Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Genistein (GEN), a phytoestrogen primarily sourced from soy plants, is recognized for its anticancer properties attributed to its roles as a tyrosine kinase inhibitor, an estrogen receptor agonist, and its influence on various cancer hallmarks by modulating diverse signaling pathways. Recent research has highlighted the considerable potential of GEN in combating drug resistance in cancer cells. This attribute of GEN has been demonstrated by its capacity to modulate tyrosine kinases such as HER2, HER3, and EGFR which are implicated in tumorigenesis, as well as pro-survival signaling pathways including NF-κB and Akt/mTOR. Moreover, GEN impacts drug accumulation, AR-driven transcriptional regulation, ER signaling, and various genes that are involved in autophagy, pro/anti-apoptosis, DNA methylation, and histone acetylation. Further, GEN demonstrated efficacy in combinatorial therapy with various standard anticancer agents like 5-FU, cetuximab, cisplatin, clofarabine, doxorubicin, tamoxifen, TRAIL, trastuzumab, and other agents with anticancer activities such as capsaicin, curcumin, daidzein, lycopene, resveratrol, sulforaphane, ., across a spectrum of cancers including the cancers of bone, brain, breast, cervix, colorectal, endometrium, esophagus, head and neck, leukemia, liver, lung, ovary, pancreas and stomach. Thus, further clinical validation of these potential combinations involving GEN is warranted to confirm the preclinical findings.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266319955241224073611
2025-02-27
2025-12-22
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. KreitlerS. PelegD. EhrenfeldM. Stress, self‐efficacy and quality of life in cancer patients.Psychooncology200716432934110.1002/pon.106316888704
    [Google Scholar]
  3. OttJ.J. UllrichA. MillerA.B. The importance of early symptom recognition in the context of early detection and cancer survival.Eur. J. Cancer200945162743274810.1016/j.ejca.2009.08.00919765977
    [Google Scholar]
  4. KangD.H. ParkN.J. McArdleT. Cancer-specific stress and mood disturbance: implications for symptom perception, quality of life, and immune response in women shortly after diagnosis of breast cancer.ISRN Nurs.201220121710.5402/2012/60803923316388
    [Google Scholar]
  5. GalićS. GlavićŽ. CesarikM. Stress and quality of life in patients with gastrointestinal cancer.Acta Clin. Croat.201453327929025509237
    [Google Scholar]
  6. GomesA.P. BlenisJ. A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways.Curr. Opin. Biotechnol.20153411011710.1016/j.copbio.2014.12.00725562138
    [Google Scholar]
  7. HanahanD. Hallmarks of Cancer: New Dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  8. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  9. LoweS.W. LinA.W. Apoptosis in cancer.Carcinogenesis200021348549510.1093/carcin/21.3.48510688869
    [Google Scholar]
  10. LiT. KangG. WangT. HuangH. Tumor angiogenesis and anti‑angiogenic gene therapy for cancer (Review).Oncol. Lett.201816168770210.3892/ol.2018.873329963134
    [Google Scholar]
  11. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  12. Abdollahpour-AlitappehM. LotfiniaM. GharibiT. MardanehJ. FarhadihosseinabadiB. LarkiP. FaghfourianB. SepehrK.S. Abbaszadeh-GoudarziK. Abbaszadeh-GoudarziG. JohariB. ZaliM.R. BagheriN. Antibody–drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes.J. Cell. Physiol.201923455628564210.1002/jcp.2741930478951
    [Google Scholar]
  13. MirM.A. QayoomH. MehrajU. NisarS. BhatB. WaniN.A. Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer.Curr. Cancer Drug Targets202020858660210.2174/157016381766620051808195532418525
    [Google Scholar]
  14. AhmedS.A. ParamaD. DaimariE. GirisaS. BanikK. HarshaC. DuttaU. KunnumakkaraA.B. Rationalizing the therapeutic potential of apigenin against cancer.Life Sci.202126711881410.1016/j.lfs.2020.11881433333052
    [Google Scholar]
  15. BuhrmannC. PopperB. KunnumakkaraA.B. AggarwalB.B. ShakibaeiM. Evidence That Calebin A, a Component of Curcuma Longa Suppresses NF-κB Mediated Proliferation, Invasion and Metastasis of Human Colorectal Cancer Induced by TNF-β (Lymphotoxin).Nutrients20191112290410.3390/nu1112290431805741
    [Google Scholar]
  16. GirisaS. SaikiaQ. BordoloiD. BanikK. MonishaJ. DaimaryU.D. VermaE. AhnK.S. KunnumakkaraA.B. Xanthohumol from Hop: Hope for cancer prevention and treatment.IUBMB Life20217381016104410.1002/iub.252234170599
    [Google Scholar]
  17. MaruthanilaV.L. ElancheranR. KunnumakkaraA.B. KabilanS. KotokyJ. Recent development of targeted approaches for the treatment of breast cancer.Breast Cancer201724219121910.1007/s12282‑016‑0732‑127796923
    [Google Scholar]
  18. MonishaJ. RoyN.K. PadmavathiG. BanikK. BordoloiD. KhwairakpamA.D. ArfusoF. ChinnathambiA. AlahmadiT.A. AlharbiS.A. SethiG. KumarA.P. KunnumakkaraA.B. NGAL is Downregulated in Oral Squamous Cell Carcinoma and Leads to Increased Survival, Proliferation, Migration and Chemoresistance.Cancers (Basel)201810722810.3390/cancers1007022829996471
    [Google Scholar]
  19. PadmavathiG. RathnakaramS.R. MonishaJ. BordoloiD. RoyN.K. KunnumakkaraA.B. Potential of butein, a tetrahydroxychalcone to obliterate cancer.Phytomedicine201522131163117110.1016/j.phymed.2015.08.01526598915
    [Google Scholar]
  20. ShabnamB. PadmavathiG. BanikK. GirisaS. MonishaJ. SethiG. FanL. WangL. MaoX. KunnumakkaraA.B. Sorcin a Potential Molecular Target for Cancer Therapy.Transl. Oncol.20181161379138910.1016/j.tranon.2018.08.01530216763
    [Google Scholar]
  21. MuralimanoharanS.B. KunnumakkaraA.B. ShyleshB. KulkarniK.H. HaiyanX. MingH. AggarwalB.B. RitaG. KumarA.P. Butanol fraction containing berberine or related compound from nexrutine® inhibits NFκB signaling and induces apoptosis in prostate cancer cells.Prostate200969549450410.1002/pros.2089919107816
    [Google Scholar]
  22. SunD. GaoW. HuH. ZhouS. Why 90% of clinical drug development fails and how to improve it?Acta Pharm. Sin. B20221273049306210.1016/j.apsb.2022.02.00235865092
    [Google Scholar]
  23. KunnumakkaraA.B. BordoloiD. SailoB.L. RoyN.K. ThakurK.K. BanikK. ShakibaeiM. GuptaS.C. AggarwalB.B. Cancer drug development: The missing links.Exp. Biol. Med. (Maywood)2019244866368910.1177/153537021983916330961357
    [Google Scholar]
  24. JainD. AronowW. Cardiotoxicity of cancer chemotherapy in clinical practice.Hosp. Pract.201947161510.1080/21548331.2018.1530831
    [Google Scholar]
  25. FloydJ. MirzaI. SachsB. PerryM.C. Hepatotoxicity of Chemotherapy.Semin. Oncol.2006331506710.1053/j.seminoncol.2005.11.00216473644
    [Google Scholar]
  26. HaH. LimJ.H. Managing Side Effects of Cytotoxic Chemotherapy in Patients With High Grade Gliomas.Brain Tumor Res. Treat.202210315816310.14791/btrt.2022.001835929113
    [Google Scholar]
  27. RamosA. SadeghiS. TabatabaeianH. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them.Int. J. Mol. Sci.20212217945110.3390/ijms2217945134502361
    [Google Scholar]
  28. LiQ. TieY. AluA. MaX. ShiH. Targeted therapy for head and neck cancer: signaling pathways and clinical studies.Signal Transduct. Target. Ther.2023813110.1038/s41392‑022‑01297‑036646686
    [Google Scholar]
  29. SaidS.S. IbrahimW.N. Cancer Resistance to Immunotherapy: Comprehensive Insights with Future Perspectives.Pharmaceutics2023154114310.3390/pharmaceutics1504114337111629
    [Google Scholar]
  30. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.1672328410237
    [Google Scholar]
  31. QinS.Y. ChengY.J. LeiQ. ZhangA.Q. ZhangX.Z. Combinational strategy for high-performance cancer chemotherapy.Biomaterials201817117819710.1016/j.biomaterials.2018.04.02729698868
    [Google Scholar]
  32. MonishaJ. PadmavathiG. RoyN.K. DekaA. BordoloiD. AnipA. KunnumakkaraA.B. NF-κB Blockers Gifted by Mother Nature: Prospectives in Cancer Cell Chemosensitization.Curr. Pharm. Des.201622274173420010.2174/138161282266616060911023127291284
    [Google Scholar]
  33. TolcherA.W. PengW. CalvoE. Rational Approaches for Combination Therapy Strategies Targeting the MAP Kinase Pathway in Solid Tumors.Mol. Cancer Ther.201817131610.1158/1535‑7163.MCT‑17‑034929295962
    [Google Scholar]
  34. AumeeruddyM.Z. MahomoodallyM.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone.Cancer2019125101600161110.1002/cncr.3202230811596
    [Google Scholar]
  35. VinodB.S. MaliekalT.T. AntoR.J. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance.Antioxid. Redox Signal.201318111307134810.1089/ars.2012.457322871022
    [Google Scholar]
  36. KhatoonE. BanikK. HarshaC. SailoB.L. ThakurK.K. KhwairakpamA.D. VikkurthiR. DeviT.B. GuptaS.C. KunnumakkaraA.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives.Semin. Cancer Biol.20228030633910.1016/j.semcancer.2020.06.01432610149
    [Google Scholar]
  37. KunnumakkaraA.B. SungB. RavindranJ. DiagaradjaneP. DeorukhkarA. DeyS. KocaC. TongZ. GelovaniJ.G. GuhaS. KrishnanS. AggarwalB.B. Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets.Int. J. Cancer20121313E292E30310.1002/ijc.2644221935918
    [Google Scholar]
  38. BabuB.H. JayramH.N. NairM.G. AjaikumarK.B. PadikkalaJ. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin.J. Exp. Clin. Cancer Res.200322458158915053300
    [Google Scholar]
  39. BanikK. KhatoonE. HarshaC. RanaV. ParamaD. ThakurK.K. BishayeeA. KunnumakkaraA.B. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review.Phytother. Res.20223651854188310.1002/ptr.738635102626
    [Google Scholar]
  40. ChoudhuryB. KandimallaR. BharaliR. MonishaJ. KunnumakaraA.B. KalitaK. KotokyJ. Anticancer Activity of Garcinia morella on T-Cell Murine Lymphoma Via Apoptotic Induction.Front. Pharmacol.20167310.3389/fphar.2016.0000326858645
    [Google Scholar]
  41. KunnumakkaraA.B. NairA.S. AhnK.S. PandeyM.K. YiZ. LiuM. AggarwalB.B. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis.Blood2007109125112512110.1182/blood‑2007‑01‑06725617332240
    [Google Scholar]
  42. KhwairakpamA.D. DamayentiY.D. DekaA. MonishaJ. RoyN.K. PadmavathiG. KunnumakkaraA.B. Acorus calamus : a bio-reserve of medicinal values.J. Basic Clin. Physiol. Pharmacol.201829210712210.1515/jbcpp‑2016‑013229389665
    [Google Scholar]
  43. ChenP. HuM.D. DengX.F. LiB. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy.Asian Pac. J. Cancer Prev.201314275976410.7314/APJCP.2013.14.2.75923621233
    [Google Scholar]
  44. SarkarF.H. LiY. Soy isoflavones and cancer prevention.Cancer Invest.200321574475710.1081/CNV‑12002377314628433
    [Google Scholar]
  45. HagiwaraH. WakoH. NakataK. AidaR. Genistein Induces Antiproliferative Activity and Apoptosis in Human Osteosarcoma Saos-2 Cells.Anticancer Res.202343125387539210.21873/anticanres.1674238030209
    [Google Scholar]
  46. HsiehP.L. LiaoY.W. HsiehC.W. ChenP.N. YuC.C. Soy Isoflavone Genistein Impedes Cancer Stemness and Mesenchymal Transition in Head and Neck Cancer through Activating miR-34a/RTCB Axis.Nutrients2020127192410.3390/nu1207192432610494
    [Google Scholar]
  47. LiY. MeeranS.M. PatelS.N. ChenH. HardyT.M. TollefsbolT.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer.Mol. Cancer2013121910.1186/1476‑4598‑12‑923379261
    [Google Scholar]
  48. LiX. JiangC. WangQ. YangS. CaoY. HaoJ.N. NiuD. ChenY. HanB. JiaX. ZhangP. LiY. A “Valve‐Closing” Starvation Strategy for Amplification of Tumor‐Specific Chemotherapy.Adv. Sci. (Weinh.)202298210467110.1002/advs.20210467135038243
    [Google Scholar]
  49. Sharifi-RadJ. QuispeC. ImranM. RaufA. NadeemM. GondalT.A. AhmadB. AtifM. MubarakM.S. SytarO. ZhilinaO.M. GarsiyaE.R. SmeriglioA. TrombettaD. PonsD.G. MartorellM. CardosoS.M. RazisA.F.A. SunusiU. KamalR.M. RotariuL.S. ButnariuM. DoceaA.O. CalinaD. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits.Oxid. Med. Cell. Longev.202120211326813610.1155/2021/326813634336089
    [Google Scholar]
  50. HwangJ.T. LeeY.K. ShinJ.I. ParkO.J. Anti-inflammatory and anticarcinogenic effect of genistein alone or in combination with capsaicin in TPA-treated rat mammary glands or mammary cancer cell line.Ann. N. Y. Acad. Sci.20091171141542010.1111/j.1749‑6632.2009.04696.x19723084
    [Google Scholar]
  51. SeenappaV. DasB. JoshiM.B. SatyamoorthyK. Context Dependent Regulation of Human Phosphoenolpyruvate Carboxykinase Isoforms by DNA Promoter Methylation and RNA Stability.J. Cell. Biochem.2016117112506252010.1002/jcb.2554326990534
    [Google Scholar]
  52. XieW. ChuM. SongG. ZuoZ. HanZ. ChenC. LiY. WangZ. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer.Semin. Cancer Biol.20228330331810.1016/j.semcancer.2020.11.00433207266
    [Google Scholar]
  53. ZhangS. LongF. LinH. WangX. JiangG. WangT. Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases.Pharmacol. Res.202117410593610.1016/j.phrs.2021.10593634653635
    [Google Scholar]
  54. XiongM. ZhuangK. LuoY. LaiQ. LuoX. FangY. ZhangY. LiA. LiuS. KIF20A promotes cellular malignant behavior and enhances resistance to chemotherapy in colorectal cancer through regulation of the JAK/STAT3 signaling pathway.Aging (Albany NY)20191124119051192110.18632/aging.10250531841120
    [Google Scholar]
  55. YanG.R. ZouF.Y. DangB.L. ZhangY. YuG. LiuX. HeQ.Y. Genistein‐induced mitotic arrest of gastric cancer cells by downregulating KIF 20 A, a proteomics study.Proteomics201212142391239910.1002/pmic.20110065222887948
    [Google Scholar]
  56. Sanchez-VegaF. MinaM. ArmeniaJ. ChatilaW.K. LunaA. LaK.C. DimitriadoyS. LiuD.L. KanthetiH.S. SaghafiniaS. ChakravartyD. DaianF. GaoQ. BaileyM.H. LiangW.W. FoltzS.M. ShmulevichI. DingL. HeinsZ. OchoaA. GrossB. GaoJ. ZhangH. KundraR. KandothC. BahceciI. DervishiL. DogrusozU. ZhouW. ShenH. LairdP.W. WayG.P. GreeneC.S. LiangH. XiaoY. WangC. IavaroneA. BergerA.H. BivonaT.G. LazarA.J. HammerG.D. GiordanoT. KwongL.N. McArthurG. HuangC. TwardA.D. FrederickM.J. McCormickF. MeyersonM. Van AllenE.M. CherniackA.D. CirielloG. SanderC. SchultzN. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Cancer Genome Atlas Research Network Oncogenic Signaling Pathways in The Cancer Genome Atlas.Cell20181732321337.e1010.1016/j.cell.2018.03.03529625050
    [Google Scholar]
  57. DolcetX. LlobetD. PallaresJ. Matias-GuiuX. NF-kB in development and progression of human cancer.Virchows Arch.2005446547548210.1007/s00428‑005‑1264‑915856292
    [Google Scholar]
  58. KumarB. SinghS. SkvortsovaI. KumarV. Promising Targets in Anti-cancer Drug Development: Recent Updates.Curr. Med. Chem.201824424729475210.2174/092986732466617033112364828393696
    [Google Scholar]
  59. KrólM. PawłowskiK.M. MajchrzakK. SzyszkoK. MotylT. Why chemotherapy can fail?Pol. J. Vet. Sci.201013239940620731201
    [Google Scholar]
  60. LiuF.S. Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review.Taiwan. J. Obstet. Gynecol.200948323924410.1016/S1028‑4559(09)60296‑519797012
    [Google Scholar]
  61. LongleyD.B. JohnstonP.G. Molecular mechanisms of drug resistance.J. Pathol.2005205227529210.1002/path.170615641020
    [Google Scholar]
  62. ClemensJ. SeckingerA. HoseD. TheileD. LongoM. HaefeliW.E. BurhenneJ. WeissJ. Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters.Cancer Chemother. Pharmacol.201575228129110.1007/s00280‑014‑2643‑125477008
    [Google Scholar]
  63. OkabeM. UnnoM. HarigaeH. KakuM. OkitsuY. SasakiT. MizoiT. ShiibaK. TakanagaH. TerasakiT. MatsunoS. SasakiI. ItoS. AbeT. Characterization of the organic cation transporter SLC22A16: A doxorubicin importer.Biochem. Biophys. Res. Commun.2005333375476210.1016/j.bbrc.2005.05.17415963465
    [Google Scholar]
  64. FungK.L. TepedeA.K. PluchinoK.M. PouliotL.M. PixleyJ.N. HallM.D. GottesmanM.M. Uptake of compounds that selectively kill multidrug-resistant cells: the copper transporter SLC31A1 (CTR1) increases cellular accumulation of the thiosemicarbazone NSC73306.Mol. Pharm.20141182692270210.1021/mp500114e24800945
    [Google Scholar]
  65. LeeK.B. ParkerR.J. BohrV. CornelisonT. ReedE. Cisplatin sensitivity/resistance in UV repair-deficient Chinese hamster ovary cells of complementation groups 1 and 3.Carcinogenesis199314102177218010.1093/carcin/14.10.21778222071
    [Google Scholar]
  66. SelvakumaranM. PisarcikD.A. BaoR. YeungA.T. HamiltonT.C. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines.Cancer Res.20036361311131612649192
    [Google Scholar]
  67. QuinnJ.E. KennedyR.D. MullanP.B. GilmoreP.M. CartyM. JohnstonP.G. HarkinD.P. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis.Cancer Res.200363196221622814559807
    [Google Scholar]
  68. KelleyM.R. ChengL. FosterR. TrittR. JiangJ. BroshearsJ. KochM. Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer.Clin. Cancer Res.20017482483011309329
    [Google Scholar]
  69. WangG. ZhangD. YangS. WangY. TangZ. FuX. Co-administration of genistein with doxorubicin-loaded polypeptide nanoparticles weakens the metastasis of malignant prostate cancer by amplifying oxidative damage.Biomater. Sci.20186482783510.1039/C7BM01201B29480308
    [Google Scholar]
  70. Fito-LopezB. SalvadoresM. AlvarezM.M. SupekF. Prevalence, causes and impact of TP53-loss phenocopying events in human tumors.BMC Biol.20232119210.1186/s12915‑023‑01595‑137095494
    [Google Scholar]
  71. MaZ. GuoD. WangQ. LiuP. XiaoY. WuP. WangY. ChenB. LiuZ. LiuQ. Lgr5-mediated p53 Repression through PDCD5 leads to doxorubicin resistance in Hepatocellular Carcinoma.Theranostics20199102967298310.7150/thno.3056231244936
    [Google Scholar]
  72. ChangY.T. ChiuI. WangQ. BustamanteJ. JiangW. RycajK. YiS. LiJ. Kowalski-MueggeJ. MatsuiW. Loss of p 53 enhances the tumor-initiating potential and drug resistance of clonogenic multiple myeloma cells.Blood Adv.20237143551356010.1182/bloodadvances.202200938737042949
    [Google Scholar]
  73. BunzF. HwangP.M. TorranceC. WaldmanT. ZhangY. DillehayL. WilliamsJ. LengauerC. KinzlerK.W. VogelsteinB. Disruption of p53 in human cancer cells alters the responses to therapeutic agents.J. Clin. Invest.1999104326326910.1172/JCI686310430607
    [Google Scholar]
  74. LongleyD.B. WilsonT.R. McEwanM. AllenW.L. McDermottU. GalliganL. JohnstonP.G. c-FLIP inhibits chemotherapy-induced colorectal cancer cell death.Oncogene200625683884810.1038/sj.onc.120912216247474
    [Google Scholar]
  75. TammI. WangY. SausvilleE. ScudieroD.A. VignaN. OltersdorfT. ReedJ.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs.Cancer Res.19985823531553209850056
    [Google Scholar]
  76. OlayioyeM.A. NeveR.M. LaneH.A. HynesN.E. NEW EMBO MEMBERS’ REVIEW: The ErbB signaling network: receptor heterodimerization in development and cancer.EMBO J.200019133159316710.1093/emboj/19.13.315910880430
    [Google Scholar]
  77. WuM. ZhangP. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance.Cancer Lett.202046920721610.1016/j.canlet.2019.10.03031639425
    [Google Scholar]
  78. XuA.M. HuangP.H. Receptor tyrosine kinase coactivation networks in cancer.Cancer Res.201070103857386010.1158/0008‑5472.CAN‑10‑016320406984
    [Google Scholar]
  79. QuinnB.J. DallosM. KitagawaH. KunnumakkaraA.B. MemmottR.M. HollanderM.C. GillsJ.J. DennisP.A. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling.Cancer Prev. Res. (Phila.)20136880181010.1158/1940‑6207.CAPR‑13‑0058‑T23771523
    [Google Scholar]
  80. WernerH. BruchimI. The insulin-like growth factor-I receptor as an oncogene.Arch. Physiol. Biochem.20091152587110.1080/1381345090278310619485702
    [Google Scholar]
  81. YuanJ. YinZ. TaoK. WangG. GaoJ. Function of insulin‑like growth factor 1 receptor in cancer resistance to chemotherapy (Review).Oncol. Lett.2017151414710.3892/ol.2017.727629285186
    [Google Scholar]
  82. ChangH.G. KimS.J. ChungK.W. NohD.Y. KwonY. LeeE.S. KangH.S. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor? but not the estrogen receptor? gene.J. Mol. Med. (Berl.)200583213213910.1007/s00109‑004‑0596‑215536519
    [Google Scholar]
  83. ChristmannM. PickM. LageH. SchadendorfD. Bernd Kaina Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene mgmt.Int. J. Cancer200192112312910.1002/1097‑0215(200102)9999:9999<::AID‑IJC1160>3.0.CO;2‑V11279615
    [Google Scholar]
  84. LvG. WangQ. LinL. YeQ. LiX. ZhouQ. KongX. DengH. YouF. ChenH. WuS. YuanL. mTORC2-driven chromatin cGAS mediates chemoresistance through epigenetic reprogramming in colorectal cancer.Nat. Cell Biol.20242691585159610.1038/s41556‑024‑01473‑039080411
    [Google Scholar]
  85. HumbertM. CastéranN. LetardS. HanssensK. IovannaJ. FinettiP. BertucciF. BaderT. MansfieldC.D. MoussyA. HermineO. DubreuilP. Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model.PLoS One201053e943010.1371/journal.pone.000943020209107
    [Google Scholar]
  86. WongC.C. XuJ. BianX. WuJ.L. KangW. QianY. LiW. ChenH. GouH. LiuD. LukS.T.Y. ZhouQ. JiF. ChanL.S. ShirasawaS. SungJ.J.Y. YuJ. In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance.Gastroenterology2020159621632180.e610.1053/j.gastro.2020.08.01632814111
    [Google Scholar]
  87. LeiZ.N. TengQ.X. WuZ.X. PingF.F. SongP. WurpelJ.N.D. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells.Med. Comm.20212476577710.1002/mco2.106
    [Google Scholar]
  88. NagataJ. KijimaH. HatanakaH. AsaiS. MiyachiH. AbeY. YamazakiH. NakamuraM. WatanabeN. MineT. KondoT. ScanlonK. UeyamaY. Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated protein and multidrug resistance 1 gene.Int. J. Oncol.20022151021102610.3892/ijo.21.5.102112370750
    [Google Scholar]
  89. MaS.C. ZhangJ.Q. YanT.H. MiaoM.X. CaoY.M. CaoY.B. ZhangL.C. LiL. Novel strategies to reverse chemoresistance in colorectal cancer.Cancer Med.20231210110731109610.1002/cam4.559436645225
    [Google Scholar]
  90. CamblinA.J. PaceE.A. AdamsS. CurleyM.D. RimkunasV. NieL. TanG. BloomT. IadevaiaS. BaumJ. MinxC. CzibereA. LouisC.U. DrummondD.C. NielsenU.B. SchoeberlB. PipasJ.M. StraubingerR.M. AskoxylakisV. LugovskoyA.A. Dual Inhibition of IGF-1R and ErbB3 Enhances the Activity of Gemcitabine and Nab-Paclitaxel in Preclinical Models of Pancreatic Cancer.Clin. Cancer Res.201824122873288510.1158/1078‑0432.CCR‑17‑226229549161
    [Google Scholar]
  91. HuX. MengY. XuL. QiuL. WeiM. SuD. QiX. WangZ. YangS. LiuC. HanJ. Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3.Cell Death Dis.201910210410.1038/s41419‑018‑1200‑y30718461
    [Google Scholar]
  92. MengY. QiuL. ZengX. HuX. ZhangY. WanX. MaoX. WuJ. XuY. XiongQ. ChenZ. ZhangB. HanJ. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy.Signal Transduct. Target. Ther.20227138810.1038/s41392‑022‑01253‑y36481655
    [Google Scholar]
  93. González-OrtizA. Pulido-CapizA. Castañeda-SánchezC.Y. Ibarra-LópezE. Galindo-HernándezO. Calderón-FernándezM.A. López-CossioL.Y. Díaz-MolinaR. Chimal-VegaB. Serafín-HigueraN. Córdova-GuerreroI. García-GonzálezV. eIF4A/PDCD4 Pathway, a Factor for Doxorubicin Chemoresistance in a Triple-Negative Breast Cancer Cell Model.Cells20221124406910.3390/cells1124406936552834
    [Google Scholar]
  94. HarmangeG. HuerosR.A.R. SchaffD.L. EmertB. Saint-AntoineM. KimL.C. NiuZ. NelloreS. FaneM.E. AliceaG.M. WeeraratnaA.T. SimonM.C. SinghA. ShafferS.M. Disrupting cellular memory to overcome drug resistance.Nat. Commun.2023141713010.1038/s41467‑023‑41811‑837932277
    [Google Scholar]
  95. WongG.S. ZhouJ. LiuJ.B. WuZ. XuX. LiT. XuD. SchumacherS.E. PuschhofJ. McFarlandJ. ZouC. DulakA. HendersonL. XuP. O’DayE. RendakR. LiaoW. CecchiF. HembroughT. SchwartzS. SzetoC. RustgiA.K. WongK.K. DiehlJ.A. JensenK. GrazianoF. RuzzoA. FereshetianS. MertinsP. CarrS.A. BeroukhimR. NakamuraK. OkiE. WatanabeM. BabaH. ImamuraY. CatenacciD. BassA.J. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition.Nat. Med.201824796897710.1038/s41591‑018‑0022‑x29808010
    [Google Scholar]
  96. ManchadoE. WeissmuellerS. MorrisJ.P.IV ChenC.C. WullenkordR. LujambioA. de StanchinaE. PoirierJ.T. GainorJ.F. CorcoranR.B. EngelmanJ.A. RudinC.M. RosenN. LoweS.W. A combinatorial strategy for treating KRAS-mutant lung cancer.Nature2016534760964765110.1038/nature1860027338794
    [Google Scholar]
  97. LiuC. ZhaoY. WangJ. YangY. ZhangY. QuX. PengS. YaoZ. ZhaoS. HeB. MiQ. ZhuY. LiuX. ZouJ. ZhangX. DuQ. FoxO3 reverses 5-fluorouracil resistance in human colorectal cancer cells by inhibiting the Nrf2/TR1 signaling pathway.Cancer Lett.2020470294210.1016/j.canlet.2019.11.04231811910
    [Google Scholar]
  98. FlahertyK.T. InfanteJ.R. DaudA. GonzalezR. KeffordR.F. SosmanJ. HamidO. SchuchterL. CebonJ. IbrahimN. KudchadkarR. BurrisH.A.III FalchookG. AlgaziA. LewisK. LongG.V. PuzanovI. LebowitzP. SinghA. LittleS. SunP. AllredA. OuelletD. KimK.B. PatelK. WeberJ. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations.N. Engl. J. Med.2012367181694170310.1056/NEJMoa121009323020132
    [Google Scholar]
  99. RiniB.I. PowlesT. AtkinsM.B. EscudierB. McDermottD.F. SuarezC. BracardaS. StadlerW.M. DonskovF. LeeJ.L. HawkinsR. RavaudA. AlekseevB. StaehlerM. UemuraM. De GiorgiU. MelladoB. PortaC. MelicharB. GurneyH. BedkeJ. ChoueiriT.K. ParnisF. KhaznadarT. ThobhaniA. LiS. Piault-LouisE. FrantzG. HuseniM. SchiffC. GreenM.C. MotzerR.J. IMmotion151 Study Group Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial.Lancet2019393101892404241510.1016/S0140‑6736(19)30723‑831079938
    [Google Scholar]
  100. MakkerV. RascoD. VogelzangN.J. BroseM.S. CohnA.L. MierJ. Di SimoneC. HymanD.M. StepanD.E. DutcusC.E. SchmidtE.V. GuoM. SachdevP. ShumakerR. AghajanianC. TaylorM. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial.Lancet Oncol.201920571171810.1016/S1470‑2045(19)30020‑830922731
    [Google Scholar]
  101. JinH. WangL. BernardsR. Rational combinations of targeted cancer therapies: background, advances and challenges.Nat. Rev. Drug Discov.202322321323410.1038/s41573‑022‑00615‑z36509911
    [Google Scholar]
  102. TalibW.H. AlsayedA.R. BarakatM. Abu-TahaM.I. MahmodA.I. Targeting Drug Chemo-Resistance in Cancer Using Natural Products.Biomedicines2021910135310.3390/biomedicines910135334680470
    [Google Scholar]
  103. SelvakumarP. BadgeleyA. MurphyP. AnwarH. SharmaU. LawrenceK. LakshmikuttyammaA. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer.Nutrients202012376110.3390/nu1203076132183060
    [Google Scholar]
  104. NazimU.M. ParkS.Y. Genistein enhances TRAIL-induced cancer cell death via inactivation of autophagic flux.Oncol. Rep.20153452692269810.3892/or.2015.424726352862
    [Google Scholar]
  105. AntosiakA. MilowskaK. MaczynskaK. RozalskaS. GabryelakT. Cytotoxic activity of genistein-8-C-glucoside form Lupinus luteus L. and genistein against human SK-OV-3 ovarian carcinoma cell line.Med. Chem. Res.2017261647310.1007/s00044‑016‑1725‑528111515
    [Google Scholar]
  106. RasheedS. RehmanK. ShahidM. SuhailS. AkashM.S.H. Therapeutic potentials of genistein: New insights and perspectives.J. Food Biochem.2022469e1422810.1111/jfbc.1422835579327
    [Google Scholar]
  107. XueJ.P. WangG. ZhaoZ.B. WangQ. ShiY. Synergistic cytotoxic effect of genistein and doxorubicin on drug-resistant human breast cancer MCF-7/Adr cells.Oncol. Rep.20143241647165310.3892/or.2014.336525109508
    [Google Scholar]
  108. BhatS.S. PrasadS.K. ShivamalluC. PrasadK.S. SyedA. ReddyP. CullC.A. AmachawadiR.G. Genistein: A Potent Anti-Breast Cancer Agent.Curr. Issues Mol. Biol.20214331502151710.3390/cimb4303010634698063
    [Google Scholar]
  109. GarbiecE. Cielecka-PiontekJ. KowalówkaM. HołubiecM. ZalewskiP. Genistein—Opportunities Related to an Interesting Molecule of Natural Origin.Molecules202227381510.3390/molecules2703081535164079
    [Google Scholar]
  110. CarterM.W. SmartW.W.G.Jr MatroneG. Estimation of estrogenic activity of genistein obtained from soybean meal.Exp. Biol. Med. (Maywood)195384250650710.3181/00379727‑84‑2069313121088
    [Google Scholar]
  111. YangZ. KulkarniK. ZhuW. HuM. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME.Anticancer. Agents Med. Chem.201212101264128010.2174/18715201280383310722583407
    [Google Scholar]
  112. BarnesS. PetersonT.G. CowardL. Rationale for the use of genistein-containing soy matrices in chemoprevention trials for breast and prostate cancer.J. Cell. Biochem.199559S2218118710.1002/jcb.2405908238538197
    [Google Scholar]
  113. PhillipC.J. GiardinaC.K. BilirB. CutlerD.J. LaiY.H. KucukO. MorenoC.S. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells.BMC Cancer201212114510.1186/1471‑2407‑12‑14522494660
    [Google Scholar]
  114. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  115. WuJ.G. GeJ. ZhangY.P. YuY. ZhangX.Y. Solubility of genistein in water, methanol, ethanol, propan-2-ol, 1-butanol, and ethyl acetate from (280 to 333) K.J. Chem. Eng. Data201055115286528810.1021/je100261w
    [Google Scholar]
  116. UngarY. OsundahunsiO.F. ShimoniE. Thermal stability of genistein and daidzein and its effect on their antioxidant activity.J. Agric. Food Chem.200351154394439910.1021/jf034021z12848516
    [Google Scholar]
  117. YangZ. ZhuW. GaoS. XuH. WuB. KulkarniK. SinghR. TangL. HuM. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC–MS/MS method: Application to an oral bioavailability study of genistein in mice.J. Pharm. Biomed. Anal.2010531818910.1016/j.jpba.2010.03.01120378296
    [Google Scholar]
  118. LiuY. HuM. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model.Drug Metab. Dispos.200230437037710.1124/dmd.30.4.37011901089
    [Google Scholar]
  119. HardwickR.N. FerreiraD.W. MoreV.R. LakeA.D. LuZ. ManautouJ.E. SlittA.L. CherringtonN.J. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease.Drug Metab. Dispos.201341355456110.1124/dmd.112.04843923223517
    [Google Scholar]
  120. StrassburgC.P. MannsM.P. TukeyR.H. Expression of the UDP-glucuronosyltransferase 1A locus in human colon. Identification and characterization of the novel extrahepatic UGT1A8.J. Biol. Chem.1998273158719872610.1074/jbc.273.15.87199535849
    [Google Scholar]
  121. RichesZ. StanleyE.L. BloomerJ.C. CoughtrieM.W.H. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”.Drug Metab. Dispos.200937112255226110.1124/dmd.109.02839919679676
    [Google Scholar]
  122. KwonS.H. KangM.J. HuhJ.S. HaK.W. LeeJ.R. LeeS.K. LeeB.S. HanI.H. LeeM.S. LeeM.W. LeeJ. ChoiY.W. Comparison of oral bioavailability of genistein and genistin in rats.Int. J. Pharm.20073371-214815410.1016/j.ijpharm.2006.12.04617280808
    [Google Scholar]
  123. ColdhamN.G. SauerM.J. Pharmacokinetics of [(14)C]Genistein in the rat: gender-related differences, potential mechanisms of biological action, and implications for human health.Toxicol. Appl. Pharmacol.2000164220621510.1006/taap.2000.890210764634
    [Google Scholar]
  124. BuckleyD.B. KlaassenC.D. Mechanism of gender-divergent UDP-glucuronosyltransferase mRNA expression in mouse liver and kidney.Drug Metab. Dispos.200937483484010.1124/dmd.108.02422419131521
    [Google Scholar]
  125. ChurchwellM.I. DelclosK.B. ChangH.C. DoergeD.R. NewboldR.R. Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats.J. Nutr.200013081963197010.1093/jn/130.8.196310917909
    [Google Scholar]
  126. CassidyA. BrownJ.E. HawdonA. FaughnanM.S. KingL.J. MillwardJ. Zimmer-NechemiasL. WolfeB. SetchellK.D.R. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods.J. Nutr.20061361455110.1093/jn/136.1.4516365057
    [Google Scholar]
  127. SpinozziF. PagliacciM.C. MiglioratiG. MoracaR. GrignaniF. RiccardiC. NicolettiI. The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells.Leuk. Res.199418643143910.1016/0145‑2126(94)90079‑58207961
    [Google Scholar]
  128. HsiaoY.C. PengS.F. LaiK.C. LiaoC.L. HuangY.P. LinC.C. LinM.L. LiuK.C. TsaiC.C. MaY.S. ChungJ.G. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL‐60 cancer cell xenograft growth in vivo.Environ. Toxicol.201934444345610.1002/tox.2269830618158
    [Google Scholar]
  129. ZhouP. WangC. HuZ. ChenW. QiW. LiA. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway.BMC Cancer201717181310.1186/s12885‑017‑3829‑929202800
    [Google Scholar]
  130. RohT. KimS.W. MoonS.H. NamM.J. Genistein induces apoptosis by down-regulating thioredoxin-1 in human hepatocellular carcinoma SNU-449 cells.Food Chem. Toxicol.20169712713410.1016/j.fct.2016.09.00327597132
    [Google Scholar]
  131. ThasniK.A.A. RojiniG. RakeshS.N. RatheeshkumarT. BabuM.S. SrinivasG. BanerjiA. SrinivasP. Genistein induces apoptosis in ovarian cancer cells via different molecular pathways depending on Breast Cancer Susceptibility gene-1 (BRCA1) status.Eur. J. Pharmacol.20085882-315816410.1016/j.ejphar.2008.04.04118514188
    [Google Scholar]
  132. PrietschR.F. MonteL.G. da SilvaF.A. BeiraF.T. Del PinoF.A.B. CamposV.F. CollaresT. PintoL.S. SpanevelloR.M. GamaroG.D. BraganholE. Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of proapoptotic factors and oxidative stress enzymes.Mol. Cell. Biochem.20143901-223524210.1007/s11010‑014‑1974‑x24573886
    [Google Scholar]
  133. HoffmanR. Potent inhibition of breast cancer cell lines by the isoflavonoid kievitone: comparison with genistein.Biochem. Biophys. Res. Commun.1995211260060610.1006/bbrc.1995.18557794275
    [Google Scholar]
  134. ShaoZ.M. WuJ. ShenZ.Z. BarskyS.H. Genistein exerts multiple suppressive effects on human breast carcinoma cells.Cancer Res.19985821485148579809990
    [Google Scholar]
  135. PetersonG. BarnesS. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells.Cell Growth Differ.1996710134513518891338
    [Google Scholar]
  136. RavindranathM.H. MuthugounderS. PresserN. ViswanathanS. Anticancer therapeutic potential of soy isoflavone, genistein.Adv. Exp. Med. Biol.200454612116510.1007/978‑1‑4757‑4820‑8_1115584372
    [Google Scholar]
  137. DuR. LiuZ. HouX. FuG. anN. WangL. Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells.Mol. Med. Rep.20161365045505210.3892/mmr.2016.520427121018
    [Google Scholar]
  138. SahinK. TuzcuM. BasakN. CaglayanB. KilicU. SahinF. KucukO. Sensitization of Cervical Cancer Cells to Cisplatin by Genistein: The Role of NFB and Akt/mTOR Signaling Pathways.J. Oncol.201220121610.1155/2012/46156223056046
    [Google Scholar]
  139. GaoJ. XiaR. ChenJ. GaoJ. LuoX. KeC. RenC. LiJ. MiY. Inhibition of esophageal-carcinoma cell proliferation by genistein via suppression of JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways.Aging (Albany NY)20201276240625910.18632/aging.10301932276266
    [Google Scholar]
  140. LeeY.K. ParkO.J. Soybean isoflavone genistein regulates apoptosis through NF-κB dependent and independent pathways.Exp. Toxicol. Pathol.2013651-21610.1016/j.etp.2011.05.00121724378
    [Google Scholar]
  141. QiW. WeberC.R. WaslandK. SavkovicS.D. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity.BMC Cancer201111121910.1186/1471‑2407‑11‑21921639915
    [Google Scholar]
  142. HwangJ.T. HaJ. ParkO.J. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways.Biochem. Biophys. Res. Commun.2005332243344010.1016/j.bbrc.2005.04.14315896711
    [Google Scholar]
  143. ShafieeG. SaidijamM. TavilaniH. GhasemkhaniN. KhodadadiI. Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells.Int. J. Mol. Cell. Med.20165317819127942504
    [Google Scholar]
  144. GongL. LiY. Nedeljkovic-KurepaA. SarkarF.H. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells.Oncogene200322304702470910.1038/sj.onc.120658312879015
    [Google Scholar]
  145. XieQ. BaiQ. ZouL.Y. ZhangQ.Y. ZhouY. ChangH. YiL. ZhuJ.D. MiM.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells.Genes Chromosomes Cancer201453542243110.1002/gcc.2215424532317
    [Google Scholar]
  146. ZhangY. ChenH. Genistein, an epigenome modifier during cancer prevention.Epigenetics20116788889110.4161/epi.6.7.1631521610327
    [Google Scholar]
  147. SuzukiR. KangY. LiX. RoifeD. ZhangR. FlemingJ.B. Genistein potentiates the antitumor effect of 5-Fluorouracil by inducing apoptosis and autophagy in human pancreatic cancer cells.Anticancer Res.20143494685469225202045
    [Google Scholar]
  148. LiuD. YanL. WangL. TaiW. WangW. YangC. Genistein enhances the effect of cisplatin on the inhibition of non-small cell lung cancer A549 cell growth in vitro and in vivo. Oncol. Lett.2014862806281010.3892/ol.2014.259725364470
    [Google Scholar]
  149. BanerjeeS. ZhangY. AliS. BhuiyanM. WangZ. ChiaoP.J. PhilipP.A. AbbruzzeseJ. SarkarF.H. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer.Cancer Res.200565199064907210.1158/0008‑5472.CAN‑05‑133016204081
    [Google Scholar]
  150. MaJ. FangB. ZengF. MaC. PangH. ChengL. ShiY. WangH. YinB. XiaJ. WangZ. Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells.Oncotarget2015631740174910.18632/oncotarget.271425638153
    [Google Scholar]
  151. WuT.C. YangY.C. HuangP.R. WenY.D. YehS.L. Genistein enhances the effect of trichostatin A on inhibition of A549 cell growth by increasing expression of TNF receptor-1.Toxicol. Appl. Pharmacol.2012262324725410.1016/j.taap.2012.05.00322626855
    [Google Scholar]
  152. SiegelinM.D. SiegelinY. HabelA. GaiserT. Genistein enhances proteasomal degradation of the short isoform of FLIP in malignant glioma cells and thereby augments TRAIL-mediated apoptosis.Neurosci. Lett.20094532929710.1016/j.neulet.2009.02.01819356600
    [Google Scholar]
  153. SanaeiM. KavoosiF. AtashpourS. HaghighatS. Effects of Genistein and Synergistic Action in Combination with Tamoxifen on the HepG2 Human Hepatocellular Carcinoma Cell Line.Asian Pac. J. Cancer Prev.20171892381238510.22034/APJCP.2017.18.9.238128950682
    [Google Scholar]
  154. NolanE. LindemanG.J. VisvaderJ.E. Deciphering breast cancer: from biology to the clinic.Cell202318681708172810.1016/j.cell.2023.01.04036931265
    [Google Scholar]
  155. MaiZ. BlackburnG.L. ZhouJ.R. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor‐positive and HER2‐overexpressing human breast cancer cells.Mol. Carcinog.200746753454210.1002/mc.2030017295235
    [Google Scholar]
  156. FisherB. DignamJ. BryantJ. DeCillisA. WickerhamD.L. WolmarkN. CostantinoJ. RedmondC. FisherE.R. BowmanD.M. DeschênesL. DimitrovN.V. MargoleseR.G. RobidouxA. ShibataH. TerzJ. PatersonA.H.G. FeldmanM.I. FarrarW. EvansJ. LickleyH.L. Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors.J. Natl. Cancer Inst.199688211529154210.1093/jnci/88.21.15298901851
    [Google Scholar]
  157. JaiyesimiI.A. BuzdarA.U. DeckerD.A. HortobagyiG.N. Use of tamoxifen for breast cancer: twenty-eight years later.J. Clin. Oncol.199513251352910.1200/JCO.1995.13.2.5137844613
    [Google Scholar]
  158. DonovanM.G. SelminO.I. DoetschmanT.C. RomagnoloD.F. Epigenetic Activation of BRCA1 by Genistein In Vivo and Triple Negative Breast Cancer Cells Linked to Antagonism toward Aryl Hydrocarbon Receptor.Nutrients20191111255910.3390/nu1111255931652854
    [Google Scholar]
  159. BoutasI. KontogeorgiA. DimitrakakisC. KalantaridouS.N. Soy Isoflavones and Breast Cancer Risk: A Meta-analysis.In Vivo202236255656210.21873/invivo.1273735241506
    [Google Scholar]
  160. PaulB. LiY. TollefsbolT.O. The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation.Int. J. Mol. Sci.2018196175410.3390/ijms1906175429899271
    [Google Scholar]
  161. SaarinenN.M. AbrahamssonA. DabrosinC. Estrogen‐induced angiogenic factors derived from stromal and cancer cells are differently regulated by enterolactone and genistein in human breast cancer in vivo.Int. J. Cancer2010127373774510.1002/ijc.2505219924815
    [Google Scholar]
  162. JeuneM.A.L. Kumi-DiakaJ. BrownJ. Anticancer activities of pomegranate extracts and genistein in human breast cancer cells.J. Med. Food20058446947510.1089/jmf.2005.8.46916379557
    [Google Scholar]
  163. SahinK. TuzcuM. SahinN. AkdemirF. OzercanI. BayraktarS. KucukO. Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced breast cancer in rats.Nutr. Cancer20116381279128610.1080/01635581.2011.60695521958026
    [Google Scholar]
  164. HoriaE. WatkinsB.A. Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells.Carcinogenesis200628480981510.1093/carcin/bgl18317052999
    [Google Scholar]
  165. LattrichC. LubigJ. SpringwaldA. GoerseR. OrtmannO. TreeckO. Additive effects of trastuzumab and genistein on human breast cancer cells.Anticancer Drugs201122325326110.1097/CAD.0b013e3283427bb521160418
    [Google Scholar]
  166. FerencP. SolárP. KlebanJ. MikešJ. FedoročkoP. Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells.J. Photochem. Photobiol. B2010981253410.1016/j.jphotobiol.2009.10.00419932626
    [Google Scholar]
  167. WangB. YanN. WuD. DouY. LiuZ. HuX. ChenC. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein.Nanotechnology2021323939510110.1088/1361‑6528/ac0d1e34153956
    [Google Scholar]
  168. KaushikS. ShyamH. SharmaR. BalapureA.K. Genistein synergizes centchroman action in human breast cancer cells.Indian J. Pharmacol.201648663764210.4103/0253‑7613.19485228066099
    [Google Scholar]
  169. LubeckaK. Kaufman-SzymczykA. Cebula-ObrzutB. SmolewskiP. SzemrajJ. Fabianowska-MajewskaK. Novel Clofarabine-Based Combinations with Polyphenols Epigenetically Reactivate Retinoic Acid Receptor Beta, Inhibit Cell Growth, and Induce Apoptosis of Breast Cancer Cells.Int. J. Mol. Sci.20181912397010.3390/ijms1912397030544666
    [Google Scholar]
  170. LiuR. XuX. LiangC. ChenX. YuX. ZhongH. XuW. ChengY. WangW. WuY. YuL. HuX. ERβ modulates genistein’s cisplatin-enhancing activities in breast cancer MDA-MB-231 cells via P53-independent pathway.Mol. Cell. Biochem.20194561-220521610.1007/s11010‑019‑03505‑y30737644
    [Google Scholar]
  171. ShuklaR.P. DewanganJ. UrandurS. BanalaV.T. DiwediM. SharmaS. AgrawalS. RathS.K. TrivediR. MishraP.R. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma.Biomater. Sci.2020851298131510.1039/C9BM01246J31903460
    [Google Scholar]
  172. ZhangX. ZhuL. WangX. ZhangH. WangL. XiaL. Basic research on curcumin in cervical cancer: Progress and perspectives.Biomed. Pharmacother.202316211459010.1016/j.biopha.2023.11459036965256
    [Google Scholar]
  173. ZamanM.S. ChauhanN. YallapuM.M. GaraR.K. MaherD.M. KumariS. SikanderM. KhanS. ZafarN. JaggiM. ChauhanS.C. Curcumin Nanoformulation for Cervical Cancer Treatment.Sci. Rep.2016612005110.1038/srep2005126837852
    [Google Scholar]
  174. SundramV. ChauhanS.C. EbelingM. JaggiM. Curcumin attenuates β-catenin signaling in prostate cancer cells through activation of protein kinase D1.PLoS One201274e3536810.1371/journal.pone.003536822523587
    [Google Scholar]
  175. KimS.R. ParkH.J. BaeY.H. AhnS.C. WeeH.J. YunI. JangH.O. BaeM.K. BaeS.K. Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion.Endocrinology2012153255456310.1210/en.2011‑141322186408
    [Google Scholar]
  176. YangC.L. MaY.G. XueY.X. LiuY.Y. XieH. QiuG.R. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway.DNA Cell Biol.201231213915010.1089/dna.2011.130021711158
    [Google Scholar]
  177. SintaraK. Thong-NgamD. PatumrajS. KlaikeawN. Curcumin attenuates gastric cancer induced by N-methyl-N-nitrosourea and saturated sodium chloride in rats.J. Biomed. Biotechnol.201220121810.1155/2012/91538022690125
    [Google Scholar]
  178. DarveshA.S. AggarwalB.B. BishayeeA. Curcumin and liver cancer: a review.Curr. Pharm. Biotechnol.201213121822810.2174/13892011279886879121466422
    [Google Scholar]
  179. KuttanR. BhanumathyP. NirmalaK. GeorgeM.C. Potential anticancer activity of turmeric (Curcuma longa).Cancer Lett.198529219720210.1016/0304‑3835(85)90159‑44075289
    [Google Scholar]
  180. DhillonN. AggarwalB.B. NewmanR.A. WolffR.A. KunnumakkaraA.B. AbbruzzeseJ.L. NgC.S. BadmaevV. KurzrockR. Phase II trial of curcumin in patients with advanced pancreatic cancer.Clin. Cancer Res.200814144491449910.1158/1078‑0432.CCR‑08‑002418628464
    [Google Scholar]
  181. KumarA. HarshaC. ParamaD. GirisaS. DaimaryU.D. MaoX. KunnumakkaraA.B. Current clinical developments in curcumin‐based therapeutics for cancer and chronic diseases.Phytother. Res.202135126768680110.1002/ptr.726434498308
    [Google Scholar]
  182. KunnumakkaraA.B. AnandP. AggarwalB.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins.Cancer Lett.2008269219922510.1016/j.canlet.2008.03.00918479807
    [Google Scholar]
  183. KunnumakkaraA.B. DiagaradjaneP. AnandP. KuzhuvelilH.B. DeorukhkarA. GelovaniJ. GuhaS. KrishnanS. AggarwalB.B. Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX‐2, MMP‐9, VEGF and CXCR4 expression in an orthotopic mouse model.Int. J. Cancer200912592187219710.1002/ijc.2459319623659
    [Google Scholar]
  184. KunnumakkaraA.B. DiagaradjaneP. GuhaS. DeorukhkarA. ShentuS. AggarwalB.B. KrishnanS. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products.Clin. Cancer Res.20081472128213610.1158/1078‑0432.CCR‑07‑472218381954
    [Google Scholar]
  185. SungB. KunnumakkaraA.B. SethiG. AnandP. GuhaS. AggarwalB.B. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model.Mol. Cancer Ther.20098495997010.1158/1535‑7163.MCT‑08‑090519372569
    [Google Scholar]
  186. HegdeM. GirisaS. BharathwajChettyB. VishwaR. KunnumakkaraA.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far?ACS Omega2023812107131074610.1021/acsomega.2c0732637008131
    [Google Scholar]
  187. KunnumakkaraA.B. HegdeM. ParamaD. GirisaS. KumarA. DaimaryU.D. GarodiaP. YenisettiS.C. OommenO.V. AggarwalB.B. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials.ACS Pharmacol. Transl. Sci.20236444751810.1021/acsptsci.2c0001237082752
    [Google Scholar]
  188. DhandayuthapaniS. MarimuthuP. HörmannV. Kumi-DiakaJ. RathinaveluA. Induction of apoptosis in HeLa cells via caspase activation by resveratrol and genistein.J. Med. Food201316213914610.1089/jmf.2012.014123356442
    [Google Scholar]
  189. NguyenV.T. WintermanS. PlayeM. BenbaraA. ZelekL. PamoukdjianF. BousquetG. Dose-Intense Cisplatin-Based Neoadjuvant Chemotherapy Increases Survival in Advanced Cervical Cancer: An Up-to-Date Meta-Analysis.Cancers (Basel)202214384210.3390/cancers1403084235159111
    [Google Scholar]
  190. BhattacharjeeR. DeyT. KumarL. KarS. SarkarR. GhoraiM. MalikS. JhaN.K. VellingiriB. KesariK.K. Pérez de la LastraJ.M. DeyA. Cellular landscaping of cisplatin resistance in cervical cancer.Biomed. Pharmacother.202215311334510.1016/j.biopha.2022.11334535810692
    [Google Scholar]
  191. LiuH. LeeG. LeeJ.I. AhnT.G. KimS.A. Effects of genistein on anti-tumor activity of cisplatin in human cervical cancer cell lines.Obstet. Gynecol. Sci.201962532232810.5468/ogs.2019.62.5.32231538075
    [Google Scholar]
  192. BagalS. BudukhA. Singh ThakurJ. DoraT. QayyumiB. KhannaD. FernandesD. ChakravartiP. SinghR. PatilS. DikshitR. ChaturvediP. Head and neck cancer burden in India: an analysis from published data of 37 population-based cancer registries.Ecancermedicalscience202317160310.3332/ecancer.2023.160337799939
    [Google Scholar]
  193. ParkS.J. KimM.J. KimY.K. KimS.M. ParkJ.Y. MyoungH. Combined cetuximab and genistein treatment shows additive anti-cancer effect on oral squamous cell carcinoma.Cancer Lett.20102921546310.1016/j.canlet.2009.11.00419959278
    [Google Scholar]
  194. FayyazS. YaylimI. TuranS. KanwalS. FarooqiA.A. Hepatocellular carcinoma: targeting of oncogenic signaling networks in TRAIL resistant cancer cells.Mol. Biol. Rep.201441106909691710.1007/s11033‑014‑3577‑825037270
    [Google Scholar]
  195. GamieZ. KapriniotisK. PapanikolaouD. HaagensenE. Da Conceicao RibeiroR. DalgarnoK. Krippner-HeidenreichA. GerrandC. TsiridisE. RankinK.S. TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data.Cancer Lett.2017409668010.1016/j.canlet.2017.08.03628888998
    [Google Scholar]
  196. StuckeyD.W. ShahK. TRAIL on trial: preclinical advances in cancer therapy.Trends Mol. Med.2013191168569410.1016/j.molmed.2013.08.00724076237
    [Google Scholar]
  197. SunJ. XuH. LeiZ. LiZ. ZhuH. DengZ. YuX. JinX. YangZ. The lncRNA CASC2 Modulates Hepatocellular Carcinoma Cell Sensitivity and Resistance to TRAIL Through Apoptotic and Non-Apoptotic Signaling.Front. Oncol.20221172662210.3389/fonc.2021.72662235145900
    [Google Scholar]
  198. JinC.Y. ParkC. KimG.Y. LeeS.J. KimW.J. ChoiY.H. Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells.Chem. Biol. Interact.2009180214315010.1016/j.cbi.2009.03.02019497411
    [Google Scholar]
  199. DastjerdiM.N. KavoosiF. ValianiA. EsfandiariE. SanaeiM. HakemiM. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line.Adv. Biomed. Res.20165113310.4103/2277‑9175.18739527656602
    [Google Scholar]
  200. SanaeiM. KavoosiF. Effect of DNA Methyltransferase in Comparison to and in Combination with Histone Deacetylase Inhibitors on Hepatocellular Carcinoma HepG2 Cell Line.Asian Pac. J. Cancer Prev.20192041119112510.31557/APJCP.2019.20.4.111931030484
    [Google Scholar]
  201. MaY. WangJ. LiuL. ZhuH. ChenX. PanS. SunX. JiangH. Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: Role of Akt and nuclear factor-κB.Cancer Lett.20113011758410.1016/j.canlet.2010.10.02221078540
    [Google Scholar]
  202. JuliussonG. HoughR. Leukemia.Prog. Tumor Res.2016438710010.1159/00044707627595359
    [Google Scholar]
  203. JaffeR. WHO classification of tumours of haematopoietic and lymphoid tissues.World Health Organ. Classif. Tumours2008358360
    [Google Scholar]
  204. DuM. ChenW. LiuK. WangL. HuY. MaoY. SunX. LuoY. ShiJ. ShaoK. HuangH. YeD. The Global Burden of Leukemia and Its Attributable Factors in 204 Countries and Territories: Findings from the Global Burden of Disease 2019 Study and Projections to 2030.J. Oncol.2022202211410.1155/2022/161270235509847
    [Google Scholar]
  205. RaynalN.J.M. CharbonneauM. MomparlerL.F. MomparlerR.L. Synergistic effect of 5-Aza-2′-deoxycytidine and genistein in combination against leukemia.Oncol. Res.200817522323010.3727/09650400878611135618980019
    [Google Scholar]
  206. ShenJ. TaiY.C. ZhouJ. Stephen WongC.H. CheangP.T.S. Fred WongW.S. XieZ. KhanM. HanJ.H. ChenC.S. Synergistic antileukemia effect of genistein and chemotherapy in mouse xenograft model and potential mechanism through MAPK signaling.Exp. Hematol.200735175.e175.e1110.1016/j.exphem.2006.09.00717198876
    [Google Scholar]
  207. MansourA. ChangV.T. SrinivasS. HarrisonJ. RavecheE. Correlation of ZAP-70 expression in B cell leukemias to the ex vivo response to a combination of fludarabine/genistein.Cancer Immunol. Immunother.200756450151410.1007/s00262‑006‑0207‑x17051411
    [Google Scholar]
  208. AndersonV.R. PerryC.M. Fludarabine.Drugs200767111633165510.2165/00003495‑200767110‑0000817661532
    [Google Scholar]
  209. ShvidelL. CohnM. SiglerE. Pharmacotherapy Update: Fludarabine in the Treatment of Non-Hodgkin’s Lymphoma.Clinic. Med. Therap.200911910.4137/CMT.S2553
    [Google Scholar]
  210. HsiaoY.C. ChuehF.S. MaY.S. LienJ.C. HsiaT.C. HuangW.W. ChouY.C. ChenP.Y. ChungJ.G. ChenH.Y. LiuK.C. Genistein enhances the effects of L‐asparaginase on inducing cell apoptosis in human leukemia cancer HL ‐60 cells.Environ. Toxicol.202136576477210.1002/tox.2307833347704
    [Google Scholar]
  211. KoszałkaP. StasiłojćG. Miękus-PurwinN. NiedźwieckiM. PurwinM. GrabowskiS. BączekT. The Cooperative Anti-Neoplastic Activity of Polyphenolic Phytochemicals on Human T-Cell Acute Lymphoblastic Leukemia Cell Line MOLT-4 In Vitro.Int. J. Mol. Sci.2022239475310.3390/ijms2309475335563141
    [Google Scholar]
  212. ShiauR.J. ChenK.Y. WenY.D. ChuangC.H. YehS.L. Genistein and β-carotene enhance the growth-inhibitory effect of trichostatin A in A549 cells.Eur. J. Nutr.2010491192510.1007/s00394‑009‑0044‑819639378
    [Google Scholar]
  213. ZhuH. ChengH. RenY. LiuZ.G. ZhangY.F. De LuoB. Synergistic inhibitory effects by the combination of gefitinib and genistein on NSCLC with acquired drug-resistance in vitro and in vivo.Mol. Biol. Rep.20123944971497910.1007/s11033‑011‑1293‑122160570
    [Google Scholar]
  214. ChengJ. QiJ. LiX.T. ZhouK. XuJ.H. ZhouY. ZhangG.Q. XuJ.P. ZhouR.J. ATRA and Genistein synergistically inhibit the metastatic potential of human lung adenocarcinoma cells.Int. J. Clin. Exp. Med.2015834220422726064333
    [Google Scholar]
  215. YinX. CuiY. KimR.S. StilesW.R. ParkS.H. WangH. MaL. ChenL. BaekY. KashiwagiS. BaoK. UlumbenA. FukudaT. KangH. ChoiH.S. Image-guided drug delivery of nanotheranostics for targeted lung cancer therapy.Theranostics20221294147416210.7150/thno.7280335673583
    [Google Scholar]
  216. KamelN.M. HelmyM.W. AbdelfattahE.Z. KhattabS.N. RagabD. SamahaM.W. FangJ.Y. ElzoghbyA.O. Inhalable Dual-Targeted Hybrid Lipid Nanocore–Protein Shell Composites for Combined Delivery of Genistein and All-Trans Retinoic Acid to Lung Cancer Cells.ACS Biomater. Sci. Eng.202061718710.1021/acsbiomaterials.8b0137433463208
    [Google Scholar]
  217. SackoK. ThangavelK. ShoyeleS.A. Codelivery of Genistein and miRNA-29b to A549 Cells Using Aptamer-Hybrid Nanoparticle Bioconjugates.Nanomaterials (Basel)201997105210.3390/nano907105231340494
    [Google Scholar]
  218. MatthayK.K. MarisJ.M. SchleiermacherG. NakagawaraA. MackallC.L. DillerL. WeissW.A. Neuroblastoma.Nat. Rev. Dis. Primers2016211607810.1038/nrdp.2016.7827830764
    [Google Scholar]
  219. StillerC.A. ParkinD.M. International variations in the incidence of neuroblastoma.Int. J. Cancer199252453854310.1002/ijc.29105204071399133
    [Google Scholar]
  220. KarmakarS. Roy ChoudhuryS. BanikN.L. RayS.K. Combination of N-(4-hydroxyphenyl) retinamide and genistein increased apoptosis in neuroblastoma SK-N-BE2 and SH-SY5Y xenografts.Neuroscience2009163128629510.1016/j.neuroscience.2009.06.03719540315
    [Google Scholar]
  221. Roy ChoudhuryS. KarmakarS. BanikN.L. RayS.K. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification.Invest. New Drugs201028681282410.1007/s10637‑009‑9324‑719777160
    [Google Scholar]
  222. KhanM.A. VikramdeoK.S. SudanS.K. SinghS. WilhiteA. DasguptaS. RocconiR.P. SinghA.P. Platinum-resistant ovarian cancer: From drug resistance mechanisms to liquid biopsy-based biomarkers for disease management.Semin. Cancer Biol.2021779910910.1016/j.semcancer.2021.08.00534418576
    [Google Scholar]
  223. SolomonL.A. AliS. BanerjeeS. MunkarahA.R. MorrisR.T. SarkarF.H. Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB.J. Ovarian Res.200811910.1186/1757‑2215‑1‑919025644
    [Google Scholar]
  224. HuangS.L. ChangT.C. ChaoC.C.K. SunN.K. Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells.Biochem. Pharmacol.202017711396510.1016/j.bcp.2020.11396532278794
    [Google Scholar]
  225. ArzumanL. BealeP. ProschogoN. YuJ.Q. HuqF. Combination of Genistein and Cisplatin with Two Designed Monofunctional Platinum Agents in Human Ovarian Tumour Models.Anticancer Res.201535116027603926504026
    [Google Scholar]
  226. Novak-HoferI. CohrsS. GrünbergJ. FriedliA. SchlatterM.C. PfeiferM. AltevogtP. SchubigerP.A. Antibodies directed against L1-CAM synergize with Genistein in inhibiting growth and survival pathways in SKOV3ip human ovarian cancer cells.Cancer Lett.2008261219320410.1016/j.canlet.2007.11.01218155830
    [Google Scholar]
  227. ChoiE.J. KimT. LeeM.S. Pro-apoptotic effect and cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells.Life Sci.200780151403140810.1016/j.lfs.2006.12.03117291540
    [Google Scholar]
  228. DastjerdiM. ZamaniS. MardaniM. BeniB. All-trans retinoic acid and genistein induce cell apoptosis in OVCAR-3 cells by increasing the P14 tumor suppressor gene.Res. Pharm. Sci.201611650551210.4103/1735‑5362.19489928003845
    [Google Scholar]
  229. BurrisH.A.III MooreM.J. AndersenJ. GreenM.R. RothenbergM.L. ModianoM.R. CrippsM.C. PortenoyR.K. StornioloA.M. TarassoffP. NelsonR. DorrF.A. StephensC.D. Von HoffD.D. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial.J. Clin. Oncol.19971562403241310.1200/JCO.1997.15.6.24039196156
    [Google Scholar]
  230. QiR. BaiY. LiK. LiuN. XuY. DalE. WangY. LinR. WangH. LiuZ. LiX. WangX. ShiB. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs.Drug Resist. Updat.20236810096010.1016/j.drup.2023.10096037003125
    [Google Scholar]
  231. ShuklaS.K. PurohitV. MehlaK. GundaV. ChaikaN.V. VernucciE. KingR.J. AbregoJ. GoodeG.D. DasguptaA. IlliesA.L. GebregiworgisT. DaiB. AugustineJ.J. MurthyD. AttriK.S. MashadovaO. GrandgenettP.M. PowersR. LyQ.P. LazenbyA.J. GremJ.L. YuF. MatésJ.M. AsaraJ.M. KimJ. HankinsJ.H. WeekesC. HollingsworthM.A. SerkovaN.J. SassonA.R. FlemingJ.B. OlivetoJ.M. LyssiotisC.A. CantleyL.C. BerimL. SinghP.K. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer.Cancer Cell20173217187.e710.1016/j.ccell.2017.06.00428697344
    [Google Scholar]
  232. MaJ. ChengL. LiuH. ZhangJ. ShiY. ZengF. MieleL. SarkarF. XiaJ. WangZ. Genistein down-regulates miR-223 expression in pancreatic cancer cells.Curr. Drug Targets201314101150115610.2174/1389450111314999018723834147
    [Google Scholar]
  233. MaJ. ZengF. MaC. PangH. FangB. LianC. YinB. ZhangX. WangZ. XiaJ. Synergistic reversal effect of epithelial-to-mesenchymal transition by miR-223 inhibitor and genistein in gemcitabine-resistant pancreatic cancer cells.Am. J. Cancer Res.2016661384139527429851
    [Google Scholar]
  234. BerkenstamA. RehnmarkS. WittM-R. WattS. Crystalline genistein sodium salt dihydrate.Patents US7863325B2, 2011.
  235. MesmarF. DaiB. IbrahimA. HasesL. JafferaliM.H. Jose AugustineJ. DiLorenzoS. KangY. ZhaoY. WangJ. KimM. LinC.Y. BerkenstamA. FlemingJ. WilliamsC. Clinical candidate and genistein analogue AXP107‐11 has chemoenhancing functions in pancreatic adenocarcinoma through G protein‐coupled estrogen receptor signaling.Cancer Med.20198187705771910.1002/cam4.258131568691
    [Google Scholar]
  236. MohammadR.M. WangS. BanerjeeS. WuX. ChenJ. SarkarF.H. Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line.Pancreas200531431732410.1097/01.mpa.0000179731.46210.0116258364
    [Google Scholar]
  237. PeehlD.M. KrishnanA.V. FeldmanD. Pathways mediating the growth-inhibitory actions of vitamin D in prostate cancer.J. Nutr.20031337Suppl.2461S2469S10.1093/jn/133.7.2461S12840225
    [Google Scholar]
  238. KrishnanA.V. PeehlD.M. FeldmanD. Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression.J. Cell. Biochem.200388236337110.1002/jcb.1033412520538
    [Google Scholar]
  239. MillerG.J. StapletonG.E. HedlundT.E. MoffatK.A. Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1alpha,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines.Clin. Cancer Res.19951999710039816072
    [Google Scholar]
  240. SkowronskiR.J. PeehlD.M. FeldmanD. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines.Endocrinology199313251952196010.1210/endo.132.5.76829377682937
    [Google Scholar]
  241. SwamiS. KrishnanA.V. PeehlD.M. FeldmanD. Genistein potentiates the growth inhibitory effects of 1,25-dihydroxyvitamin D3 in DU145 human prostate cancer cells: Role of the direct inhibition of CYP24 enzyme activity.Mol. Cell. Endocrinol.20052411-2496110.1016/j.mce.2005.05.00115955619
    [Google Scholar]
  242. KarlssonS. Diaz CruzM.A. FaresjöM. KhamouA.P. LarssonD. Inhibition of CYP27B1 and CYP24 Increases the Anti-proliferative Effects of 25-Hydroxyvitamin D 3 in LNCaP Cells.Anticancer Res.202141104733474010.21873/anticanres.1528834593422
    [Google Scholar]
  243. ShinS.B. WooS.U. YimH. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer.Ther. Adv. Med. Oncol.201911175883591984637510.1177/175883591984637531156720
    [Google Scholar]
  244. ZhangS. WangY. ChenZ. KimS. IqbalS. ChiA. RitenourC. WangY.A. KucukO. WuD. Genistein enhances the efficacy of cabazitaxel chemotherapy in metastatic castration-resistant prostate cancer cells.Prostate20137315n/a10.1002/pros.2270523999913
    [Google Scholar]
  245. BurichR.A. HollandW.S. VinallR.L. TepperC. DeVere WhiteR.W. MackP.C. Genistein combined polysaccharide enhances activity of docetaxel, bicalutamide and Src kinase inhibition in androgen‐dependent and independent prostate cancer cell lines.BJU Int.2008102101458146610.1111/j.1464‑410X.2008.07826.x18565171
    [Google Scholar]
  246. Yuan-jingF. Nan-shanH. LianX. Genistein synergizes with RNA interference inhibiting survivin for inducing DU-145 of prostate cancer cells to apoptosis.Cancer Lett.2009284218919710.1016/j.canlet.2009.04.02419433345
    [Google Scholar]
  247. ChangK.L. ChengH.L. HuangL.W. HsiehB.S. HuY.C. ChihT.T. ShyuH.W. SuS.J. Combined effects of terazosin and genistein on a metastatic, hormone-independent human prostate cancer cell line.Cancer Lett.20092761142010.1016/j.canlet.2008.10.03319091461
    [Google Scholar]
  248. GeorgeA. RajiI. CinarB. KucukO. OyelereA.K. Design, synthesis, and evaluation of the antiproliferative activity of hydantoin-derived antiandrogen-genistein conjugates.Bioorg. Med. Chem.20182681481148710.1016/j.bmc.2018.01.00929456113
    [Google Scholar]
  249. ZhaoR. XiangN. DomannF.E. ZhongW. Effects of selenite and genistein on G2/M cell cycle arrest and apoptosis in human prostate cancer cells.Nutr. Cancer200961339740710.1080/0163558080258275119373614
    [Google Scholar]
  250. OhH.Y. LeemJ. YoonS.J. YoonS. HongS.J. Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor.Biochem. Biophys. Res. Commun.2010393231932410.1016/j.bbrc.2010.01.13320138837
    [Google Scholar]
  251. DongX. XuW. SikesR.A. WuC. Combination of low dose of genistein and daidzein has synergistic preventive effects on isogenic human prostate cancer cells when compared with individual soy isoflavone.Food Chem.201314131923193310.1016/j.foodchem.2013.04.10923870911
    [Google Scholar]
  252. DavisD.A. SarkarS.H. HussainM. LiY. SarkarF.H. Increased therapeutic potential of an experimental anti-mitotic inhibitor SB715992 by genistein in PC-3 human prostate cancer cell line.BMC Cancer2006612210.1186/1471‑2407‑6‑2216433906
    [Google Scholar]
  253. HsiehT.C. WuJ.M. Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetin.Anticancer Res.200929104025403219846946
    [Google Scholar]
  254. SongY. YuanY. ShiX. CheY. Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor.Colloids Surf. B Biointerfaces202019011096610.1016/j.colsurfb.2020.11096632199263
    [Google Scholar]
  255. TianJ. ChiC. BianG. XingD. GuoF. WangX. PSMA conjugated combinatorial liposomal formulation encapsulating genistein and plumbagin to induce apoptosis in prostate cancer cells.Colloids Surf. B Biointerfaces202120311172310.1016/j.colsurfb.2021.11172333839474
    [Google Scholar]
  256. TianJ. GuoF. ChenY. LiY. YuB. LiY. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation.Cancer Lett.201944811010.1016/j.canlet.2019.01.00230673592
    [Google Scholar]
  257. ParajuliB. ShinS.J. KwonS.H. ChaS.D. LeeH.G. BaeI. ChoC.H. The synergistic apoptotic interaction of Indole-3-Carbinol and Genistein with TRAIL on endometrial cancer cells.J. Korean Med. Sci.201328452753310.3346/jkms.2013.28.4.52723580227
    [Google Scholar]
  258. LiangC. LiH. ShenC. LaiJ. ShiZ. LiuB. TaoH. Genistein potentiates the anti-cancer effects of gemcitabine in human osteosarcoma via the downregulation of Akt and nuclear factor-κB pathway.Anticancer. Agents Med. Chem.201212555456310.2174/18715201280061786722263786
    [Google Scholar]
  259. OzturkS.A. AlpE. Yar SaglamA.S. KonacE. MenevseE.S. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines.J. Cancer Res. Ther.201814232833410.4103/0973‑1482.20288629516914
    [Google Scholar]
  260. NakamuraY. YogosawaS. IzutaniY. WatanabeH. OtsujiE. SakaiT. A combination of indole-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy.Mol. Cancer20098110010.1186/1476‑4598‑8‑10019909554
    [Google Scholar]
  261. LöhrJ.M. KarimiM. OmazicB. KartalisN. VerbekeC.S. BerkenstamA. FrödinJ.E. A phase I dose escalation trial of AXP107-11, a novel multi-component crystalline form of genistein, in combination with gemcitabine in chemotherapy-naive patients with unresectable pancreatic cancer.Pancreatology201616464064510.1016/j.pan.2016.05.00227234064
    [Google Scholar]
  262. El-RayesB.F. PhilipP.A. SarkarF.H. ShieldsA.F. FerrisA.M. HessK. KasebA.O. JavleM.M. VaradhacharyG.R. WolffR.A. AbbruzzeseJ.L. A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer.Invest. New Drugs201129469469910.1007/s10637‑010‑9386‑620107864
    [Google Scholar]
  263. SimoneC.B.II SerebrenikA.A. GoreE.M. MohindraP. BrownS.L. WangD. ChettyI.J. VujaskovicZ. MenonS. ThompsonJ. FineG. KaytorM.D. MovsasB. Multicenter Phase 1b/2a Clinical Trial of Radioprotectant BIO 300 Oral Suspension for Patients With Non-Small Cell Lung Cancer Receiving Concurrent Chemoradiotherapy.Int. J. Radiat. Oncol. Biol. Phys.2024118240441410.1016/j.ijrobp.2023.08.04837652301
    [Google Scholar]
  264. PintovaS. DharmupariS. MoshierE. ZubizarretaN. AngC. HolcombeR.F. Genistein combined with FOLFOX or FOLFOX–Bevacizumab for the treatment of metastatic colorectal cancer: phase I/II pilot study.Cancer Chemother. Pharmacol.201984359159810.1007/s00280‑019‑03886‑331203390
    [Google Scholar]
  265. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: an overview.Cancers (Basel)2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  266. ChoudharyH. BordoloiD. PrakashJ. ManteghiN. PadmavathiG. MonishaJ. Different chemosensitization approaches in gastric cancer.Cancer Cell Chemoresistance and ChemosensitizationWorld Scientific Publishing2018
    [Google Scholar]
  267. ChoudharyH. ThakurK.K. SharmaA. RoyN.K. KhwairakpamA.D. BordoloiD. Strategies to overcome chemoresistance in ovarian cancer.Cancer Cell Chemoresistance and Chemosensitization.World Scientific201852955510.1142/9789813208575_0017
    [Google Scholar]
  268. MonishaJ. RoyN.K. SharmaA. BanikK. PadmavathiG. BordoloiD. Chemoresistance and chemosensitization in Melanoma.Cancer Cell Chemoresistance and Chemosensitization.World Scientific201847952710.1142/9789813208575_0016
    [Google Scholar]
  269. PadmavathiG. BordoloiD. BanikK. JavadiM. SinghA.K. KunnumakkaraA.B. Mechanism of chemoresistance in bone cancer and different chemosensitization approaches.Cancer cell chemoresistance and chemosensitization.SingaporeWorld Scientific20188110610.1142/9789813208575_0004
    [Google Scholar]
  270. SailoB.L. BordoloiD. BanikK. KhwairakpamA.D. RoyN.K. PrakashJ. Therapeutic strategies for chemosensitization of renal cancer.Cancer Cell Chemoresistance and Chemosensitization.World Scientific201861563910.1142/9789813208575_0020
    [Google Scholar]
  271. SinghA.K. MonishaJ. BanikK. ChoudharyH. KhwairakpamA.D. BordoloiD. Cancer Cell Chemoresistance and Chemosensitization in Endometrial Cancer.Cancer Cell Chemoresistance and Chemosensitization.World Scientific201822723910.1142/9789813208575_0009
    [Google Scholar]
  272. SinghA.K. RoyN.K. AnipA. BanikK. MonishaJ. BordoloiD. Different methods to inhibit chemoresistance in Hepatocellular carcinoma.Cancer Cell Chemoresistance and Chemosensitization.SingaporeWorld Scientific201837339810.1142/9789813208575_0013
    [Google Scholar]
  273. ThakurK.K. BordoloiD. PrakashJ. JavadiM. RoyN.K. KunnumakkaraA.B. Different chemosensitization approaches for the effective management of HNSCC.Cancer Cell Chemoresistance and ChemosensitizationWorld Scientific Publishing2018
    [Google Scholar]
  274. VenkatR. VermaE. DaimaryU.D. KumarA. GirisaS. DuttaU. AhnK.S. KunnumakkaraA.B. The journey of resveratrol from vineyards to clinics.Cancer Invest.202341218322010.1080/07357907.2022.211505735993769
    [Google Scholar]
  275. BordoloiD. BanikK. KhwairakpamA.D. SharmaA. MonishaJ. SailoB.L. Different approaches to overcome chemoresistance in esophageal cancer.Cancer Cell Chemoresistance and Chemosensitization.World Scientific201824126610.1142/9789813208575_0010
    [Google Scholar]
  276. KunnumakkaraA.B. BordoloiD. MonishaJ. Cancer Cell Chemoresistance and Chemosensitization.World Scientific201810.1142/10407
    [Google Scholar]
  277. RoyN.K. SharmaA. SinghA.K. BordoloiD. SailoB.L. MonishaJ. Bladder cancer: chemoresistance and chemosensitization.Cancer cell chemoresistance and chemosensitization.World Scientific2018518010.1142/9789813208575_0003
    [Google Scholar]
  278. SailoB.L. MonishaJ. JaiswalA. PrakashJ. RoyN.K. ThakurK.K. Molecular alterations involved in pancreatic cancer chemoresistance and chemosensitization strategies.Cancer Cell Chemoresistance and Chemosensitization.SingaporeWorld Scientific2018557581
    [Google Scholar]
  279. JinC.Y. ParkC. CheongJ. ChoiB.T. LeeT.H. LeeJ.D. LeeW.H. KimG.Y. RyuC.H. ChoiY.H. Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3.Cancer Lett.20072571566410.1016/j.canlet.2007.06.01917689858
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266319955241224073611
Loading
/content/journals/ctmc/10.2174/0115680266319955241224073611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test