Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Aim

Our goal was to investigate the use of Cyclodextrin in creating an aqueous extract of Cinnamon with a high content of its bioactive ingredients, validated by cell-based assays.

Background

Due to their safety and cost-effectiveness, natural compounds have garnered attention for cancer therapy, which often faces challenges related to drug toxicity and resistance. Cinnamon (; also known as Ceylon Cinnamon) is a commonly used spice with a history in folk medicine for treating various ailments. However, its active ingredients suffer from poor solubility, stability, and bioavailability, which limits its use and benefits.

Objective

We prepared γCyclodextrin (γCD)-assisted aqueous extract of Cinnamon (CD-CIN) and compared its activity with the DMSO extract (DM-CIN).

Methods

The cells were exposed to CD-CIN and DM-CIN extracts under normal and stressed (oxidative, metal, and hypoxic) conditions and then analyzed for stress and cancerous phenotypes using various molecular assays.

Results

We found that CD-CIN possesses considerable anticancer activity that involves the activation of tumor suppressor proteins and DNA damage response. Low, non-toxic concentrations of DM-CIN and CD-CIN caused comparable inhibition of migration and invasion capability of cells, supported by molecular marker analyses. Furthermore, protection against oxidative, metal, and hypoxia stress, as well as induction of differentiation, was recorded in both DM-CIN and CD-CIN treated cells, as compared to the control.

Conclusion

We report CD-CIN as a new economic and easy Cinnamon-derived resource that possesses considerable anticancer and antistress activities and hence warrants further chemical, and studies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266309291240808114508
2024-08-20
2026-02-02
Loading full text...

Full text loading...

References

  1. El-TanboulyG.S. AbdelrahmanR.S. Novel anti-arthritic mechanisms of trans-cinnamaldehyde against complete Freund’s adjuvant-induced arthritis in mice: Involvement of NF-кB/TNF-α and IL-6/IL-23/ IL-17 pathways in the immuno-inflammatory responses.Inflammopharmacology20223051769178010.1007/s10787‑022‑01005‑y35648328
    [Google Scholar]
  2. EweysA.S. ZhaoY.S. DarweshO.M. Improving the antioxidant and anticancer potential of Cinnamomum cassia via fermentation with Lactobacillus plantarum. Biotechnol. Rep. (Amst.)202236e0076810.1016/j.btre.2022.e0076836245696
    [Google Scholar]
  3. DavaatserenM. JoY.J. HongG.P. HurH. ParkS. ChoiM.J. Studies on the anti-oxidative function of trans-cinnamaldehyde-included β-cyclodextrin complex.Molecules20172212186810.3390/molecules2212186829257084
    [Google Scholar]
  4. El-BazY.G. MoustafaA. AliM.A. El-DesokyG.E. WabaidurS.M. FaisalM.M. An analysis of the toxicity, antioxidant, and anti-cancer activity of cinnamon silver nanoparticles in comparison with extracts and fractions of Cinnamomum cassia at normal and cancer cell levels.Nanomaterials (Basel)202313594510.3390/nano1305094536903823
    [Google Scholar]
  5. HussainZ. KhanJ.A. RashidH. Cinnamomum zeylanicum (Darchini): A boon to medical science and a possible therapy for stress-induced ailments.Crit. Rev. Eukaryot. Gene Expr.201929326327610.1615/CritRevEukaryotGeneExpr.201902886731679236
    [Google Scholar]
  6. KimM.E. NaJ.Y. LeeJ.S. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation.Immunopharmacol. Immunotoxicol.201840321922410.1080/08923973.2018.142490229355056
    [Google Scholar]
  7. NawazA. AliT. NaeemM. HussainF. LiZ. NasirA. Biochemical, structural characterization and in-vitro evaluation of antioxidant, antibacterial, cytotoxic, and antidiabetic activities of nanosuspensions of Cinnamomum zeylanicum bark extract.Front Chem.202311119438910.3389/fchem.2023.119438937214484
    [Google Scholar]
  8. GopalakrishnanS. IsmailA. Aromatic monophenols from cinnamon bark act as proteasome inhibitors by upregulating ER stress, suppressing FoxM expression, and inducing apoptosis in prostate cancer cells.Phytother. Res.202135105781579410.1002/ptr.723634363252
    [Google Scholar]
  9. TaleuzzamanM. JainP. VermaR. IqbalZ. MirzaM.A. Eugenol as a potential drug candidate: A review.Curr. Top. Med. Chem.202121201804181510.2174/156802662166621070114143334218781
    [Google Scholar]
  10. TsaiK. CherngJ. LiuY.H. ChenT.W. WongH.Y. YangS. ChouK.S. CherngJ.M. Cinnamomum verum component 2-methoxycinnamaldehyde: a novel antiproliferative drug inducing cell death through targeting both topoisomerase I and II in human colorectal adenocarcinoma COLO 205 cells.Food Nutr. Res.20166013160710.3402/fnr.v60.3160727281694
    [Google Scholar]
  11. TsaiK. LiuY.H. ChenT.W. YangS.M. WongH.Y. CherngJ. ChouK.S. CherngJ.M. Cuminaldehyde from Cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in human colorectal adenocarcinoma COLO 205 cells.Nutrients20168631810.3390/nu806031827231935
    [Google Scholar]
  12. NarasimhanM. BalajiT.M. VaradarajanS. ChamundeeswariD.P. SakthisekaranD. In Vitro anticancer effects of Cinnamomum verum J. Presl, cinnamaldehyde, 4 hydroxycinnamic acid and eugenol on an oral squamous cell carcinoma cell line.J. Contemp. Dent. Pract.20202191027103310.5005/jp‑journals‑10024‑292233568591
    [Google Scholar]
  13. YangS. TsaiK. WongH.Y. LiuY.H. ChenT.W. CherngJ. HsuK.C. AngY.U. CherngJ.M. Molecular mechanism of Cinnamomum verum component cuminaldehyde inhibits cell growth and induces cell death in human lung squamous cell carcinoma NCI-H520 cells in vitro and in vivo.J. Cancer20167325126110.7150/jca.1368926918037
    [Google Scholar]
  14. YoonY.J. KimY.H. JinY. ChiS.W. MoonJ.H. HanD.C. KwonB.M. 2′-hydroxycinnamaldehyde inhibits cancer cell proliferation and tumor growth by targeting the pyruvate kinase M2.Cancer Lett.2018434425510.1016/j.canlet.2018.07.01530009856
    [Google Scholar]
  15. CabelloC.M. BairW.B.III LamoreS.D. LeyS. BauseA.S. AzimianS. WondrakG.T. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth.Free Radic. Biol. Med.200946222023110.1016/j.freeradbiomed.2008.10.02519000754
    [Google Scholar]
  16. GopalakrishnanS. EdigaH.H. ReddyS.S. ReddyG.B. IsmailA. Procyanidin‐B2 enriched fraction of cinnamon acts as a proteasome inhibitor and anti‐proliferative agent in human prostate cancer cells.IUBMB Life201870544545710.1002/iub.173529537730
    [Google Scholar]
  17. KhasnavisS. PahanK. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective parkinson disease protein DJ-1 in astrocytes and neurons.J. Neuroimmune Pharmacol.20127242443510.1007/s11481‑011‑9286‑321701815
    [Google Scholar]
  18. NileA. ShinJ. ShinJ. ParkG.S. LeeS. LeeJ.H. LeeK.W. KimB.G. HanS.G. SainiR.K. OhJ.W. Cinnamaldehyde-rich cinnamon extract induces cell death in colon cancer cell lines HCT 116 and HT-29.Int. J. Mol. Sci.2023249819110.3390/ijms2409819137175897
    [Google Scholar]
  19. AlkhatibM.H. AljadaniM.A. MahassniS.H. Carrying epirubicin on nanoemulsion containing algae and cinnamon oils augments its apoptotic and anti-invasion effects on human colon cancer cells.Am. J. Transl. Res.20201262463247232655784
    [Google Scholar]
  20. AlyS.M. FetaihH.A. HassaninA.A.I. AbomughaidM.M. IsmailA.A. Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats.Anal. Cell. Pathol. (Amst.)2019201911510.1155/2019/989548531781479
    [Google Scholar]
  21. ChenT.W. TsaiK. YangS. WongH.Y. LiuY.H. CherngJ. ChouK.S. WangY.T. CuizonJ. CherngJ.M. Discovery of a novel anti-cancer agent targeting both Topoisomerase I & II as well as Telomerase activities in human lung adenocarcinoma A549 cells in vitro and in vivo : Cinnamomum verum component cuminaldehyde.Curr. Cancer Drug Targets201616979680610.2174/156800961666616042612552627113744
    [Google Scholar]
  22. YangX.Q. ZhengH. YeQ. LiR.Y. ChenY. Essential oil of cinnamon exerts anti-cancer activity against head and neck squamous cell carcinoma via attenuating epidermal growth factor receptor - Tyrosine kinase.J. BUON20152061518152526854449
    [Google Scholar]
  23. AminzadehZ. ZiamajidiN. AbbasalipourkabirR. Anticancer effects of cinnamaldehyde through inhibition of ErbB2/HSF1/LDHA pathway in 5637 cell line of bladder cancer.Anticancer. Agents Med. Chem.20222261139114810.2174/187152062166621072614281434315398
    [Google Scholar]
  24. ChungJ. KimS. LeeH.A. ParkM.H. KimS. SongY.R. NaH.S. Trans‐cinnamic aldehyde inhibits Aggregatibacter actinomycetemcomitans ‐induced inflammation in THP‐1–derived macrophages via autophagy activation.J. Periodontol.201889101262127110.1002/JPER.17‑072729761921
    [Google Scholar]
  25. KimH. LeeH.J. SimD.Y. ParkJ.E. AhnC.H. ParkS.Y. JangE. KimB. KimS.H. The antitumor effect of cinnamaldehyde derivative CB-PIC in hepatocellular carcinoma cells via inhibition of pyruvate and STAT3 signaling.Int. J. Mol. Sci.20222312646110.3390/ijms2312646135742904
    [Google Scholar]
  26. KimJ.E. SonJ.E. JeongH. KimD.J. SeoS.G. LeeE. LimT.G. KimJ.R. KimbungY.R. ChenH. BodeA.M. LeeK.W. DongZ. A novel cinnamon-related natural product with Pim-1 inhibitory activity inhibits leukemia and skin cancer.Cancer Res.201575132716272810.1158/0008‑5472.CAN‑14‑365525948588
    [Google Scholar]
  27. GopalakrishnanS. DhawareM. SudharmaA.A. MullapudiS.V. SiginamS.R. GogulothuR. MirI.A. IsmailA. Chemopreventive effect of cinnamon and its bioactive compounds in a rat model of premalignant prostate carcinogenesis.Cancer Prev. Res. (Phila.)202316313915110.1158/1940‑6207.CAPR‑22‑032736517462
    [Google Scholar]
  28. KubatkaP. KelloM. KajoK. SamecM. JasekK. VybohovaD. UramovaS. LiskovaA. SadlonovaV. KoklesovaL. MurinR. AdamkovM. SmejkalK. SvajdlenkaE. SolarP. SamuelS.M. KassayovaM. KwonT.K. ZuborP. PecM. DankoJ. BüsselbergD. MojzisJ. Chemopreventive and therapeutic efficacy of Cinnamomum zeylanicum L. Bark in experimental breast carcinoma: Mechanistic in vivo and in vitro analyses.Molecules2020256139910.3390/molecules2506139932204409
    [Google Scholar]
  29. Kaul-GhanekarR. PatilM. ChoudhariA.S. PanditaS. IslamM.A. RainaP. Cinnamaldehyde, cinnamic acid, and cinnamyl alcohol, the bioactives of Cinnamomum cassia exhibit HDAC8 inhibitory activity: An in vitro and in silico study.Pharmacogn. Mag.2017135164510.4103/pm.pm_389_1629142427
    [Google Scholar]
  30. ElKadyA.I. RamadanW.S. The aqueous extract of cinnamon bark ameliorated cisplatin-induced cytotoxicity in vero cells without compromising the anticancer efficiency of cisplatin.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2016160336337110.5507/bp.2016.03427465514
    [Google Scholar]
  31. LongM. TaoS. Rojo de la VegaM. JiangT. WenQ. ParkS.L. ZhangD.D. WondrakG.T. Nrf2-dependent suppression of azoxymethane/dextran sulfate sodium-induced colon carcinogenesis by the cinnamon-derived dietary factor cinnamaldehyde.Cancer Prev. Res. (Phila.)20158544445410.1158/1940‑6207.CAPR‑14‑035925712056
    [Google Scholar]
  32. AskariF. RashidkhaniB. HekmatdoostA. Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients.Nutr. Res.201434214314810.1016/j.nutres.2013.11.00524461315
    [Google Scholar]
  33. MohsinS.N. SaleemF. HumayunA. TanweerA. MuddassirA. Prospective nutraceutical effects of cinnamon derivatives against insulin resistance in Type II diabetes mellitus—evidence from the literature.Dose Response20232131559325823120052710.1177/1559325823120052737701673
    [Google Scholar]
  34. CasertaS. GenoveseC. CiceroN. GangemiS. AllegraA. The anti-cancer effect of cinnamon aqueous extract: A focus on hematological malignancies.Life (Basel)2023135117610.3390/life1305117637240821
    [Google Scholar]
  35. AlanaziA.D. AlmohammedH.I. Therapeutic potential and safety of the Cinnamomum zeylanicum methanolic extract against chronic Toxoplasma gondii infection in mice.Front. Cell. Infect. Microbiol.20221290004610.3389/fcimb.2022.90004635755846
    [Google Scholar]
  36. EmamM.A. FaroukS.M. AljazzarA. AbdelhameedA.A. EldeebA.A. GadF.A. Curcumin and cinnamon mitigates lead acetate-induced oxidative damage in the spleen of rats.Front. Pharmacol.202313107276010.3389/fphar.2022.107276036726787
    [Google Scholar]
  37. MomtazS. HassaniS. KhanF. ZiaeeM. AbdollahiM. Cinnamon, a promising prospect towards Alzheimer’s disease.Pharmacol. Res.201813024125810.1016/j.phrs.2017.12.01129258915
    [Google Scholar]
  38. ModiK.K. RoyA. BrahmachariS. RangasamyS.B. PahanK. Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of alzheimer’s disease.PLoS One2015106e013039810.1371/journal.pone.013039826102198
    [Google Scholar]
  39. AlamA. AnsariM.J. AlqarniM.H. SalkiniM.A. RaishM. Antioxidant, antibacterial, and anticancer activity of ultrasonic nanoemulsion of Cinnamomum Cassia L. essential oil.Plants202312483410.3390/plants1204083436840181
    [Google Scholar]
  40. ChenX. ShangS. YanF. JiangH. ZhaoG. TianS. ChenR. ChenD. DangY. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress.Molecules20232811455910.3390/molecules2811455937299039
    [Google Scholar]
  41. MeghaniN. PatelP. KansaraK. RanjanS. DasguptaN. RamalingamC. KumarA. Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells.Colloids Surf. B Biointerfaces201816634935710.1016/j.colsurfb.2018.03.04129631227
    [Google Scholar]
  42. JansookP. OgawaN. LoftssonT. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications.Int. J. Pharm.20185351-227228410.1016/j.ijpharm.2017.11.01829138045
    [Google Scholar]
  43. XuY. RashwanA.K. OsmanA.I. Abd El-MonaemE.M. ElgarahyA.M. EltaweilA.S. OmarM. LiY. MehanniA.H.E. ChenW. RooneyD.W. Synthesis and potential applications of cyclodextrin-based metal–organic frameworks: A review.Environ. Chem. Lett.202321144747710.1007/s10311‑022‑01509‑736161092
    [Google Scholar]
  44. AhmedT. IslamM.N. MonalisaR. EhsanF. HuangS.W. Polysaccharides polymers for glaucoma treatment-A review.Eur. J. Ophthalmol.20231120672123117805710.1177/1120672123117805737231538
    [Google Scholar]
  45. AbdellatifA.A.H. AhmedF. MohammedA.M. AlsharidahM. Al-SubaiyelA. SammanW.A. AlhaddadA.A. Al-MijalliS.H. AminM.A. BarakatH. OsmanS.K. Recent advances in the pharmaceutical and biomedical applications of cyclodextrin-capped gold nanoparticles.Int. J. Nanomedicine2023183247328110.2147/IJN.S40596437337575
    [Google Scholar]
  46. WangL. ChenM. RanX. TangH. CaoD. Sorafenib-based drug delivery systems: Applications and perspectives.Polymers (Basel)20231512263810.3390/polym1512263837376284
    [Google Scholar]
  47. Sarabia-VallejoÁ. CajaM.M. OlivesA.I. MartínM.A. MenéndezJ.C. Cyclodextrin inclusion complexes for improved drug bioavailability and activity: Synthetic and analytical aspects.Pharmaceutics2023159234510.3390/pharmaceutics1509234537765313
    [Google Scholar]
  48. BhargavaP. KumariA. PutriJ.F. IshidaY. TeraoK. KaulS.C. SundarD. WadhwaR. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: Bioinformatics and experimental evidences.Cell Stress Chaperones20182351055106810.1007/s12192‑018‑0915‑029869000
    [Google Scholar]
  49. WadhwaR. KaulS.C. IkawaY. SugimotoY. Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype.J. Biol. Chem.199326896615662110.1016/S0021‑9258(18)53295‑68454632
    [Google Scholar]
  50. HasanK. CheungC. KaulZ. ShahN. SakaushiS. SugimotoK. OkaS. KaulS.C. WadhwaR. CARF Is a vital dual regulator of cellular senescence and apoptosis.J. Biol. Chem.200928431664167210.1074/jbc.M80577820019001376
    [Google Scholar]
  51. ZhangH. WangJ. PrakashJ. ZhangZ. KaulS.C. WadhwaR. Three-way cell-based screening of antistress compounds: Identification, validation, and relevance to old-age-related pathologies.J. Gerontol. A Biol. Sci. Med. Sci.20237891569157710.1093/gerona/glad10337061830
    [Google Scholar]
  52. ParhamS. KharaziA.Z. Bakhsheshi-RadH.R. NurH. IsmailA.F. SharifS. RamaKrishnaS. BertoF. Antioxidant, antimicrobial and antiviral properties of herbal materials.Antioxidants2020912130910.3390/antiox912130933371338
    [Google Scholar]
  53. SadeghiS. DavoodvandiA. PourhanifehM.H. SharifiN. ArefNezhadR. SahebnasaghR. MoghadamS.A. SahebkarA. MirzaeiH. Anti-cancer effects of cinnamon: Insights into its apoptosis effects.Eur. J. Med. Chem.201917813114010.1016/j.ejmech.2019.05.06731195168
    [Google Scholar]
  54. RuwizhiN. AderibigbeB.A. Cinnamic acid derivatives and their biological efficacy.Int. J. Mol. Sci.20202116571210.3390/ijms2116571232784935
    [Google Scholar]
  55. ShangC. LinH. FangX. WangY. JiangZ. QuY. XiangM. ShenZ. XinL. LuY. GaoJ. CuiX. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes.Food Funct.20211224121941222010.1039/D1FO01935J34752593
    [Google Scholar]
  56. BhattaraiN. KumbharA.A. PokharelY.R. YadavP.N. Anticancer potential of coumarin and its derivatives.Mini Rev. Med. Chem.202121192996302910.2174/18755607MTE1uMjAm433820507
    [Google Scholar]
  57. LimH.S. KimB.Y. KimY.J. JeongS.J. Phytochemical allylguaiacol exerts a neuroprotective effect on hippocampal cells and ameliorates scopolamine-induced memory impairment in mice.Behav. Brain Res.201833926126810.1016/j.bbr.2017.11.00329126931
    [Google Scholar]
  58. WongH.Y. TsaiK. LiuY.H. YangS. ChenT.W. CherngJ. ChouK.S. ChangC.M. YaoB.T. CherngJ.M. Cinnamomum verum component 2-methoxycinnamaldehyde: a novel anticancer agent with both anti-topoisomerase I and II activities in human lung adenocarcinoma A549 cells in vitro and in vivo.Phytother. Res.201630233134010.1002/ptr.553626676220
    [Google Scholar]
  59. LiuY.H. TsaiK.D. YangS.M. WongH.Y. ChenT.W. CherngJ. CherngJ.M. Cinnamomum verum ingredient 2-methoxycinnamaldehyde: A new antiproliferative drug targeting topoisomerase I and II in human lung squamous cell carcinoma NCI-H520 cells.Eur. J. Cancer Prev.201726431432310.1097/CEJ.000000000000026527192048
    [Google Scholar]
  60. PerngD.S. TsaiY.H. CherngJ. KuoC.W. ShiaoC.C. CherngJ.M. Discovery of a novel anti-cancer agent targeting both topoisomerase I and II in hepatocellular carcinoma Hep 3B cells in vitro and in vivo : Cinnamomum verum component 2-methoxycinnamaldehyde.J. Drug Target.201624762463410.3109/1061186X.2015.113222126707867
    [Google Scholar]
  61. CherngJ-M. PerngD-S. TsaiY-H. CherngJ. WangJ-S. ChouK-S. ShihC-W. Discovery of a novel anticancer agent with both anti-topoisomerase I and II activities in hepatocellular carcinoma SK-Hep-1 cells in vitro and in vivo : Cinnamomum verum component 2-methoxycinnamaldehyde.Drug Des. Devel. Ther.20161014115310.2147/DDDT.S9359926792981
    [Google Scholar]
  62. MorsiD.S. El-NabiS.H. ElmaghrabyM.A. Abu AliO.A. FayadE. KhalifaS.A.M. El-SeediH.R. El-GarawaniI.M. Anti-proliferative and immunomodulatory potencies of cinnamon oil on Ehrlich ascites carcinoma bearing mice.Sci. Rep.20221211183910.1038/s41598‑022‑14770‑135821255
    [Google Scholar]
  63. LiuS.L. YangK.H. YangC.W. LeeM.Y. ChuangY.T. ChenY.N. ChangF.R. ChenC.Y. ChangH.W. Burmannic acid inhibits proliferation and induces oxidative stress response of oral cancer cells.Antioxidants20211010158810.3390/antiox1010158834679723
    [Google Scholar]
  64. YererM.B. DayanS. HanM.I. SharmaA. TuliH.S. SakK. Nanoformulations of coumarins and the hybrid molecules of coumarins with potential anticancer effects.Anticancer. Agents Med. Chem.202020151797181610.2174/187152062066620031009464632156246
    [Google Scholar]
  65. XuX. LiQ. DongW. ZhaoG. LuY. HuangX. LiangX. Cinnamon cassia oil chitosan nanoparticles: Physicochemical properties and anti-breast cancer activity.Int. J. Biol. Macromol.20232241065107810.1016/j.ijbiomac.2022.10.19136367479
    [Google Scholar]
  66. KalraR.S. ChaudharyA. OmarA. CheungC.T. GargS. KaulS.C. WadhwaR. Stress-induced changes in CARF expression determine cell fate to death, survival, or malignant transformation.Cell Stress Chaperones202025348149410.1007/s12192‑020‑01088‑y32221864
    [Google Scholar]
  67. KalraR.S. ChaudharyA. OmarA. LiX. KhuranaM. KaulS.C. WadhwaR. Stress-induced changes in CARF expression serve as a quantitative predictive measure of cell proliferation fate.Exp. Cell Res.2023429211366910.1016/j.yexcr.2023.11366937276997
    [Google Scholar]
  68. GargS. AfzalS. ElwakeelA. SharmaD. RadhakrishnanN. DhanjalJ.K. SundarD. KaulS.C. WadhwaR. Marine carotenoid fucoxanthin possesses anti-metastasis activity: Molecular evidence.Mar. Drugs201917633810.3390/md1706033831195739
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266309291240808114508
Loading
/content/journals/ctmc/10.2174/0115680266309291240808114508
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.


  • Article Type:
    Research Article
Keyword(s): cancer; Cinnamon; management; metastasis; mortalin; p53; stress; γCyclodextrin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test