Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Circadian rhythms of innate 24 h cycles comprise well-conserved biological phenomena from cyanobacteria to mammalian. They are driven by light and regulated by clock genes that work as transcription factors and control the expression of many other genes and physiological functions in the cells. The expression of ~ 40% of protein-coding genes shows 24 h oscillation patterns in mice, implying their importance in normal body functions. Indeed, the physiological and behavioural rhythmicity generated through clock genes-mediated multiple mechanisms affects the quality of life at large. Disrupted circadian rhythmicity is associated with several kinds of diseases. For example, cancer cells show abnormal expression patterns for circadian rhythm genes that have been shown to regulate oncogenesis, drug responses, and disease prognosis. Furthermore, the modern globalisation of human lifestyle and business and social activities have disrupted innate circadian rhythm, resulting in a variety of diseases through disrupted humoral, immunological, and neuronal pathways. Safe and sustainable modulation of circadian rhythm has become a prevalent need that warrants basic and interventional research, as well as clinical investigations. Although traditional systems of medicine suggest some natural compounds with circadian rhythm- modulating potential, most of these have not been validated in laboratory or clinical studies. Reliable read-outs of the effects of test compounds on circadian rhythmicity have been limited by the availability of live cell assays. We have, herein, provided an overview of living cell-embedded real-time reporter gene assays designed for screening compounds that modulate circadian rhythm, and discussed the potential of some natural compounds for circadian rhythm modulation as validated by cell-based assay systems, and their role in disease therapeutics.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266300569240514101800
2024-05-30
2026-02-02
Loading full text...

Full text loading...

References

  1. Eelderink-ChenZ. BosmanJ. SartorF. DoddA.N. KovácsÁ.T. MerrowM. A circadian clock in a nonphotosynthetic prokaryote.Sci. Adv.202172eabe208610.1126/sciadv.abe208633523996
    [Google Scholar]
  2. GopalakrishnanS. KannanN.N. Only time will tell: The interplay between circadian clock and metabolism.Chronobiol. Int.202138214916710.1080/07420528.2020.184243633345624
    [Google Scholar]
  3. MicklemC.N. LockeJ.C.W. Cut the noise or couple up: Coordinating circadian and synthetic clocks.iScience202124910305110.1016/j.isci.2021.10305134568785
    [Google Scholar]
  4. McCommisK.S. ButlerA.A. The Importance of Keeping Time in the Liver.Endocrinology20211622bqaa23010.1210/endocr/bqaa23033320193
    [Google Scholar]
  5. SchoonderwoerdR.A. de RoverM. JanseJ.A.M. HirschlerL. WillemseC.R. ScholtenL. KlopI. van BerlooS. van OschM.J.P. SwaabD.F. MeijerJ.H. The photobiology of the human circadian clock.Proc. Natl. Acad. Sci.202211913e211880311910.1073/pnas.211880311935312355
    [Google Scholar]
  6. MyungJ. SchmalC. HongS. TsukizawaY. RoseP. ZhangY. HoltzmanM.J. De SchutterE. HerzelH. BordyugovG. TakumiT. The choroid plexus is an important circadian clock component.Nat. Commun.201891106210.1038/s41467‑018‑03507‑229540683
    [Google Scholar]
  7. ChavanR. FeilletC. CostaS.S.F. DelormeJ.E. OkabeT. RippergerJ.A. AlbrechtU. Liver-derived ketone bodies are necessary for food anticipation.Nat. Commun.2016711058010.1038/ncomms1058026838474
    [Google Scholar]
  8. TakahashiJ.S. Transcriptional architecture of the mammalian circadian clock.Nat. Rev. Genet.201718316417910.1038/nrg.2016.15027990019
    [Google Scholar]
  9. LiJ.Z. BunneyB.G. MengF. HagenauerM.H. WalshD.M. VawterM.P. EvansS.J. ChoudaryP.V. CartagenaP. BarchasJ.D. SchatzbergA.F. JonesE.G. MyersR.M. WatsonS.J.Jr AkilH. BunneyW.E. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.Proc. Natl. Acad. Sci.2013110249950995510.1073/pnas.130581411023671070
    [Google Scholar]
  10. Van SomerenE.J.W. Circadian and sleep disturbances in the elderly.Exp. Gerontol.2000359-101229123710.1016/S0531‑5565(00)00191‑111113604
    [Google Scholar]
  11. SongH. MoonM. ChoeH.K. HanD.H. JangC. KimA. ChoS. KimK. JungM.I. Aβ-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease.Mol. Neurodegener.20151011310.1186/s13024‑015‑0007‑x25888034
    [Google Scholar]
  12. GeryS. KoefflerH.P. The role of circadian regulation in cancer.Cold Spring Harb. Symp. Quant. Biol.200772145946410.1101/sqb.2007.72.00418419305
    [Google Scholar]
  13. XiangR. CuiY. WangY. XieT. YangX. WangZ. LiJ. LiQ. Circadian clock gene Per2 downregulation in non‑small cell lung cancer is associated with tumour progression and metastasis.Oncol. Rep.20184053040304810.3892/or.2018.670430226549
    [Google Scholar]
  14. YangX. WoodP.A. OhE.Y. QuitonD.J. AnsellC.M. HrusheskyW.J.M. Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm.Breast Cancer Res. Treat.2009117242343110.1007/s10549‑008‑0133‑z18651214
    [Google Scholar]
  15. PuramR.V. KowalczykM.S. de BoerC.G. SchneiderR.K. MillerP.G. McConkeyM. TothovaZ. TejeroH. HecklD. JäråsM. ChenM.C. LiH. TamayoA. CowleyG.S. RosenR.O. Al-ShahrourF. RegevA. EbertB.L. Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML.Cell2016165230331610.1016/j.cell.2016.03.01527058663
    [Google Scholar]
  16. FuL. PelicanoH. LiuJ. HuangP. LeeC.C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo .Cell20021111415010.1016/S0092‑8674(02)00961‑312372299
    [Google Scholar]
  17. PapagiannakopoulosT. BauerM.R. DavidsonS.M. HeimannM. SubbarajL. BhutkarA. BartlebaughJ. Vander HeidenM.G. JacksT. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.Cell Metab.201624232433110.1016/j.cmet.2016.07.00127476975
    [Google Scholar]
  18. TomitaT. OnishiY. Epigenetic Modulation of Circadian Rhythms: Bmal1 Gene Regulation, in Chromatin and Epigenetics ColinL. Tobias AureliusK. IntechOpen: Rijeka201810.5772/intechopen.79975
    [Google Scholar]
  19. KaurG. DufourJ.M. Cell lines.Spermatogenesis2012211510.4161/spmg.1988522553484
    [Google Scholar]
  20. BasuJ. MadhulikaS. MurmuK.C. MohantyS. SamalP. DasA. MahapatraS. SahaS. SinhaI. PrasadP. Molecular and epigenetic alterations in normal and malignant myelopoiesis in human leukemia 60 (HL60) promyelocytic cell line model.Front. Cell Dev. Biol.202311106053710.3389/fcell.2023.106053736819104
    [Google Scholar]
  21. IzumoM. JohnsonC.H. YamazakiS. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: Temperature compensation and damping.Proc. Natl. Acad. Sci.200310026160891609410.1073/pnas.253631310014657355
    [Google Scholar]
  22. OnishiY. KawanoY. Rhythmic binding of Topoisomerase I impacts on the transcription of Bmal1 and circadian period.Nucleic Acids Res.201240199482949210.1093/nar/gks77922904072
    [Google Scholar]
  23. OnishiY. HanaiS. OhnoT. HaraY. IshidaN. Rhythmic SAF-A binding underlies circadian transcription of the Bmal1 gene.Mol. Cell. Biol.200828103477348810.1128/MCB.02227‑0718332112
    [Google Scholar]
  24. TomitaT. WadhwaR. KaulS.C. KuritaR. KojimaN. OnishiY. Withanolide Derivative 2,3-Dihydro-3β-methoxy Withaferin-A Modulates the Circadian Clock via Interaction with RAR-Related Orphan Receptor α (RORa).J. Nat. Prod.20218471882188810.1021/acs.jnatprod.0c0127634152143
    [Google Scholar]
  25. DorukY.U. YarparvarD. AkyelY.K. GulS. TaskinA.C. YilmazF. BarisI. OzturkN. TürkayM. OzturkN. OkyarA. KavakliI.H. A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude.J. Biol. Chem.2020295113518353110.1074/jbc.RA119.01133232019867
    [Google Scholar]
  26. MaierB. WendtS. VanselowJ.T. WallachT. ReischlS. OehmkeS. SchlosserA. KramerA. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock.Genes Dev.200923670871810.1101/gad.51220919299560
    [Google Scholar]
  27. WeiH. AdelsheimZ. FischerR. McCarthyM.J. Serum from Myalgic encephalomyelitis/chronic fatigue syndrome patients causes loss of coherence in cellular circadian rhythms.J. Neuroimmunol.202338157814210.1016/j.jneuroim.2023.57814237393850
    [Google Scholar]
  28. YooS.H. YamazakiS. LowreyP.L. ShimomuraK. KoC.H. BuhrE.D. SiepkaS.M. HongH.K. OhW.J. YooO.J. MenakerM. TakahashiJ.S. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues.Proc. Natl. Acad. Sci.2004101155339534610.1073/pnas.030870910114963227
    [Google Scholar]
  29. ParkJ. LeeK. KimH. ShinH. LeeC. Endogenous circadian reporters reveal functional differences of PERIOD paralogs and the significance of PERIOD:CK1 stable interaction.Proc. Natl. Acad. Sci.20231206e221225512010.1073/pnas.221225512036724252
    [Google Scholar]
  30. GabrielC.H. del OlmoM. ZehtabianA. JägerM. ReischlS. van DijkH. UlbrichtC. RakhymzhanA. KorteT. KollerB. GrudzieckiA. MaierB. HerrmannA. NiesnerR. ZemojtelT. EwersH. GranadaA.E. HerzelH. KramerA. Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells.Nat. Commun.2021121379610.1038/s41467‑021‑24086‑934145278
    [Google Scholar]
  31. TomitaT. KawanoY. KassaiM. OndaH. NakajimaY. MiyazakiK. Hydroxy-β-sanshool isolated from Zanthoxylum piperitum (Japanese pepper) shortens the period of the circadian clock.Food Funct.202213189407941810.1039/D2FO01036D35960176
    [Google Scholar]
  32. TakiguchiM. KazukiY. HiramatsuK. AbeS. IidaY. TakeharaS. NishidaT. OhbayashiT. WakayamaT. OshimuraM. A novel and stable mouse artificial chromosome vector.ACS Synth. Biol.201431290391410.1021/sb300072323654256
    [Google Scholar]
  33. UnoN. AbeS. OshimuraM. KazukiY. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.J. Hum. Genet.201863214515610.1038/s10038‑017‑0378‑729180645
    [Google Scholar]
  34. NakajimaY. OhmiyaY. Bioluminescence assays: Multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay.Expert Opin. Drug Discov.20105983584910.1517/17460441.2010.50621322823259
    [Google Scholar]
  35. NoguchiT. MichihataT. NakamuraW. TakumiT. ShimizuR. YamamotoM. IkedaM. OhmiyaY. NakajimaY. Dual- color luciferase mouse directly demonstrates coupled expression of two clock genes.Biochemistry201049378053806110.1021/bi100545h20718447
    [Google Scholar]
  36. SaikiP. KawanoY. NakajimaY. GriensvenV.L.J.L.D. MiyazakiK. Novel and Stable Dual-Color IL-6 and IL-10 Reporters Derived from RAW 264.7 for Anti-Inflammation Screening of Natural Products.Int. J. Mol. Sci.20192018462010.3390/ijms2018462031540402
    [Google Scholar]
  37. MatsuoT. YamaguchiS. MitsuiS. EmiA. ShimodaF. OkamuraH. Control mechanism of the circadian clock for timing of cell division in vivo .Science2003302564325525910.1126/science.108627112934012
    [Google Scholar]
  38. BeyerS.E. SalgadoC. GarçaoI. CeliL.A. VieiraS. Circadian rhythm in critically ill patients: Insights from the eICU Database.Cardiovascular Digital Health J.20212211812510.1016/j.cvdhj.2021.01.00435265899
    [Google Scholar]
  39. ShinozakiA. MisawaK. IkedaY. HaraguchiA. KamagataM. TaharaY. ShibataS. Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2:LUCIFERASE Mouse Embryonic Fibroblasts.PLoS One2017122e017090410.1371/journal.pone.017090428152057
    [Google Scholar]
  40. ChenZ. YooS.H. ParkY.S. KimK.H. WeiS. BuhrE. YeZ.Y. PanH.L. TakahashiJ.S. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening.Proc. Natl. Acad. Sci.2012109110110610.1073/pnas.111803410822184224
    [Google Scholar]
  41. AbeM. HerzogE.D. YamazakiS. StraumeM. TeiH. SakakiY. MenakerM. BlockG.D. Circadian rhythms in isolated brain regions.J. Neurosci.200222135035610.1523/JNEUROSCI.22‑01‑00350.200211756518
    [Google Scholar]
  42. CaneverJ.B. QueirozL.Y. SoaresE.S. de AvelarN.C.P. CimarostiH.I. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases.J. Neurochem.2023jnc.1588310.1111/jnc.1588337358003
    [Google Scholar]
  43. RoennebergT. How can social jetlag affect health?Nat. Rev. Endocrinol.202319738338410.1038/s41574‑023‑00851‑237221400
    [Google Scholar]
  44. FagianiF. Di MarinoD. RomagnoliA. TravelliC. VoltanD. Di Cesare MannelliL. RacchiM. GovoniS. LanniC. Molecular regulations of circadian rhythm and implications for physiology and diseases.Signal Transduct. Target. Ther.2022714110.1038/s41392‑022‑00899‑y35136018
    [Google Scholar]
  45. DingS. GrayN.S. WuX. DingQ. SchultzP.G. A combinatorial scaffold approach toward kinase-directed heterocycle libraries.J. Am. Chem. Soc.200212481594159610.1021/ja017030211853431
    [Google Scholar]
  46. ZhangS. HuZ. TanjiH. JiangS. DasN. LiJ. SakaniwaK. JinJ. BianY. OhtoU. ShimizuT. YinH. Small- molecule inhibition of TLR8 through stabilization of its resting state.Nat. Chem. Biol.2018141586410.1038/nchembio.251829155428
    [Google Scholar]
  47. HugginsD.J. VenkitaramanA.R. SpringD.R. Rational methods for the selection of diverse screening compounds.ACS Chem. Biol.20116320821710.1021/cb100420r21261294
    [Google Scholar]
  48. DahlinJ.L. WaltersM.A. The essential roles of chemistry in high-throughput screening triage.Future Med. Chem.20146111265129010.4155/fmc.14.6025163000
    [Google Scholar]
  49. SchuffenhauerA. SchneiderN. HintermannS. AuldD. BlankJ. CotestaS. EngelochC. FechnerN. GaulC. GiovannoniJ. JansenJ. JoslinJ. KrastelP. LounkineE. ManchesterJ. MonovichL.G. PelliccioliA.P. SchwarzeM. ShultzM.D. StieflN. BaeschlinD.K. Evolution of Novartis’ Small Molecule Screening Deck Design.J. Med. Chem.20206323144251444710.1021/acs.jmedchem.0c0133233140646
    [Google Scholar]
  50. AseeriM. AbadJ.L. DelgadoA. FabriàsG. TriolaG. CasasJ. High-throughput discovery of novel small-molecule inhibitors of acid Ceramidase.J. Enzyme Inhib. Med. Chem.202338134334810.1080/14756366.2022.215018336519337
    [Google Scholar]
  51. AliY.O. BradleyG. LuH.C. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons.Sci. Rep.2017714384610.1038/srep4384628266613
    [Google Scholar]
  52. DattaA. KimH. McGeeL. JohnsonA.E. TalwarS. MaruganJ. SouthallN. HuX. LalM. MondalD. FerrerM. Abdel-MageedA.B. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer.Sci. Rep.201881816110.1038/s41598‑018‑26411‑729802284
    [Google Scholar]
  53. HirotaT. LewisW.G. LiuA.C. LeeJ.W. SchultzP.G. KayS.A. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β.Proc. Natl. Acad. Sci.200810552207462075110.1073/pnas.081141010619104043
    [Google Scholar]
  54. IsojimaY. NakajimaM. UkaiH. FujishimaH. YamadaR.G. MasumotoK. KiuchiR. IshidaM. Ukai-TadenumaM. MinamiY. KitoR. NakaoK. KishimotoW. YooS.H. ShimomuraK. TakaoT. TakanoA. KojimaT. NagaiK. SakakiY. TakahashiJ.S. UedaH.R. CKIε/δ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock.Proc. Natl. Acad. Sci.200910637157441574910.1073/pnas.090873310619805222
    [Google Scholar]
  55. CrosbyP. PartchC.L. New insights into non-transcriptional regulation of mammalian core clock proteins.J. Cell Sci.202013318jcs24117410.1242/jcs.24117432934011
    [Google Scholar]
  56. HirotaT. LeeJ.W. LewisW.G. ZhangE.E. BretonG. LiuX. GarciaM. PetersE.C. EtchegarayJ.P. TraverD. SchultzP.G. KayS.A. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase.PLoS Biol.2010812e100055910.1371/journal.pbio.100055921179498
    [Google Scholar]
  57. ChenZ. YooS.H. TakahashiJ.S. Small molecule modifiers of circadian clocks.Cell. Mol. Life Sci.201370162985299810.1007/s00018‑012‑1207‑y23161063
    [Google Scholar]
  58. LucianoA.K. ZhouW. SantanaJ.M. KyriakidesC. VelazquezH. SessaW.C. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues.J. Biol. Chem.2018293239126913610.1074/jbc.RA117.00077329588368
    [Google Scholar]
  59. MyburgT. PetzerA. PetzerJ.P. The inhibition of monoamine oxidase by harmine derivatives.Results in Chemistry2022410060710.1016/j.rechem.2022.100607
    [Google Scholar]
  60. JinS.J. SongY. ParkH.S. ParkK.W. LeeS. KangH. Harmine Inhibits Multiple TLR-Induced Inflammatory Expression through Modulation of NF-κB p65, JNK, and STAT1.Life20221212202210.3390/life1212202236556387
    [Google Scholar]
  61. YaoP. YaoP. KuX. YangJ. Harmine suppresses the malignant phenotypes and PI3K activity in breast cancer.Anticancer Drugs202334337338310.1097/CAD.000000000000146236656035
    [Google Scholar]
  62. OnishiY. OishiK. KawanoY. YamazakiY. The harmala alkaloid harmine is a modulator of circadian Bmal1 transcription.Biosci. Rep.2012321455210.1042/BSR2011000221401525
    [Google Scholar]
  63. LeeY. ChenR. LeeH. LeeC. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms.J. Biol. Chem.201128697033704210.1074/jbc.M110.20721721199878
    [Google Scholar]
  64. KondohD. YamamotoS. TomitaT. MiyazakiK. ItohN. YasumotoY. OikeH. DoiR. OishiK. Harmine lengthens circadian period of the mammalian molecular clock in the suprachiasmatic nucleus.Biol. Pharm. Bull.20143781422142710.1248/bpb.b14‑0022925087965
    [Google Scholar]
  65. HandschuhP.A. MurgašM. VrakaC. NicsL. HartmannA.M. Winkler-PjrekE. Baldinger-MelichP. WadsakW. WinklerD. HackerM. RujescuD. DomschkeK. LanzenbergerR. SpiesM. Effect of MAOA DNA Methylation on Human in vivo Protein Expression Measured by [11C]harmine Positron Emission Tomography.Int. J. Neuropsychopharmacol.202326211612410.1093/ijnp/pyac08536573644
    [Google Scholar]
  66. HeM. QuC. GaoO. HuX. HongX. Biological and pharmacological activities of amaryllidaceae alkaloids.RSC Advances2015521165621657410.1039/C4RA14666B
    [Google Scholar]
  67. JinZ. YaoG. Amaryllidaceae and Sceletium alkaloids.Nat. Prod. Rep.201936101462148810.1039/C8NP00055G30707215
    [Google Scholar]
  68. YamazakiY. KawanoY. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-α and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages.Chem. Pharm. Bull.201159338839110.1248/cpb.59.38821372424
    [Google Scholar]
  69. GeX. Lycorine attenuates lipopolysaccharide-induced acute lung injury through the HMGB1/TLRs/NF-kappaB pathway.3 Biotech2020108369
    [Google Scholar]
  70. XiaoH. XuX. DuL. LiX. ZhaoH. WangZ. ZhaoL. YangZ. ZhangS. YangY. WangC. Lycorine and organ protection: Review of its potential effects and molecular mechanisms.Phytomedicine202210415426610.1016/j.phymed.2022.15426635752077
    [Google Scholar]
  71. Saltan ÇitoğluG. Bahadir AcıkaraÖ. Sever YılmazB. ÖzbekH. Evaluation of analgesic, anti-inflammatory and hepatoprotective effects of lycorine from Sternbergia fisheriana (Herbert) Rupr.Fitoterapia2012831818710.1016/j.fitote.2011.09.00821968064
    [Google Scholar]
  72. ShiS. LiC. ZhangY. DengC. TanM. PanG. DuJ. JiY. LiQ. LiangH. LiuW. GuoL. ZhaoG. LiuY. CuiH. Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21Cip1/WAF1.Am. J. Cancer Res.20211141391140933948364
    [Google Scholar]
  73. CaoZ. YuD. FuS. ZhangG. PanY. BaoM. TuJ. ShangB. GuoP. YangP. ZhouQ. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity.Toxicol. Lett.2013218217418510.1016/j.toxlet.2013.01.01823376478
    [Google Scholar]
  74. YinS. YangS. LuoY. LuJ. HuG. WangK. ShaoY. ZhouS. KooS. QiuY. WangT. YuH. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma.Biochem. Pharmacol.202119311480610.1016/j.bcp.2021.11480634673013
    [Google Scholar]
  75. RoyM. LiangL. XiaoX. PengY. LuoY. ZhouW. ZhangJ. QiuL. ZhangS. LiuF. YeM. ZhouW. LiuJ. Lycorine Downregulates HMGB1 to Inhibit Autophagy and Enhances Bortezomib Activity in Multiple Myeloma.Theranostics20166122209222410.7150/thno.1558427924158
    [Google Scholar]
  76. OnishiY. KawanoY. YamazakiY. Lycorine, a candidate for the control of period length in mammalian cells.Cell. Physiol. Biochem.2012293-440741610.1159/00033849522508048
    [Google Scholar]
  77. RenL. ZhaoH. ChenZ. Study on pharmacokinetic and tissue distribution of lycorine in mice plasma and tissues by liquid chromatography–mass spectrometry.Talanta201411940140610.1016/j.talanta.2013.11.01424401431
    [Google Scholar]
  78. WallM.E. WaniM.C. CookC.E. PalmerK.H. McPhailA.T. SimG.A. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata 1,2.J. Am. Chem. Soc.196688163888389010.1021/ja00968a057
    [Google Scholar]
  79. PommierY. Topoisomerase I inhibitors: Camptothecins and beyond.Nat. Rev. Cancer200661078980210.1038/nrc197716990856
    [Google Scholar]
  80. VendittoV.J. SimanekE.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature.Mol. Pharm.20107230734910.1021/mp900243b20108971
    [Google Scholar]
  81. ChenX. YangL. ZhangN. TurpinJ.A. BuckheitR.W. OsterlingC. OppenheimJ.J. HowardO.M.Z. Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1.Antimicrob. Agents Chemother.20034792810281610.1128/AAC.47.9.2810‑2816.200312936978
    [Google Scholar]
  82. YangH. VillaniR.M. WangH. SimpsonM.J. RobertsM.S. TangM. LiangX. The role of cellular reactive oxygen species in cancer chemotherapy.J. Exp. Clin. Cancer Res.201837126610.1186/s13046‑018‑0909‑x30382874
    [Google Scholar]
  83. ChenJ. XieJ. JiangZ. WangB. WangY. HuX. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2.Oncogene201130424297430610.1038/onc.2011.13721516121
    [Google Scholar]
  84. WangT. TianX. KimH.B. JangY. HuangZ. NaC.H. WangJ. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules.Nat. Commun.2022131558410.1038/s41467‑022‑33079‑136151083
    [Google Scholar]
  85. GwonS.Y. AhnJ.Y. JungC.H. MoonB.K. HaT.Y. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells.BMC Complement. Altern. Med.201313120710.1186/1472‑6882‑13‑20723919458
    [Google Scholar]
  86. OgawaY. KawanoY. YamazakiY. OnishiY. Shikonin shortens the circadian period: Possible involvement of Top2 inhibition.Biochem. Biophys. Res. Commun.2014443133934310.1016/j.bbrc.2013.11.11624321095
    [Google Scholar]
  87. StähelinH. von WartburgA. From podophyllotoxin glucoside to etoposide.Prog. Drug Res.1989331692662687938
    [Google Scholar]
  88. ZiC.T. LiuZ.H. LiG.T. LiY. ZhouJ. DingZ.T. HuJ.M. JiangZ.H. Design, synthesis, and cytotoxicity of perbutyrylated glycosides of 4β-triazolopodophyllotoxin derivatives.Molecules20152023255328010.3390/molecules2002325525690288
    [Google Scholar]
  89. ChenL.X. HeH. QiuF. Natural withanolides: An overview.Nat. Prod. Rep.201128470574010.1039/c0np00045k21344104
    [Google Scholar]
  90. SariA.N. BhargavaP. DhanjalJ.K. PutriJ.F. RadhakrishnanN. ShefrinS. IshidaY. TeraoK. SundarD. KaulS.C. WadhwaR. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action.Cancers2020125116010.3390/cancers1205116032380701
    [Google Scholar]
  91. NaY. KaulS.C. RyuJ. LeeJ.S. AhnH.M. KaulZ. KalraR.S. LiL. WidodoN. YunC.O. WadhwaR. Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis.Cancer Res.20167692754276510.1158/0008‑5472.CAN‑15‑270426960973
    [Google Scholar]
  92. BatumalaieK. AminM.A. MuruganD.D. SattarM.Z.A. AbdullahN.A. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.Sci. Rep.2016612723610.1038/srep2723627250532
    [Google Scholar]
  93. ChallaA.A. VukmirovicM. BlackmonJ. StefanovicB. Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo .PLoS One201278e4298910.1371/journal.pone.004298922900077
    [Google Scholar]
  94. ChaudharyA. KalraR.S. MalikV. KatiyarS.P. SundarD. KaulS.C. WadhwaR. 2, 3-Dihydro-3β-methoxy Withaferin-A Lacks Anti-Metastasis Potency: Bioinformatics and Experimental Evidences.Sci. Rep.2019911734410.1038/s41598‑019‑53568‑631757995
    [Google Scholar]
  95. ChaudharyA. KalraR.S. HuangC. PrakashJ. KaulS.C. WadhwaR. 2,3-Dihydro-3β-methoxy Withaferin-A Protects Normal Cells against Stress: Molecular Evidence of Its Potent Cytoprotective Activity.J. Nat. Prod.201780102756276010.1021/acs.jnatprod.7b0057329043807
    [Google Scholar]
  96. YuX. RollinsD. RuhnK.A. StubblefieldJ.J. GreenC.B. KashiwadaM. RothmanP.B. TakahashiJ.S. HooperL.V. TH17 cell differentiation is regulated by the circadian clock.Science2013342615972773010.1126/science.124388424202171
    [Google Scholar]
  97. O’ConnorW.Jr KamanakaM. BoothC.J. TownT. NakaeS. IwakuraY. KollsJ.K. FlavellR.A. A protective function for interleukin 17A in T cell–mediated intestinal inflammation.Nat. Immunol.200910660360910.1038/ni.173619448631
    [Google Scholar]
  98. LiangT. LiP. LiangA. ZhuY. QiuX. QiuJ. PengY. HuangD. GaoW. GaoB. Identifying the key genes regulating mesenchymal stem cells chondrogenic differentiation: An in vitro study.BMC Musculoskelet. Disord.202223198510.1186/s12891‑022‑05958‑736380336
    [Google Scholar]
  99. LiuY. MengX. SunL. PeiK. ChenL. ZhangS. HuM. Protective effects of hydroxy-α-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl3-induced Alzheimer’s disease-like mice via Nrf2/HO-1 signaling pathways.Eur. J. Pharmacol.202291417469110.1016/j.ejphar.2021.17469134896111
    [Google Scholar]
  100. LiR.L. ZhangQ. LiuJ. SunJ. HeL.Y. DuanH.X. PengW. WuC.J. Hydroxy- α -sanshool Possesses Protective Potentials on H 2 O 2 -Stimulated PC12 Cells by Suppression of Oxidative Stress-Induced Apoptosis through Regulation of PI3K/Akt Signal Pathway.Oxid. Med. Cell. Longev.2020202011210.1155/2020/348175832695254
    [Google Scholar]
  101. WangL. FanW. ZhangM. ZhangQ. LiL. WangJ. ZhuL. WeiD. PengW. WuC. Antiobesity, Regulation of Lipid Metabolism, and Attenuation of Liver Oxidative Stress Effects of Hydroxy- α -sanshool Isolated from Zanthoxylum bungeanum on High-Fat Diet-Induced Hyperlipidemic Rats.Oxid. Med. Cell. Longev.2019201911310.1155/2019/585249431534622
    [Google Scholar]
  102. ZhaojunC. LulinT. XinF. Adbel-NasserS. ZunguoL. XiongL. Hydroxy-γ-sanshool from Zanthoxylum bungeanum (prickly ash) induces apoptosis of human colorectal cancer cell by activating P53 and Caspase 8.Front. Nutr.2022991463810.3389/fnut.2022.91463835978957
    [Google Scholar]
  103. BautistaD.M. SigalY.M. MilsteinA.D. GarrisonJ.L. ZornJ.A. TsurudaP.R. NicollR.A. JuliusD. Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels.Nat. Neurosci.200811777277910.1038/nn.214318568022
    [Google Scholar]
  104. ZhangQ. LiR.L. WangL.Y. ZhangT. QianD. TangD.D. HeC.X. WuC.J. AiL. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum Maxim. has antidiabetic effects on high- fat-fed and streptozotocin-treated mice via increasing glycogen synthesis by regulation of PI3K/Akt/GSK-3β/GS signaling.Front. Pharmacol.202213108955810.3389/fphar.2022.108955836582530
    [Google Scholar]
  105. MunekageM. KitagawaH. IchikawaK. WatanabeJ. AokiK. KonoT. HanazakiK. Pharmacokinetics of daikenchuto, a traditional Japanese medicine (kampo) after single oral administration to healthy Japanese volunteers.Drug Metab. Dispos.201139101784178810.1124/dmd.111.04009721724872
    [Google Scholar]
  106. OikeH. KoboriM. SuzukiT. IshidaN. Caffeine lengthens circadian rhythms in mice.Biochem. Biophys. Res. Commun.2011410365465810.1016/j.bbrc.2011.06.04921684260
    [Google Scholar]
  107. HeB. NoharaK. ParkN. ParkY.S. GuilloryB. ZhaoZ. GarciaJ.M. KoikeN. LeeC.C. TakahashiJ.S. YooS.H. ChenZ. The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome.Cell Metab.201623461062110.1016/j.cmet.2016.03.00727076076
    [Google Scholar]
  108. IzumikawaM. UkaiH. TakagiM. UedaH.R. Shin-yaK. JBIR-26, a novel natural compound from Streptomyces sp. AK-AH76, regulates mammalian circadian clock.J. Antibiot.2008611275675810.1038/ja.2008.9019194035
    [Google Scholar]
  109. NarihiroT. KamagataY. Cultivating yet-to-be cultivated microbes: The challenge continues.Microbes Environ.201328216316510.1264/jsme2.ME2802rh23727826
    [Google Scholar]
  110. PuspitaD.I. KamagataY. TanakaM. AsanoK. NakatsuC.H. Are uncultivated bacteria really uncultivable?Microbes Environ.201227435636610.1264/jsme2.ME1209223059723
    [Google Scholar]
  111. KatoS. TerashimaM. YamaA. SatoM. KitagawaW. KawasakiK. KamagataY. Improved Isolation of Uncultured Anaerobic Bacteria using Medium Prepared with Separate Sterilization of Agar and Phosphate.Microbes Environ.20203511-410.1264/jsme2.ME1906032009018
    [Google Scholar]
  112. SilveiraE.J.D. Nascimento FilhoC.H.V. YujraV.Q. WebberL.P. CastilhoR.M. SquarizeC.H. BMAL1 Modulates Epidermal Healing in a Process Involving the Antioxidative Defense Mechanism.Int. J. Mol. Sci.202021390110.3390/ijms2103090132019183
    [Google Scholar]
  113. LiF. LinL. HeY. SunG. DongD. WuB. BMAL1 regulates Propionibacterium acnes -induced skin inflammation via REV-ERBα in mice.Int. J. Biol. Sci.20221862597260810.7150/ijbs.7171935414779
    [Google Scholar]
  114. LanghansS.A. Three-Dimensional in vitro Cell Culture Models in Drug Discovery and Drug Repositioning.Front. Pharmacol.20189610.3389/fphar.2018.0000629410625
    [Google Scholar]
  115. JensenC. TengY. Is It Time to Start Transitioning From 2D to 3D Cell Culture?Front. Mol. Biosci.202073310.3389/fmolb.2020.0003332211418
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266300569240514101800
Loading
/content/journals/ctmc/10.2174/0115680266300569240514101800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test