taxol cells.J. Nat. Med.202276122023310.1007/s11418‑021‑01583‑134751899
    [Google Scholar]
  141. KatzE. NisaniS. ChamovitzD.A. Indole-3-carbinol: A plant hormone combatting cancer.F1000 Res.2018768910.12688/f1000research.14127.129904587
    [Google Scholar]
  142. JaiswalS. SharmaA. ShuklaM. LalJ. Gender-related pharmacokinetics and bioavailability of a novel anticancer chalcone, cardamonin, in rats determined by liquid chromatography tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2015986-987233010.1016/j.jchromb.2015.01.04125703949
    [Google Scholar]
  143. ImanshahidiM. HosseinzadehH. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine.Phytother. Res.2008228999101210.1002/ptr.239918618524
    [Google Scholar]
  144. BoberekJ.M. StachJ. GoodL. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine.PLoS One2010510e1374510.1371/journal.pone.001374521060782
    [Google Scholar]
  145. NazI. MasoudM.S. ChauhdaryZ. ShahM.A. PanichayupakaranantP. Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers.J. Food Biochem.20224612e1438910.1111/jfbc.1438936121315
    [Google Scholar]
  146. YinJ. XingH. YeJ. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism200857571271710.1016/j.metabol.2008.01.01318442638
    [Google Scholar]
  147. HuX. Berberine is a potential therapeutic agent for metabolic syndrome via brown adipose tissue activation and metabolism regulation.Am J Transl Res.2018101133223329Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291723/
    [Google Scholar]
  148. AffusoF. MercurioV. FazioV. FazioS. Cardiovascular and metabolic effects of Berberine.World J. Cardiol.201024717710.4330/wjc.v2.i4.7121160701
    [Google Scholar]
  149. YiL. ZhuJ. DongS. ChenM. LiC. Berberine exerts antidepressant-like effects via regulating miR-34a-synaptotagmin1/Bcl-2 axis.Chin. Herb. Med.202113111612310.1016/j.chmed.2020.11.00136117760
    [Google Scholar]
  150. AhmedT. GilaniA.H. AbdollahiM. DagliaM. NabaviS.F. NabaviS.M. Berberine and neurodegeneration: A review of literature.Pharmacol. Rep.201567597097910.1016/j.pharep.2015.03.00226398393
    [Google Scholar]
  151. JainS. TripathiS. TripathiP.K. Antioxidant and antiarthritic potential of berberine: in vitro and in vivo studies.Chin. Herb. Med.202315454955510.1016/j.chmed.2023.02.00738094017
    [Google Scholar]
  152. ZhengF. TangQ. WuJ. ZhaoS. LiangZ. LiL. WuW. HannS. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine.J. Exp. Clin. Cancer Res.20143313610.1186/1756‑9966‑33‑3624766860
    [Google Scholar]
  153. AyatiS.H. FazeliB. Momtazi-borojeniA.A. CiceroA.F.G. PirroM. SahebkarA. Regulatory effects of berberine on microRNome in Cancer and other conditions.Crit. Rev. Oncol. Hematol.201711614715810.1016/j.critrevonc.2017.05.00828693796
    [Google Scholar]
  154. HamsaT.P. KuttanG. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators.Drug Chem. Toxicol.2012351577010.3109/01480545.2011.58943722145808
    [Google Scholar]
  155. QiH. XinL. XuX. JiX. FanL. Epithelial-to-mesenchymal transition markers to predict response of Berberine in suppressing lung cancer invasion and metastasis.J. Transl. Med.20141212210.1186/1479‑5876‑12‑2224456611
    [Google Scholar]
  156. HoY.T. LuC.C. YangJ.S. ChiangJ. LiT. IpS.W. HsiaT.C. LiaoC.L. LinJ.G. WoodW.G. ChungJ.G. Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells.Anticancer Res2009291040634070Available from: https://pubmed.ncbi.nlm.nih.gov/19846952
    [Google Scholar]
  157. MeeranS.M. KatiyarS. KatiyarS.K. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation.Toxicol. Appl. Pharmacol.20082291334310.1016/j.taap.2007.12.02718275980
    [Google Scholar]
  158. PatilJ.B. KimJ. JayaprakashaG.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway.Eur. J. Pharmacol.20106451-3707810.1016/j.ejphar.2010.07.03720691179
    [Google Scholar]
  159. WangL. LiuL. ShiY. CaoH. ChaturvediR. CalcuttM.W. HuT. RenX. WilsonK.T. PolkD.B. YanF. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor.PLoS One201275e3641810.1371/journal.pone.003641822574158
    [Google Scholar]
  160. KatiyarS.K. MeeranS.M. KatiyarN. AkhtarS. p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo .Mol. Carcinog.2009481243710.1002/mc.2045318459128
    [Google Scholar]
  161. YounM.J. SoH.S. ChoH.J. KimH.J. KimY. LeeJ.H. SohnJ.S. KimY.K. ChungS.Y. ParkR. Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells.Biol. Pharm. Bull.200831578979510.1248/bpb.31.78918451495
    [Google Scholar]
  162. WangX.N. HanX. XuL.N. YinL.H. XuY.W. QiY. PengJ.Y. Enhancement of apoptosis of human hepatocellular carcinoma SMMC-7721 cells through synergy of berberine and evodiamine.Phytomedicine200815121062106810.1016/j.phymed.2008.05.00218579357
    [Google Scholar]
  163. LiuJ. HeC. ZhouK. WangJ. KangJ.X. Coptis extracts enhance the anticancer effect of estrogen receptor antagonists on human breast cancer cells.Biochem. Biophys. Res. Commun.2009378217417810.1016/j.bbrc.2008.10.16919000652
    [Google Scholar]
  164. WenC. WuL. FuL. ZhangX. ZhouH. Berberine enhances the anti-tumor activity of tamoxifen in drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells.Mol. Med. Rep.20161432250225610.3892/mmr.2016.549027432642
    [Google Scholar]
  165. ZhangR. QiaoH. ChenS. ChenX. DouK. WeiL. ZhangJ. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS.Cancer Biol. Ther.201617992593410.1080/15384047.2016.121072827416292
    [Google Scholar]
  166. ZhangS. ZhouL. ZhangM. WangY. WangM. DuJ. GuW. KuiF. LiJ. GengS. DuG. Berberine maintains the neutrophil N1 phenotype to reverse cancer cell resistance to doxorubicin.Front. Pharmacol.202010165810.3389/fphar.2019.0165832063859
    [Google Scholar]
  167. KouY. TongB. WuW. LiaoX. ZhaoM. Berberine improves Chemo-Sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/MTOR signaling pathway in gastric cancer.Front. Pharmacol.20201161625110.3389/fphar.2020.61625133362566
    [Google Scholar]
  168. OchA. PodgórskiR. NowakR. Biological activity of berberine : A summary update.Toxins2020121171310.3390/toxins1211071333198257
    [Google Scholar]
  169. ThomasA. KambleS. DeshkarS. KothapalliL. ChitlangeS. Bioavailability of berberine: Challenges and solutions.İstanb. J. Pharm.202151114115310.26650/IstanbulJPharm.2020.0056
    [Google Scholar]
  170. KhaterS.I. AlmanaaT.N. FattahD.M.A. KhamisT. SeifM.M. DahranN. AlqahtaniL.S. MetwallyM.M.M. MostafaM. AlbedairR.A. HelalA.I. AlosaimiM. MohamedA.A.R. Liposome-Encapsulated berberine alleviates liver injury in Type 2 diabetes via promoting AMPK/MTOR-Mediated autophagy and reducing ER stress: morphometric and immunohistochemical scoring.Antioxidants2023126122010.3390/antiox1206122037371950
    [Google Scholar]
  171. SahibzadaM.U.K. SadiqA. FaidahH.S. KhurramM. AminM.U. HaseebA. KakarM. Berberine nanoparticles with enhanced in vitro bioavailability: Characterization and antimicrobial activity.Drug Des. Devel. Ther.20181230331210.2147/DDDT.S15612329491706
    [Google Scholar]
  172. GuiS. WuL. PengD. LiuQ.Y. YinB. ShenJ. Preparation and evaluation of a microemulsion for oral delivery of berberine.Pharmazie2008637516519Available from: https://pubmed.ncbi.nlm.nih.gov/18717486
    [Google Scholar]
  173. MaitiP. PlemmonsA. DunbarG.L. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments.PLoS One20191412e022566010.1371/journal.pone.022566031841506
    [Google Scholar]
  174. KanH. ZhangD. ChenW. WangS. HeZ. PangS. QuS. WangY. Identification of anti-inflammatory components in Panax ginseng of Sijunzi Decoction based on spectrum-effect relationship.Chin. Herb. Med.202315112313110.1016/j.chmed.2022.04.00336875431
    [Google Scholar]
  175. KangS.W. MinH.Y. Ginseng, the ‘Immunity Boost’: The effects of panax ginseng on immune system.J. Ginseng Res.201236435436810.5142/jgr.2012.36.4.35423717137
    [Google Scholar]
  176. XiangY.Z. ShangH.C. GaoX.M. ZhangB.L. A Comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials.Phytother. Res.200822785185810.1002/ptr.238418567057
    [Google Scholar]
  177. CoonJ.T. ErnstE. Panax ginseng.Drug Saf.200225532334410.2165/00002018‑200225050‑0000312020172
    [Google Scholar]
  178. ChungH.S. LeeY.C. Kyung RheeY. LeeS.Y. Consumer acceptance of ginseng food products.J. Food Sci.2011769S516S52210.1111/j.1750‑3841.2011.02399.x22416723
    [Google Scholar]
  179. BachH.V. KimJ. MyungS.K. ChoY.A. Efficacy of ginseng supplements on fatigue and physical performance: A meta-analysis.J. Korean Med. Sci.201631121879188610.3346/jkms.2016.31.12.187927822924
    [Google Scholar]
  180. LeeS. RheeD.K. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic–pituitary–adrenal axis.J. Ginseng Res.201741458959410.1016/j.jgr.2017.01.01029021708
    [Google Scholar]
  181. LiJ. HuangQ. ChenJ. QiH. LiuJ. ChenZ. ZhaoD. WangZ. LiX. Neuroprotective potentials of Panax ginseng against Alzheimer’s disease: A review of preclinical and clinical evidences.Front. Pharmacol.20211268849010.3389/fphar.2021.68849034149431
    [Google Scholar]
  182. LeeH. W. LeeM. S. KimT. AlrækT. ZaslawskiC. KimJ. W. MoonD. G. Ginseng for erectile dysfunction.Cochrane Database Syst Rev202144CD01265410.1002/14651858.CD012654.pub2
    [Google Scholar]
  183. WeeJ.J. Biological activities of ginseng and its application to human health.Herbal MedicineCRC Press2011150010.1201/b10787‑9
    [Google Scholar]
  184. WuJ. LinL. ChauF. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells.Ultrason. Sonochem.20018434735210.1016/S1350‑4177(01)00066‑911510218
    [Google Scholar]
  185. WangL. WellerC.L. Recent advances in extraction of nutraceuticals from plants.Trends Food Sci. Technol.200617630031210.1016/j.tifs.2005.12.004
    [Google Scholar]
  186. LigorT. LudwiczukA. WolskiT. BuszewskiB. Isolation and determination of ginsenosides in American ginseng leaves and root extracts by LC-MS.Anal. Bioanal. Chem.20053837-81098110510.1007/s00216‑005‑0120‑816283269
    [Google Scholar]
  187. LeeA.R. ChoiS.H. ChoiH.W. KoJ.H. KimW. KimD.O. KimB.Y. BaikM.Y. Optimization of ultra high pressure extraction (UHPE) condition for puffed ginseng using response surface methodology.Food Sci. Biotechnol.20142341151115710.1007/s10068‑014‑0157‑6
    [Google Scholar]
  188. GalloM. FerracaneR. GrazianiG. RitieniA. FoglianoV. Microwave assisted extraction of phenolic compounds from four different spices.Molecules20101596365637410.3390/molecules1509636520877228
    [Google Scholar]
  189. WangY. YouJ. YuY. QuC. ZhangH. DingL. ZhangH. LiX. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction.Food Chem.2008110116116710.1016/j.foodchem.2008.01.02826050179
    [Google Scholar]
  190. HouJ. HeS. LingM. LiW. DongR. PanY. ZhengY. A method of extracting ginsenosides from Panax ginseng by pulsed electric field.J. Sep. Sci.20103317-182707271310.1002/jssc.20100003320715136
    [Google Scholar]
  191. QianZ.M. LüJ. GaoQ.P. LiS.P. Rapid method for simultaneous determination of flavonoid, saponins and polyacetylenes in Folium Ginseng and Radix Ginseng by pressurized liquid extraction and high-performance liquid chromatography coupled with diode array detection and mass spectrometry.J. Chromatogr. A20091216183825383010.1016/j.chroma.2009.02.06519272605
    [Google Scholar]
  192. WoodJ.A. BernardsM.A. WanW. CharpentierP.A. Extraction of ginsenosides from North American ginseng using modified supercritical carbon dioxide.J. Supercrit. Fluids2006391404710.1016/j.supflu.2006.01.016
    [Google Scholar]
  193. JegalJ. JeongE. J. YangM. A review of the different methods applied in ginsenoside extraction from panax ginseng and panax quinquefolius roots.Nat. Prod. Commun.201914910.1177/1934578X19868393
    [Google Scholar]
  194. ChoW.C.S. ChungW.S. LeeS.K.W. LeungA.W.N. ChengC.H.K. YueK.K.M. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats.Eur. J. Pharmacol.20065501-317317910.1016/j.ejphar.2006.08.05617027742
    [Google Scholar]
  195. ZhouP. XieW. HeS. SunY. MengX. SunG. SunX. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis.Cells20198320410.3390/cells803020430823412
    [Google Scholar]
  196. ShahM.A. AbuzarS.M. IlyasK. QadeesI. BilalM. YousafR. KassimR.M.T. RasulA. SaleemU. AlvesM.S. KhanH. BlundellR. JeandetP. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis.Chem. Biol. Interact.202338211063410.1016/j.cbi.2023.11063437451663
    [Google Scholar]
  197. LuoH. VongC.T. ChenH. GaoY. LyuP. QiuL. ZhaoM. LiuQ. ChengZ. ZouJ. YaoP. GaoC. WeiJ. UngC.O.L. WangS. ZhongZ. WangY. Naturally occurring anti- cancer compounds: shining from Chinese herbal medicine.Chin. Med.20191414810.1186/s13020‑019‑0270‑931719837
    [Google Scholar]
  198. XieQ. WenH. ZhangQ. ZhouW. LinX. XieD. LiuY. Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell.Biomed. Pharmacother.201785162110.1016/j.biopha.2016.11.09627930981
    [Google Scholar]
  199. ChoiS. OhJ.Y. KimS.J. Ginsenoside Rh2 induces Bcl-2 family proteins-mediated apoptosis in vitro and in xenografts in vivo models.J. Cell. Biochem.2011112133034010.1002/jcb.2293221080338
    [Google Scholar]
  200. WuQ. DengJ. FanD. DuanZ. ZhuC. FuR. WangS. Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells.Biochem. Pharmacol.2018148647410.1016/j.bcp.2017.12.00429225132
    [Google Scholar]
  201. KwakJ.H. PyoJ.S. Characterization of apoptosis induced by ginsenosides in human lung cancer cells.Anal. Lett.201649684385410.1080/00032719.2015.1079208
    [Google Scholar]
  202. WangL. LiX. SongY.M. WangB. ZhangF.R. YangR. WangH.Q. ZhangG.J. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway.Mol. Med. Rep.201512160961410.3892/mmr.2015.339725738799
    [Google Scholar]
  203. LiuJ. WangY. YuZ. LvG. HuangX. LinH. MaC. LinZ. QuP. Functional mechanism of ginsenoside compound K on tumor growth and metastasis.Integr. Cancer Ther.20222110.1177/1534735422110120335615883
    [Google Scholar]
  204. HuangY. HuangH. HanZ. LiW. MaiZ. YuanR. Ginsenoside RH2 inhibits angiogenesis in prostate cancer by targeting CNNM1.J. Nanosci. Nanotechnol.20191941942195010.1166/jnn.2019.1640430486934
    [Google Scholar]
  205. YangZ. ZhaoT. LiuH. ZhangL. Ginsenoside Rh2 inhibits hepatocellular carcinoma through β-catenin and autophagy.Sci. Rep.2016611938310.1038/srep1938326783250
    [Google Scholar]
  206. HeB.C. GaoJ.L. LuoX. LuoJ. ShenJ. WangL. ZhouQ. WangY.T. LuuH.H. HaydonR.C. WangC.Z. DuW. YuanC.S. HeT.C. ZhangB.Q. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ß- catenin signaling.Int. J. Oncol.201138243744510.3892/ijo.2010.85821152855
    [Google Scholar]
  207. YuanZ. JiangH. ZhuX. LiuX. LiJ. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer.Biomed. Pharmacother.20178922723210.1016/j.biopha.2017.02.03828231544
    [Google Scholar]
  208. KimD.G. JungK.H. LeeD.G. YoonJ.H. ChoiK.S. KwonS.W. ShenH.M. MorganM.J. HongS.S. KimY.S. 20(S)- Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin.Oncotarget20145124438445110.18632/oncotarget.203424970805
    [Google Scholar]
  209. SunC. YuY. WangL. WuB. XiaL. FěngF. LingZ. WangS. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro .J. Exp. Clin. Cancer Res.20163513210.1186/s13046‑015‑0274‑y26872471
    [Google Scholar]
  210. KimS.S. SeongS. KimS.Y. Synergistic effect of ginsenoside Rg3 with verapamil on the modulation of multidrug resistance in human acute myeloid leukemia cells.Oncol. Lett.2014741265126910.3892/ol.2014.182624944704
    [Google Scholar]
  211. LeeY.J. LeeS. HoJ.N. ByunS.S. HongS.K. LeeS.E. LeeE. Synergistic antitumor effect of ginsenoside Rg3 and cisplatin in cisplatin-resistant bladder tumor cell line.Oncol. Rep.20143251803180810.3892/or.2014.345225175462
    [Google Scholar]
  212. JiangZ. YangY. YangY. ZhangY. YueZ. PanZ. RenX. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune.Biomed. Pharmacother.20179637838310.1016/j.biopha.2017.09.12929031195
    [Google Scholar]
  213. ZhangJ. ZhouF. WuX. ZhangX. ChenY. ZhaB.S. NiuF. LuM. HaoG. SunY. SunJ. PengY. WangG. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells.Br. J. Pharmacol.2012165112013410.1111/j.1476‑5381.2011.01505.x21615726
    [Google Scholar]
  214. WeiW. GuoQ. GuoC. CuiX. MaX. ShenX. LuoY. Ginsenoside RH2 suppresses metastasis and growth of colon cancer via MIR-491.J. Oncol.202120211710.1155/2021/681571334603449
    [Google Scholar]
  215. SharmaA. LeeH.J. Ginsenoside Compound K: Insights into recent studies on pharmacokinetics and health-promoting activities.Biomolecules2020107102810.3390/biom1007102832664389
    [Google Scholar]
  216. AbouZidS. AhmedO.M. Silymarin flavonolignans.Studies in Natural Products ChemistryElsevier20134046948410.1016/B978‑0‑444‑59603‑1.00014‑X
    [Google Scholar]
  217. LorenzoJ.M. BarbaF.J. PetrovićM. MunekataP.E. GómezB. MarszałekK. RoohinejadS. BarbaF.J. Silymarin compounds: Chemistry, innovative extraction techniques and synthesis.Studies in Natural Products ChemistryElsevier20206411113010.1016/B978‑0‑12‑817903‑1.00004‑8
    [Google Scholar]
  218. SalmiH.A. SarnaS. Effect of silymarin on chemical, functional, and morphological alterations of the liver. A double-blind controlled study.Scand. J. Gastroenterol.198217451752110.3109/003655282091822426753109
    [Google Scholar]
  219. LuS. ZhangZ. ChenM. LiC. LiuL. LiY. [Corrigendum] Silibinin inhibits the migration and invasion of human gastric cancer SGC7901 cells by downregulating MMP‑2 and MMP‑9 expression via the p38MAPK signaling pathway.Oncol. Lett.202121541510.3892/ol.2021.1267633841576
    [Google Scholar]
  220. LigeretH. BraultA. VallerandD. HaddadY. HaddadP.S. Antioxidant and mitochondrial protective effects of silibinin in cold preservation–warm reperfusion liver injury.J. Ethnopharmacol.2008115350751410.1016/j.jep.2007.10.02418061382
    [Google Scholar]
  221. ChenJ. LiD.L. XieL.N. MaY. WuP.P. LiC. LiuW.F. ZhangK. ZhouR.P. XuX.T. ZhengX. LiuX. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation.Phytomedicine20207815330910.1016/j.phymed.2020.15330932890914
    [Google Scholar]
  222. GowthamR. Yousuf MAF. EzhilarasanD. SambanthamS. AnandanB. in vitro antifungal effects of hesperetin and silibinin.Pharmacogn. J.201810478979210.5530/pj.2018.4.133
    [Google Scholar]
  223. VimalrajS. RajalakshmiS. SaravananS. Raj PreethD. LA VasanthiR. ShairamM. ChatterjeeS. Synthesis and characterization of zinc-silibinin complexes: A potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering.Colloids Surf. B Biointerfaces201816713414310.1016/j.colsurfb.2018.04.00729635136
    [Google Scholar]
  224. TyagiA. BhatiaN. CondonM.S. BoslandM.C. AgarwalC. AgarwalR. Antiproliferative and apoptotic effects of silibinin in rat prostate cancer cells.Prostate200253321121710.1002/pros.1014612386921
    [Google Scholar]
  225. KadoglouN.P.E. PanayiotouC. VardasM. BalaskasN. KostomitsopoulosN.G. TsarouchaA.K. ValsamiG. A comprehensive review of the cardiovascular protective properties of Silibinin/Silymarin: A new kid on the block.Pharmaceuticals202215553810.3390/ph1505053835631363
    [Google Scholar]
  226. CastellanetaA. MassaroA. RendinaM. D’ErricoF. CarparelliS. RizziS.F. ThomsonA.W. Di LeoA. Immunomodulating effects of the anti-viral agent Silibinin in liver transplant patients with HCV recurrence.Transplant. Res.201651110.1186/s13737‑016‑0030‑726798454
    [Google Scholar]
  227. FernandesV. SharmaD. KaliaK. TiwariV. Neuroprotective effects of silibinin: An in silico and in vitro study.Int. J. Neurosci.20181281093594510.1080/00207454.2018.144392629465317
    [Google Scholar]
  228. ÇelikH.T. GürüM. Extraction of oil and silybin compounds from milk thistle seeds using supercritical carbon dioxide.J. Supercrit. Fluids201510010510910.1016/j.supflu.2015.02.025
    [Google Scholar]
  229. SalehI.A. VînătoruM. MasonT.J. Abdel-AzimN.S. ShamsK.A. AboutablE. HammoudaF.M. Extraction of silymarin from milk thistle ( Silybum marianum ) seeds a comparison of conventional and microwave-assisted extraction methods.J. Microw. Power Electromagn. Energy201751212413310.1080/08327823.2017.1320265
    [Google Scholar]
  230. DrouetS. LeclercE.A. GarrosL. TungmunnithumD. KabraA. AbbasiB.H. LainéÉ. HanoC. A Green Ultrasound-Assisted Extraction Optimization of the Natural Antioxidant and Anti-Aging Flavonolignans from Milk Thistle Silybum marianum (L.) Gaertn. Fruits for Cosmetic Applications.Antioxidants20198830410.3390/antiox808030431416140
    [Google Scholar]
  231. LiuH. DuX. YuanQ. ZhuL. Optimisation of enzyme assisted extraction of silybin from the seeds of Silybum marianum by Box–Behnken experimental design.Phytochem. Anal.200920647548310.1002/pca.114919676047
    [Google Scholar]
  232. TuliH.S. MittalS. AggarwalD. ParasharG. ParasharN.C. UpadhyayS.K. BarwalT.S. JainA. KaurG. SavlaR. SakK. KumarM. VarolM. IqubalA. SharmaA.K. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance.Semin. Cancer Biol.20217319621810.1016/j.semcancer.2020.09.01433130037
    [Google Scholar]
  233. ZhangY. GeY. ChenY. LiQ. ChenJ. DongY. ShiW. Cellular and molecular mechanisms of silibinin induces cell-cycle arrest and apoptosis on HeLa cells.Cell Biochem. Funct.201230324324810.1002/cbf.184222170400
    [Google Scholar]
  234. LiR. YuJ. WangC. Silibinin promotes the apoptosis of gastric cancer BGC823 cells through caspase pathway.PubMed201722511481153Available from: https://pubmed.ncbi.nlm.nih.gov/29135096
    [Google Scholar]
  235. DuanW. JinX. LiQ. TashiroS. OnoderaS. IkejimaT. Silibinin induced autophagic and apoptotic cell death in HT1080 cells through a reactive oxygen species pathway.J. Pharmacol. Sci.20101131485610.1254/jphs.09315FP20431246
    [Google Scholar]
  236. HamJ. LimW. BazerF.W. SongG. Silibinin stimluates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells.J. Cell. Physiol.201823321638164910.1002/jcp.2606928657208
    [Google Scholar]
  237. PirouzpanahM.B. SabzichiM. PirouzpanahS. ChavoshiH. SamadiN. Silibilin-induces apoptosis in breast cancer cells by modulating p53, p21, Bak and Bcl-XL pathways.Asian Pac. J. Cancer Prev.20151652087209210.7314/APJCP.2015.16.5.208725773855
    [Google Scholar]
  238. TyagiA. SinghR.P. AgarwalC. AgarwalR. Silibinin activates p53-caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: evidence for a regulatory loop between p53 and caspase 2.Carcinogenesis200627112269228010.1093/carcin/bgl09816777994
    [Google Scholar]
  239. NohE.M. YiM.S. YounH.J. LeeB.K. LeeY.R. HanJ.H. YuH.N. KimJ.S. JungS.H. Silibinin enhances ultraviolet B-induced apoptosis in mcf-7 human breast cancer cells.J. Breast Cancer201114181310.4048/jbc.2011.14.1.821847388
    [Google Scholar]
  240. ZhangX. LiuJ. ZhangP. DaiL. WuZ. WangL. CaoM. JiangJ. Silibinin induces G1 arrest, apoptosis and JNK/SAPK upregulation in SW1990 human pancreatic cancer cells.Oncol. Lett.20181569868987610.3892/ol.2018.854129805688
    [Google Scholar]
  241. ZhangY. LiQ. GeY. ChenY. ChenJ. DongY. ShiW. Silibinin triggers apoptosis and cell-cycle arrest of SGC7901 cells.Phytother. Res.201327339740310.1002/ptr.473322619007
    [Google Scholar]
  242. LiY. ZhangC. CaiD. ChenC. MuD. Silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway.Oncol. Lett.20171468035804110.3892/ol.2017.724629344246
    [Google Scholar]
  243. MateenS. RainaK. AgarwalC. ChanD. AgarwalR. Silibinin synergizes with histone deacetylase and DNA methyltransferase inhibitors in upregulating E-cadherin expression together with inhibition of migration and invasion of human non-small cell lung cancer cells.J. Pharmacol. Exp. Ther.2013345220621410.1124/jpet.113.20347123461975
    [Google Scholar]
  244. MateenS. RainaK. JainA.K. AgarwalC. ChanD. AgarwalR. Epigenetic modifications and p21-cyclin B1 nexus in anticancer effect of histone deacetylase inhibitors in combination with silibinin on non-small cell lung cancer cells.Epigenetics20127101161117210.4161/epi.2207022965008
    [Google Scholar]
  245. ChakrabartiM. RayS.K. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo .Apoptosis201621331232810.1007/s10495‑015‑1198‑x26573275
    [Google Scholar]
  246. KimS. JeonM. LeeJ. HanJ. OhS.J. JungT. NamS.J. KilW.H. LeeJ.E. Induction of fibronectin in response to epidermal growth factor is suppressed by silibinin through the inhibition of STAT3 in triple negative breast cancer cells.Oncol. Rep.20143252230223610.3892/or.2014.345025175149
    [Google Scholar]
  247. TingH.J. DeepG. JainA.K. CimicA. SirintrapunJ. RomeroL.M. CramerS.D. AgarwalC. AgarwalR. Silibinin prevents prostate cancer cell-mediated differentiation of naïve fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2.Mol. Carcinog.201554973074110.1002/mc.2213524615813
    [Google Scholar]
  248. RhoJ.K. ChoiY.J. JeonB.S. ChoiS.J. CheonG.J. WooS.K. KimH.R. KimC.H. ChoiC.M. LeeJ.C. Combined treatment with silibinin and epidermal growth factor receptor tyrosine kinase inhibitors overcomes drug resistance caused by T790M mutation.Mol. Cancer Ther.20109123233324310.1158/1535‑7163.MCT‑10‑062521159609
    [Google Scholar]
  249. VerduraS. EncinarJ.A. TeixidorE. Segura-CarreteroA. MicolV. CuyàsE. Bosch-BarreraJ. MenendezJ.A. Silibinin overcomes EMT-driven lung cancer resistance to new-generation alk inhibitors.Cancers20221424610110.3390/cancers1424610136551587
    [Google Scholar]
  250. CufíS. BonaviaR. Vázquez-MartínA. Oliveras-FerrarosC. Corominas-FajaB. CuyàsE. Martin-CastilloB. Barrajón-CatalánE. VisaJ. Segura-CarreteroA. JovenJ. Bosch-BarreraJ. MicolV. MenendezJ.A. Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo .Sci. Rep.201331245910.1038/srep0245923963283
    [Google Scholar]
  251. MaoJ. YangH. CuiT. PanP. KabirN. ChenD. MaJ. ChenX. ChenY. YangY. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT.Eur. J. Pharmacol.2018832394910.1016/j.ejphar.2018.05.02729782854
    [Google Scholar]
  252. Pashaei-AslF. Pashaei-AslR. KhodadadiK. AkbarzadehA. EbrahimieE. PashaiaslM. Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer.Artif. Cells Nanomed. Biotechnol.20184671483148710.1080/21691401.2017.137428128884602
    [Google Scholar]
  253. SinghR.P. MallikarjunaG.U. SharmaG. DhanalakshmiS. TyagiA.K. ChanD.C.F. AgarwalC. AgarwalR. Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance.Clin. Cancer Res.200410248641864710.1158/1078‑0432.CCR‑04‑143515623648
    [Google Scholar]
  254. TakkeA. ShendeP. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation.Nanomedicine20192110205710.1016/j.nano.2019.10205731340181
    [Google Scholar]
  255. OchiM.M. AmoabedinyG. RezayatS.M. AkbarzadehA. EbrahimiB. in vitro Co-Delivery evaluation of novel pegylated Nano-Liposomal herbal drugs of silibinin and glycyrrhizic acid (Nano-Phytosome) to hepatocellular carcinoma cells.Cell J.201618213514810.22074/cellj.2016.430827540518
    [Google Scholar]
  256. YiT. LiuC. ZhangJ. WangF. WangJ. ZhangJ. A new drug nanocrystal self-stabilized Pickering emulsion for oral delivery of silybin.Eur. J. Pharm. Sci.20179642042710.1016/j.ejps.2016.08.04727575878
    [Google Scholar]
  257. AmirsaadatS. Pilehvar-SoltanahmadiY. ZarghamiF. AlipourS. EbrahimnezhadZ. ZarghamiN. Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells.Artif. Cells Nanomed. Biotechnol.20174581649165610.1080/21691401.2016.127692228078913
    [Google Scholar]
  258. SahibzadaM.U.K. SadiqA. KhanS. FaidahH.S. UllahN. KhurramM. AminM.U. HaseebA. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: An attempt to enhance its oral bioavailability.Drug Des. Devel. Ther.2017111453146410.2147/DDDT.S13380628553075
    [Google Scholar]
  259. Zielińska-PrzyjemskaM. WiktorowiczK. An in vitro study of the protective effect of the flavonoid silydianin against reactive oxygen species.Phytother. Res.200620211511910.1002/ptr.181216444663
    [Google Scholar]
  260. ViktorováJ. DobiasováS. ŘehořováK. BiedermannD. KáňováK. ŠeborováK. VáclavíkováR. ValentováK. RumlT. KřenV. MacekT. Antioxidant, Anti-Inflammatory, and multidrug resistance modulation activity of silychristin derivatives.Antioxidants20198830310.3390/antiox808030331416138
    [Google Scholar]
  261. DeepG. OberliesN.H. KrollD.J. AgarwalR. Isosilybin B and isosilybin A inhibit growth, induce G1 arrest and cause apoptosis in human prostate cancer LNCaP and 22Rv1 cells.Carcinogenesis20072871533154210.1093/carcin/bgm06917389612
    [Google Scholar]
  262. YangC.S. WangX. LǚG. PicinichS.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance.Nat. Rev. Cancer20099642943910.1038/nrc264119472429
    [Google Scholar]
  263. MinK. KwonT.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate.Integr. Med. Res.201431162410.1016/j.imr.2013.12.00128664074
    [Google Scholar]
  264. TipoeG. LeungT.M. HungM.W. FungM.L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection.Cardiovasc. Hematol. Disord. Drug Targets20077213514410.2174/18715290778083090517584048
    [Google Scholar]
  265. HügelH.M. JacksonN. Redox chemistry of green tea polyphenols: Therapeutic benefits in neurodegenerative diseases.Mini Rev. Med. Chem.201212538038710.2174/13895571280049390622303970
    [Google Scholar]
  266. ThieleckeF. BoschmannM. The potential role of green tea catechins in the prevention of the metabolic syndrome : A review.Phytochemistry2009701112410.1016/j.phytochem.2008.11.01119147161
    [Google Scholar]
  267. XiaoJ. HoC.T. LiongE.C. NanjiA.A. LeungT.M. LauT.Y.H. FungM.L. TipoeG.L. Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3 K/Akt/FoxO1, and NF-kappa B pathways.Eur. J. Nutr.201453118719910.1007/s00394‑013‑0516‑823515587
    [Google Scholar]
  268. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules2514314632660101
    [Google Scholar]
  269. ZhongY. ChiouY.S. PanM.H. ShahidiF. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages.Food Chem.2012134274274810.1016/j.foodchem.2012.02.17223107686
    [Google Scholar]
  270. AhmedN.A. RadwanN.M. Aboul EzzH.S. SalamaN.A. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats.Electromagn. Biol. Med.2016201611110.1080/15368378.2016.119429227400086
    [Google Scholar]
  271. ParvezM.A.K. SahaK. RahmanJ. MunmunR.A. RahmanM.A. DeyS.K. RahmanM.S. IslamS. ShariareM.H. Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens.Heliyon201957e0212610.1016/j.heliyon.2019.e0212631372566
    [Google Scholar]
  272. VuongQ.V. GoldingJ.B. StathopoulosC.E. NguyenM.H. RoachP.D. Optimizing conditions for the extraction of catechins from green tea using hot water.J. Sep. Sci.201134213099310610.1002/jssc.20100086321905216
    [Google Scholar]
  273. Saklar AyyildizS. KaradenizB. SagcanN. BaharB. UsA.A. AlasalvarC. Optimizing the extraction parameters of epigallocatechin gallate using conventional hot water and ultrasound assisted methods from green tea.Food Bioprod. Process.2018111374410.1016/j.fbp.2018.06.003
    [Google Scholar]
  274. SerdarG. Demi̇rE. BayrakS. SökmenM. New approaches for effective microwave assisted extraction of caffeine and catechins from green tea.Int. J. Second. Metabol.20163131310.21448/ijsm.240697
    [Google Scholar]
  275. GhoreishiS.M. HeidariE. Extraction of Epigallocatechin-3-gallate from green tea via supercritical fluid technology: Neural network modeling and response surface optimization.J. Supercrit. Fluids20137412813610.1016/j.supflu.2012.12.009
    [Google Scholar]
  276. BaptistaJ.A.B. TavaresJ.F.P. CarvalhoR.C.B. Comparison of catechins and aromas among different green teas using HPLC/SPME-GC.Food Res. Int.1998311072973610.1016/S0963‑9969(99)00052‑6
    [Google Scholar]
  277. WeiR. MaoL. XuP. ZhengX. HackmanR.M. MackenzieG.G. WangY. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models.Food Funct.20189115682569610.1039/C8FO01397G30310905
    [Google Scholar]
  278. LiuL. JuY. WangJ. ZhouR. Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells.Pathol. Res. Pract.2017213101242125010.1016/j.prp.2017.09.00628964574
    [Google Scholar]
  279. ZhangY. YangN.D. ZhouF. ShenT. DuanT. ZhouJ. ShiY. ZhuX.Q. ShenH.M. (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization.PLoS One2012710e4674910.1371/journal.pone.004674923056433
    [Google Scholar]
  280. GuJ.J. QiaoK.S. SunP. ChenP. LiQ. Study of EGCG induced apoptosis in lung cancer cells by inhibiting PI3K/Akt signaling pathway.Eur. Rev. Med. Pharmacol. Sci.201822144557456310.26355/eurrev_201807_1551130058690
    [Google Scholar]
  281. QinJ. WangY. BaiY. YangK. MaoQ. LinY. KongD. ZhengX. XieL. Epigallocatechin-3-gallate inhibits bladder cancer cell invasion via suppression of NF-κB-mediated matrix metalloproteinase-9 expression.Mol. Med. Rep.2012651040104410.3892/mmr.2012.105422941057
    [Google Scholar]
  282. JinH. GongW. ZhangC. WangS. Epigallocatechin gallate inhibits the proliferation of colorectal cancer cells by regulating Notch signaling.OncoTargets Ther.2013614515310.2147/OTT.S4091423525843
    [Google Scholar]
  283. MayrC. WagnerA. NeureiterD. PichlerM. JakabM. IlligR. BerrF. KiesslichT. The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells.BMC Complement. Altern. Med.201515119410.1186/s12906‑015‑0721‑526100134
    [Google Scholar]
  284. DingY.P. GaoZ.L. ChenB.C. RakariyathamK. SuoH.Y. TongH.R. XiaoH. The effect of different treatments of (–)-Epigallocatechin-3-Gallate on colorectal carcinoma cell lines.Nutr. Cancer20187071126113610.1080/01635581.2018.149767130513211
    [Google Scholar]
  285. UdroiuI. MarinaccioJ. SguraA. Epigallocatechin-3-gallate induces telomere shortening and clastogenic damage in glioblastoma cells.Environ. Mol. Mutagen.201960868369210.1002/em.2229531026358
    [Google Scholar]
  286. YokoyamaM. NoguchiM. NakaoY. PaterA. IwasakaT. The tea polyphenol, (−)-epigallocatechin gallate effects on growth, apoptosis, and telomerase activity in cervical cell lines.Gynecol. Oncol.200492119720410.1016/j.ygyno.2003.09.02314751158
    [Google Scholar]
  287. GuJ.W. MakeyK.L. TuckerK.B. ChincharE. MaoX. PeiI. ThomasE.Y. MieleL. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.Vasc. Cell201351910.1186/2045‑824X‑5‑923638734
    [Google Scholar]
  288. SartippourM.R. ShaoZ.M. BeattyP. ZhangL. LiuC. BrooksM.N. HeberD. EllisL. LiuW. GoV.L. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells.J. Nutr.200213282307231110.1093/jn/132.8.230712163680
    [Google Scholar]
  289. WeiR. PensoN.E.C. HackmanR.M. WangY. MackenzieG.G. Epigallocatechin-3-Gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of akt pathway and epithelial–mesenchymal transition: Enhanced efficacy when combined with gemcitabine.Nutrients2019118185610.3390/nu1108185631405071
    [Google Scholar]
  290. ZhangY. WangX. HanL. ZhouY. SunS. Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation.Biomed. Pharmacother.20156928529010.1016/j.biopha.2014.12.01625661371
    [Google Scholar]
  291. GiudiceA. MontellaM. BoccellinoM. CrispoA. D’ArenaG. BimonteS. FacchiniG. CilibertoG. BottiG. QuagliuoloL. CaragliaM. CapunzoM. Epigenetic changes induced by green tea catechins a re associated with prostate cancer.Curr. Mol. Med.201817640542010.2174/156652401866617121910193729256350
    [Google Scholar]
  292. ZhuY. HuangY. LiuM. YanQ. ZhaoW. YangP. GaoQ. WeiJ. ZhaoW. MaL. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high‑risk human papillomavirus subtypes.Exp. Ther. Med.201810.3892/etm.2018.713130783443
    [Google Scholar]
  293. ZanL. ChenQ. ZhangL. LiX. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25.Bioengineered201910137438210.1080/21655979.2019.165732731431131
    [Google Scholar]
  294. LuoK.W. XiaJ. ChengB.H. GaoH.C. FuL.W. LuoX.L. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3.Gastroenterol. Rep.202191597010.1093/gastro/goaa07233747527
    [Google Scholar]
  295. TangH. ZengL. WangJ. ZhangX. RuanQ. WangJ. CuiS. YangD. Reversal of 5-fluorouracil resistance by EGCG is mediate by inactivation of TFAP2A/VEGF signaling pathway and down-regulation of MDR-1 and P-gp expression in gastric cancer.Oncotarget2017847828428285310.18632/oncotarget.2066629137307
    [Google Scholar]
  296. YuanC.H. HorngC.T. LeeC.F. ChiangN.N. TsaiF.J. LuC.C. ChiangJ.H. HsuY.M. YangJ.S. ChenF.A. Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling.Environ. Toxicol.201732384585510.1002/tox.2228427200496
    [Google Scholar]
  297. KuduvalliS.S. PrecillaD.S. AnandhanV. SivasubramanianA.T. Synergism of temozolomide, metformin, and epigallocatechin gallate promotes oxidative Stress-Induced apoptosis in glioma cells.Curr. Drug Ther.202116325226710.2174/1574885516666210510185538
    [Google Scholar]
  298. WangJ. SunP. WangQ. ZhangP. WangY. ZiC. WangX. ShengJ. (−)-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small- cell lung cancer cells.Cancer Cell Int.201919126610.1186/s12935‑019‑0981‑031636509
    [Google Scholar]
  299. MiF.L. WangL.F. ChuP.Y. PengS.L. FengC.L. LaiY.J. LiJ.N. LinY.H. Active Tumor-Targeted co-Delivery of epigallocatechin gallate and doxorubicin in nanoparticles for combination gastric cancer therapy.ACS Biomater. Sci. Eng.2018482847285910.1021/acsbiomaterials.8b0024233435008
    [Google Scholar]
  300. EomD.W. LeeJ.H. KimY.J. HwangG.S. KimS.N. KwakJ.H. CheonG.J. KimK.H. JangH.J. HamJ. KangK.S. YamabeN. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells.BMB Rep.201548846146610.5483/BMBRep.2015.48.8.21625441423
    [Google Scholar]
  301. AminA.R.M. WangD. NannapaneniS. LamichhaneR. ChenZ. ShinD. Combination of resveratrol and green tea epigallocatechin gallate induces synergistic apoptosis and inhibits tumor growth in vivo in head and neck cancer models.Oncol. Rep.20214558710.3892/or.2021.803833864659
    [Google Scholar]
  302. CaiZ.Y. LiX.M. LiangJ.P. XiangL.P. WangK.R. ShiY.L. YangR. ShiM. YeJ.H. LuJ.L. ZhengX.Q. LiangY.R. Bioavailability of tea catechins and its improvement.Molecules2018239234610.3390/molecules2309234630217074
    [Google Scholar]
  303. LinL.C. WangM.N. TsengT.Y. SungJ.S. TsaiT.H. Pharmacokinetics of (-)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution.J. Agric. Food Chem.20075541517152410.1021/jf062816a17256961
    [Google Scholar]
  304. DouQ.P. TaskeenM. MohammadI. HuoC. ChanT.H. DouQ.P. Recent advances on tea polyphenols.Front. Biosci.2012E4111113110.2741/e36322201858
    [Google Scholar]
  305. ChenB.H. HsiehC.H. TsaiS.Y. WangC.Y. WangC.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway.Sci. Rep.2020101516310.1038/s41598‑020‑62136‑232198390
    [Google Scholar]
  306. ZouL. PengS. LiuW. GanL. LiuW. LiangR. LiuC. NiuJ. CaoY. LiuZ. ChenX. Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation.Food Res. Int.20146449249910.1016/j.foodres.2014.07.04230011679
    [Google Scholar]
  307. HaratifarS. MecklingK.A. CorredigM. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells.J. Dairy Sci.201497267267810.3168/jds.2013‑726324359816
    [Google Scholar]
  308. SannaV. SinghC.K. JashariR. AdhamiV.M. ChamcheuJ.C. RadyI. SechiM. MukhtarH. SiddiquiI.A. Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy.Sci. Rep.2017714157310.1038/srep4157328145499
    [Google Scholar]
  309. KürbitzC. HeiseD. RedmerT. GoumasF. ArltA. LemkeJ. RimbachG. KalthoffH. TrauzoldA. Epicatechin gallate and catechin gallate are superior to epigallocatechin gallate in growth suppression and anti-inflammatory activities in pancreatic tumor cells.Cancer Sci.2011102472873410.1111/j.1349‑7006.2011.01870.x21241417
    [Google Scholar]
  310. Pereyra-VergaraF. Olivares-CorichiI.M. Perez-RuizA.G. Luna-AriasJ.P. García-SánchezJ.R. Apoptosis induced by (−)-epicatechin in human breast cancer cells is mediated by reactive oxygen species.Molecules2020255102010.3390/molecules2505102032106523
    [Google Scholar]
  311. FanX. ZhouJ. BiX. LiangJ. LüS. YanX. LuoL. YinZ. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail.J. Nutr. Biochem.20218910855610.1016/j.jnutbio.2020.10855633249185
    [Google Scholar]
  312. EzzatiM. YousefiB. VelaeiK. SafaA. A review on anti- cancer properties of Quercetin in breast cancer.Life Sci.202024811746310.1016/j.lfs.2020.11746332097663
    [Google Scholar]
  313. WangX. YangY. AnY. FangG. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer.Biomed. Pharmacother.201911710908610.1016/j.biopha.2019.10908631200254
    [Google Scholar]
  314. HouG. YuanX. LiY. HouG. LiuX. Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway.Invest. New Drugs202038232933910.1007/s10637‑019‑00781‑931102118
    [Google Scholar]
  315. AmirsaadatS. Jafari-GharabaghlouD. AlijaniS. MousazadehH. DadashpourM. ZarghamiN. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells.J. Drug Deliv. Sci. Technol.20216110210710.1016/j.jddst.2020.102107
    [Google Scholar]
  316. DodurgaY. VuralH. KurarE. ErogluC. AvciE. SecmeM. The combination effect of ferulic acid and gemcitabine on expression of genes related apoptosis and metastasis in PC-3 prostate cancer cells.European Journal of Biology2019771323710.26650/EuroJBiol.2018.0003
    [Google Scholar]
  317. EitsukaT. TatewakiN. NishidaH. NakagawaK. MiyazawaT. A combination of δ-tocotrienol and ferulic acid synergistically inhibits telomerase activity in DLD-1 human colorectal adenocarcinoma cells.J. Nutr. Sci. Vitaminol.201662528128710.3177/jnsv.62.28127928113
    [Google Scholar]
  318. MahendraP. BishtS. Ferula asafoetida : Traditional uses and pharmacological activity.Pharmacogn. Rev.201261214114610.4103/0973‑7847.9994823055640
    [Google Scholar]
  319. SiriziM.A.G. Alizadeh GhalenoeiJ. AllahtavakoliM. ForouzanfarH. BagheriS.M. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy.World J. Biol. Chem.2023142283910.4331/wjbc.v14.i2.2837034135
    [Google Scholar]
  320. ZduńskaK. DanaA. KołodziejczakA. RotsztejnH. Antioxidant properties of ferulic acid and its possible application.Skin Pharmacol. Physiol.201831633233610.1159/00049175530235459
    [Google Scholar]
  321. ShiC. ZhangX. SunY. YangM. SongK. ZhengZ. ChenY. LiuX. JiaZ. DongR. CuiL. XiaX. Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action.Foodborne Pathog. Dis.201613419620410.1089/fpd.2015.199226919471
    [Google Scholar]
  322. LiuY. ShiL. QiuW. ShiY. Ferulic acid exhibits anti-inflammatory effects by inducing autophagy and blocking NLRP3 inflammasome activation.Mol. Cell. Toxicol.202218450951910.1007/s13273‑021‑00219‑535035494
    [Google Scholar]
  323. Neto-NevesE.M. da Silva Maia Bezerra FilhoC. DejaniN.N. de SousaD.P. Ferulic acid and cardiovascular health: Therapeutic and preventive potential.Mini Rev. Med. Chem.202121131625163710.2174/18755607MTEztMDUC333402085
    [Google Scholar]
  324. DongX. HuangR. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties.Phytomedicine202210515435510.1016/j.phymed.2022.15435535908520
    [Google Scholar]
  325. BairagiU. MittalP. SinghJ. MishraB. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing.Drug Dev. Ind. Pharm.201844111783179610.1080/03639045.2018.149644829973105
    [Google Scholar]
  326. NankarR. PrabhakarP.K. DobleM. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy.Phytomedicine201737101310.1016/j.phymed.2017.10.01529126698
    [Google Scholar]
  327. YücelÇ. Şeker KaratoprakG. Ilbasmiş-TamerS. Değimİ.T. Ferulic acid-loaded aspasomes: A new approach to enhance the skin permeation, anti-aging and antioxidant effects.J. Drug Deliv. Sci. Technol.20238610474810.1016/j.jddst.2023.104748
    [Google Scholar]
  328. BagheriS.M. AslA.A. ShamsA. Mirghanizadeh-BafghiS.A. HafizibarjinZ. Evaluation of cytotoxicity effects of oleo-gum-resin and its essential oil of Ferula assa-foetida and Ferulic Acid on 4T1 breast cancer cells.Indian J. Med. Paediatr. Oncol.201738211612010.4103/ijmpo.ijmpo_60_1628900317
    [Google Scholar]
  329. MousaviS.A. NateghiL. Javanmard DakheliM. RamezanY. Piravi-VanakZ. Maceration and ultrasound-assisted methods used for extraction of phenolic compounds and antioxidant activity from Ferulago angulata.J. Food Process. Preserv.202246310.1111/jfpp.16356
    [Google Scholar]
  330. MoharramiS. HashempourH. Comparative study of low-voltage electric field-induced, ultrasound-assisted and maceration extraction of phenolic acids.J. Pharm. Biomed. Anal.202120211414910.1016/j.jpba.2021.11414934029975
    [Google Scholar]
  331. NgM.H. Nu’manA.H. Investigation on the use of deep eutectic solvent with microwave assistance for the extraction of ferulic acid from palm pressed fibre.Curr.Res. Green.Sustain.Chem.2021410015510.1016/j.crgsc.2021.100155
    [Google Scholar]
  332. LauT. HarbourneN. Oruña-ConchaM.J. Optimization of enzyme-assisted extraction of ferulic acid from sweet corn cob by response surface methodology.J. Sci. Food Agric.202010041479148510.1002/jsfa.1015531756272
    [Google Scholar]
  333. YinY. YanL. ZhangZ. WangJ. LuoN. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.J. Sep. Sci.20163981480148810.1002/jssc.20160002626989004
    [Google Scholar]
  334. DasU. MannaK. AdhikaryA. MishraS. SahaK.D. SharmaR.D. MajumderB. DeyS. Ferulic acid enhances the radiation sensitivity of lung and liver carcinoma cells by collapsing redox homeostasis: mechanistic involvement of Akt/p38 MAPK signalling pathway.Free Radic. Res.2019539-1094496710.1080/10715762.2019.165555931576765
    [Google Scholar]
  335. FongY. TangC.C. HuH.T. FangH.Y. ChenB.H. WuC.Y. YuanS.S. WangH.M.D. ChenY.C. TengY.N. ChiuC.C. Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive oxygen species and β-catenin instability.Chin. Med.20161114510.1186/s13020‑016‑0116‑727733866
    [Google Scholar]
  336. FahrioğluU. DodurgaY. ElmasL. SeçmeM. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene2016576147648210.1016/j.gene.2015.10.06126516023
    [Google Scholar]
  337. PelleritoC. EmanueleS. FerranteF. CelesiaA. GiulianoM. FioreT. Tributyltin(IV) ferulate, a novel synthetic ferulic acid derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects.J. Inorg. Biochem.202020511099910.1016/j.jinorgbio.2020.11099931986423
    [Google Scholar]
  338. ShahcheraghiS.H. LotfiM. SoukhtanlooM. Ghayour-MobarhanM. JalianiH.Z. SadeghniaH.R. GhorbaniA. Effects of galbanic acid on proliferation, migration, and apoptosis of glioblastoma cells through the PI3K/AKT/MTOR signaling pathway.Curr. Mol. Pharmacol.2020141798710.2174/187446721366620051207550732394847
    [Google Scholar]
  339. ZhangX. LinD. JiangR. LiH. WanJ. LiH. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition.Oncol. Rep.201636127127810.3892/or.2016.480427177074
    [Google Scholar]
  340. ShanmugamM. TharmarajR. Murugaraj MP. AsokanM. Ram BS. Modulating Effect of Ferulic Acid on NF-kB, COX-2 and VEGF expression pattern during 7, 12-dimethylbenz(a)anthracene induced oral carcinogenesis.Open Nutraceuticals J.201471333810.2174/1876396001407010033
    [Google Scholar]
  341. YangG.W. JiangJ.S. LuW.Q. Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-Mediated angiogenesis.Int. J. Mol. Sci.20151610240112403110.3390/ijms16102401126473837
    [Google Scholar]
  342. ChangC.J. ChiuJ.H. TsengL.M. ChangC.H. ChienT.M. WuC.W. LuiW.Y. Modulation of HER2 expression by ferulic acid on human breast cancer MCF7 cells.Eur. J. Clin. Invest.200636858859610.1111/j.1365‑2362.2006.01676.x16893382
    [Google Scholar]
  343. MuthusamyG. BalupillaiA. RamasamyK. ShanmugamM. GunaseelanS. MaryB. PrasadN.R. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.Eur. J. Pharmacol.201678619420310.1016/j.ejphar.2016.05.02327262378
    [Google Scholar]
  344. MuthusamyG. GunaseelanS. PrasadN.R. Ferulic acid reverses P-glycoprotein-mediated multidrug resistance via inhibition of PI3K/Akt/NF-κB signaling pathway.J. Nutr. Biochem.201963627110.1016/j.jnutbio.2018.09.02230342318
    [Google Scholar]
  345. AnbazhaganR. MuthusamyG. KrishnamoorthiR. KumaresanS. Rajendra PrasadN. LaiJ.Y. YangJ.M. TsaiH.C. PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance.Biotechnol. Bioeng.202111831213122310.1002/bit.2764533289076
    [Google Scholar]
  346. ChoiY.E. ParkE. Ferulic acid in combination with PARP inhibitor sensitizes breast cancer cells as chemotherapeutic strategy.Biochem. Biophys. Res. Commun.2015458352052410.1016/j.bbrc.2015.01.14725677620
    [Google Scholar]
  347. AdamA. LeuilletM. CrespyV. Levrat-VernyM-A. LeenhardtF. DemignéC. RémésyC. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats.J. Nutr.200213271962196810.1093/jn/132.7.196212097677
    [Google Scholar]
  348. Palani SwamyS. GovindaswamyV. Therapeutical properties of ferulic acid and bioavailability enhancement through feruloyl esterase.J. Funct. Foods20151765766610.1016/j.jff.2015.06.013
    [Google Scholar]
  349. Senthil KumarC. ThangamR. MaryS.A. KannanP.R. ArunG. MadhanB. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells.Carbohydr. Polym.202023111568210.1016/j.carbpol.2019.11568231888816
    [Google Scholar]
  350. HasanzadehD. MahdaviM. DehghanG. CharoudehH.N. Farnesiferol C induces cell cycle arrest and apoptosis mediated by oxidative stress in MCF-7 cell line.Toxicol. Rep.2017442042610.1016/j.toxrep.2017.07.01028959668
    [Google Scholar]
  351. RajiE. VahedianV. GolshanradP. NahavandiR. BehshoodP. SoltaniN. GharibiM. RashidiM. MaroufiN.F. The potential therapeutic effects of Galbanic acid on cancer.Pathol. Res. Pract.202324815468610.1016/j.prp.2023.15468637487315
    [Google Scholar]
  352. AlamM. KhanA. WadoodA. KhanA. BashirS. AmanA. JanA.K. RaufA. AhmadB. KhanA.R. FarooqU. Bioassay-guided isolation of sesquiterpene coumarins from ferula narthex bioss: A new anticancer agent.Front. Pharmacol.201672610.3389/fphar.2016.0002626909039
    [Google Scholar]
  353. LeeC.M. ParkS-H. NamM.J. Anticarcinogenic effect of indole-3-carbinol (I3C) on human hepatocellular carcinoma SNU449 cells.Hum. Exp. Toxicol.201938113614710.1177/096032711878523529992829
    [Google Scholar]
  354. ShilpaG. LakshmiS. JamsheenaV. LankalapalliR.S. PrakashV. AnbumaniS. PriyaS. Studies on the mode of action of synthetic diindolylmethane derivatives against triple negative breast cancer cells.Basic Clin. Pharmacol. Toxicol.2022131422424010.1111/bcpt.1376735750657
    [Google Scholar]
  355. ZhongZ. TanW. ChenX. WangY. Furanodiene, a natural small molecule suppresses metastatic breast cancer cell migration and invasion in vitro.Eur. J. Pharmacol.201473711010.1016/j.ejphar.2014.04.04324824922
    [Google Scholar]
  356. WuL. WangL. TianX. ZhangJ. FengH. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis.BMC Complementary Medicine and Therapies20202012110.1186/s12906‑019‑2810‑332020876
    [Google Scholar]
  357. HanB. JiangP. LiZ. YuY. HuangT. YeX. LiX. Coptisine-induced apoptosis in human colon cancer cells (HCT-116) is mediated by PI3K/Akt and mitochondrial-associated apoptotic pathway.Phytomedicine20184815216010.1016/j.phymed.2017.12.02730195873
    [Google Scholar]
  358. WangP. GaoX. YangS. SunZ. DianL. QasimM. Thu PhyoA. LiangZ. SunY. Jatrorrhizine inhibits colorectal carcinoma proliferation and metastasis through Wnt/β-catenin signaling pathway and epithelial–mesenchymal transition.Drug Des. Devel. Ther.2019132235224710.2147/DDDT.S20731531371920
    [Google Scholar]
  359. DeepG. OberliesN.H. KrollD.J. AgarwalR. Isosilybin B causes androgen receptor degradation in human prostate carcinoma cells via PI3K-Akt-Mdm2-mediated pathway.Oncogene200827283986399810.1038/onc.2008.4518332867
    [Google Scholar]
  360. EskandaniM. AbdolalizadehJ. HamishehkarH. NazemiyehH. BararJ. Galbanic acid inhibits HIF-1α expression via EGFR/HIF-1α pathway in cancer cells.Fitoterapia201510111110.1016/j.fitote.2014.12.00325510323
    [Google Scholar]
  361. AmruthrajN.J. RajP. SaravananS. LebelL.A. in vitro studies on anticancer activity of capsaicinoids from Capsicum chinense against human hepatocellular carcinoma cells.Int. J. Pharm. Pharm. Sci.201464254558
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266302556240620054134
Loading
/content/journals/ctmc/10.2174/0115680266302556240620054134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test