Current Protein and Peptide Science - Volume 21, Issue 8, 2020
Volume 21, Issue 8, 2020
-
-
Melatonin Modulates Lactation by Regulating Prolactin Secretion Via Tuberoinfundibular Dopaminergic Neurons in the Hypothalamus-Pituitary System
Authors: Hongyang Li, JingyaWei, Fengtao Ma, Qiang Shan, Duo Gao, Yuhang Jin and Peng SunIn-depth studies have identified many hormones important for controlling mammary growth and maintaining lactation. One of these is melatonin, which is synthesized and secreted by the pineal gland to regulate circadian rhythms, improve antioxidant capacity, and enhance immunity. Prolactin is secreted by the pituitary gland and is associated with the growth and development of mammary glands as well as initiation and maintenance of lactation. The hypothalamus-pituitary system, the most important endocrine system in the body, regulates prolactin secretion mainly through dopamine released from tuberoinfundibular dopaminergic neurons. This review provides a reference for further study and describes the regulation of lactation and prolactin secretion by melatonin, primarily via the protection and stimulation of tuberoinfundibular dopaminergic neurons.
-
-
-
Physiological Functions of Heat Shock Proteins
Authors: Qiang Shan, Fengtao Ma, Jingya Wei, Hongyang Li, Hui Ma and Peng SunHeat shock proteins (HSPs) are molecular chaperones involved in a variety of life activities. HSPs function in the refolding of misfolded proteins, thereby contributing to the maintenance of cellular homeostasis. Heat shock factor (HSF) is activated in response to environmental stresses and binds to heat shock elements (HSEs), promoting HSP translation and thus the production of high levels of HSPs to prevent damage to the organism. Here, we summarize the role of molecular chaperones as anti-heat stress molecules and their involvement in immune responses and the modulation of apoptosis. In addition, we review the potential application of HSPs to cancer therapy, general medicine, and the treatment of heart disease.
-
-
-
Amino Acids Regulate Glycolipid Metabolism and Alter Intestinal Microbial Composition
Authors: Fei Xie, Zhengqun Liu, Ming Liu, Liang Chen, Wei Ding and Hongfu ZhangAmino acids (AAs) and their metabolites regulate key metabolic pathways that are necessary for growth, reproduction, immunity and metabolism of the body. It has been convinced that metabolic diseases are closely related to disorders of glycolipid metabolism. A growing number of studies have shown that AAs are closely related to energy metabolism. This review focuses on the effects of amino acids (arginine, branched-chain amino acids, glutamine) and their metabolites (short chain fatty acids) on glycolipid metabolism by regulating PI3K/AKT/mTOR and AMPK signaling pathways and GPCRs receptors, reducing intestinal Firmicutes/Bacteroidetes ratio associated with obesity.
-
-
-
Regulation of Probiotics on Metabolism of Dietary Protein in Intestine
Authors: Xiao-Pei Peng, Cunxi Nie, Wen-Yi Guan, Li-Dong Qiao, Lin Lu and Shou-Jun CaoProteins are indispensable components of living organisms, which are derived mainly from diet through metabolism. Dietary proteins are degraded by endogenous digestive enzymes to di- or tripeptides and free amino acids (AAs) in the small intestine lumen and then absorbed into blood and lymph through intestinal epithelial cells via diverse transporters. Microorganisms are involved not only in the proteins’ catabolism, but also the AAs, especially essential AAs, anabolism. Probiotics regulate these processes by providing exogenous proteases and AAs and peptide transporters, and reducing hazardous substances in the food and feed. But the core mechanism is modulating of the composition of intestinal microorganisms through their colonization and exclusion of pathogens. The other effects of probiotics are associated with normal intestinal morphology, which implies that the enterocytes secrete more enzymes to decompose dietary proteins and absorb more nutrients.
-
-
-
Effect of Escherichia Coli Infection on Metabolism of Dietary Protein in Intestine
Authors: Xiao-Pei Peng, Wei Ding, Jian-Min Ma, Jie Zhang, Jian Sun, Yun Cao, Li-Hui Lei, Jinshan Zhao and Yun-Fu LiDietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.
-
-
-
Effects of Medium Chain Fatty Acids on Intestinal Health of Monogastric Animals
Authors: Manyi Jia, Yucheng Zhang, Yuqi Gao and Xi MaMedium-chain fatty acids (MCFAs) are the main form of Medium Chain Triglycerides (MCTs) utilized by monogastric animals. MCFAs can be directly absorbed and supply rapid energy to promote the renewal and repair of intestinal epithelial cells, maintain the integrity of intestinal mucosal barrier function, and reduce inflammation and stress. In our review, we pay more attention to the role of MCFAs on intestinal microbiota and mucosa immunity to explore MCFA's positive effect. It was found that MCFAs and their esterified forms can decrease pathogens while increasing probiotics. In addition, being recognized via specific receptors, MCFAs are capable of alleviating inflammation to a certain extent by regulating inflammation and immune-related pathways. MCFAs may also have a certain value to relieve intestinal allergy and inflammatory bowel disease (IBD). Unknown mechanism of various MCFA characteristics still causes dilemmas in the application, thus MCFAs are used generally in limited dosages and combined with short-chain organic acids (SOAs) to attain ideal results. We hope that further studies will provide guidance for the practical use of MCFAs in animal feed.
-
-
-
Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition
Authors: Abedin Abdallah, Evera Elemba, Qingzhen Zhong and Zewei SunThe gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.
-
-
-
Role of BCL-2 Family Proteins in Apoptosis and its Regulation by Nutrients
Authors: Chen Zheng, Ting Liu, Huihui Liu and Jing WangIn the body, millions of cells die and proliferate each day to maintain normal function and cooperation of all tissues, organs, and systems. Thus, programmed cell death, or apoptosis, is critical to sustain growth, development, and body health. The vital role of B-cell leukemia/lymphoma-2 (BCL-2) family proteins in apoptosis has been identified. The BCL-2 family includes both pro- and antiapoptotic proteins, which are structurally and functionally related, containing up to four BCL-2 homology (BH) motifs (BH1-4). There are also some nutritional factors that regulate apoptosis via the BCL-2 family proteins. In this review, the BCL-2 family proteins and their apoptosis-inducing mechanism have been discussed, along with the nutrient factors that regulate apoptosis through the BCL-2 family proteins.
-
-
-
Fermentation and Metabolism of Dietary Protein by Intestinal Microorganisms
More LessDietary protein is linked to the intestinal microorganisms. The decomposition of dietary protein can provide nutrients for microbial growth, which in turn can ferment protein to produce some metabolites. This review elaborates that the effects of different protein levels and types on intestinal microorganisms and their metabolites fermented by intestinal microorganisms, as well as the effects of these metabolites on organisms. It is well known that intestinal microbial imbalance can cause some diseases. Dietary protein supplementation can alter the composition of intestinal microorganisms and thus regulates the body health. However, protein can also produce some harmful metabolites. Therefore, how to rationally supplement protein is particularly important.
-
-
-
Impacts of Dietary Protein from Fermented Cottonseed Meal on Lipid Metabolism and Metabolomic Profiling in the Serum of Broilers
Authors: Cunxi Nie, Yongqiang Wang, Yanfeng Liu, Jiancheng Liu, Wenxia Ge, Xi Ma and Wenju ZhangDietary protein from fermented cottonseed meal (FCSM), widely used in poultry diets in China, had regulating effects on lipid metabolism. To understand the effects of FCSM on lipid metabolism in broilers, we analyzed the biochemical indexes, enzyme activity, hormone level and metabolites in serum responses to FCSM intake. One hundred and eighty 21-d-old Chinese yellow feathered broilers (536.07±4.43 g) were randomly divided into 3 groups with 6 replicates and 3 diets with 6 % supplementation of unfermented CSM (control group), FCSM by C. Tropicalis (Ct CSM) or C. tropicalis plus S. Cerevisae (Ct-Sc CSM). Result showed that: (1) FCSM intake decreased significantly the content of triglyceride (TAG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P<0.05) in serum; (2) FCSM intake could significantly increase enzyme activity of acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL), fatty acid synthase (FAS) and hormone sensitive lipase (HSL) (P<0.05); (3) Ct-Sc CSM intake increased significantly the levels of adiponectin (ADP) (P<0.05); (4) FCSM intake caused significant metabolic changes involving glycolysis, TCA cycle, synthesis of fatty acid and glycogen, and metabolism of glycerolipid, vitamins B group and amino acids. Our results strongly suggested that FCSM intake could significantly affect lipid metabolism via multiple pathways. These findings provided new essential information about the effect of FCSM on broilers and demonstrated the great potential of nutrimetabolomics, through which the research complex nutrients are included in animal diet.
-
-
-
Affinity Tags for Protein Purification
More LessThe affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.
-
-
-
Protein and Antibody Engineering: Suppressing Degranulation of the Mast Cells and Type I Hypersensitivity Reaction
Authors: Huda F. Rajani, Solmaz Shahidi and Mohammad Mahmoudi GomariWith an increase in atopic cases and owing to a significant role of mast cells in type I hypersensitivity, a therapeutic need to inhibit degranulation of mast cells has risen. Mast cells are notorious for IgE-mediated allergic response. Advancements have allowed researchers to improve clinical outcomes of already available therapies. Engineered peptides and antibodies can be easily manipulated to attain desired characteristics as per the biological environment. A number of these molecules are designed to target mast cells in order to regulate the release of histamine and other mediators, thereby controlling type I hypersensitivity response. The aim of this review paper is to highlight some of the significant molecules designed for the purpose.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
