Skip to content
2000
Volume 9, Issue 6
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Fishes thriving in polar habitats offer many opportunities for comparative approaches to understanding protein adaptations to temperature. Notothenioidei, the dominant suborder in the Antarctic Ocean, have evolved reduction of hemoglobin concentration and multiplicity, perhaps as a consequence of temperature stability and other environmental parameters. In the icefish family, the blood pigment is absent. In contrast, similar to other acanthomorph teleosts, Arctic fish, thriving in a more complex oceanographic system, have maintained higher hemoglobin multiplicity and a highly diversified globin system in response to environmental variability and/or variations in metabolic demands. This review summarises the current knowledge on the structure, function and phylogeny of hemoglobins of fish living in polar habitats. On the basis of crystallographic analysis, a novel guideline to the interpretation of the Root effect in terms of a threestate model is suggested, implying the accessibility of an R/T intermediate quaternary structure, frequently observed in Antarctic fish hemoglobins. The occurrence of bis-histidyl and penta-coordinate states in ferric forms of polar fish hemoglobins suggests additional redox properties.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/138920308786733895
2008-12-01
2025-12-18
Loading full text...

Full text loading...

/content/journals/cpps/10.2174/138920308786733895
Loading

  • Article Type:
    Research Article
Keyword(s): evolution; hemoglobin; polar fish; Root effect; X-ray structure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test