Skip to content
2000
image of Comprehensive Review of L-Lysine: Chemistry, Occurrence, and Physiological Roles

Abstract

L-lysine, an essential amino acid, is indispensable for numerous biological functions, including protein synthesis, collagen crosslinking, mineral absorption, and carnitine biosynthesis. Its biosynthesis occurs the Diaminopimelate (DAP) pathway in bacteria and plants and the α-aminoadipate (AAA) pathway in fungi and some archaea. Lysine catabolism primarily involves the saccharopine pathway. Lysine deficiencies can lead to connective tissue disorders, impaired fatty acid metabolism, anemia, and protein-energy malnutrition. Commercial production relies predominantly on microbial fermentation using , with strains enhanced through classical and metabolic engineering approaches. With global production exceeding 1 million tons annually, which is largely dominated by Chinese manufacturers, lysine supplements are readily accessible and exhibit absorption rates comparable to those of dietary protein sources. Beyond its nutritional role, lysine is integral to epigenetic regulation histone modifications and is implicated in diseases, such as hyperlysinemia and pyridoxine-dependent epilepsies, underscoring its vital role in health maintenance and industrial relevance.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037381647250526073248
2025-07-07
2025-09-18
Loading full text...

Full text loading...

References

  1. Lothar E. Michael B. Handbook of Corynebacterium glutamicum. CRC Press 2005 10.1201/9781420039696
    [Google Scholar]
  2. Kumagai H. Microbial production of amino acids in Japan. Adv. Biochem. Eng. Biotechnol. 2000 69 71 85 10.1007/3‑540‑44964‑7_3 11036691
    [Google Scholar]
  3. Hall C.J. Soares da Costa T.P. Lysine: biosynthesis, catabolism and roles. WikiJournal of Science 2018 1 1 4 10.15347/wjs/2018.004
    [Google Scholar]
  4. Sanchez S. Demain A.L. Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol. 2008 1 4 283 319 10.1111/j.1751‑7915.2007.00015.x 21261849
    [Google Scholar]
  5. Lysine market size, share and trends. 2025 Available from: https://www.astuteanalytica.com/industry-report/lysine-market
  6. Lysine Market Size to Hit USD 3.08 Billion by 2034. Available from: https://www.precedenceresearch.com/lysine-market
  7. Liu J. Xu J.Z. Rao Z.M. Zhang W.G. Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects. Microbiol. Res. 2022 262 127101 10.1016/j.micres.2022.127101 35803058
    [Google Scholar]
  8. Ikeda M. Ohnishi J. Hayashi M. Mitsuhashi S. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient l-lysine production. J. Ind. Microbiol. Biotechnol. 2006 33 7 610 615 10.1007/s10295‑006‑0104‑5 16506038
    [Google Scholar]
  9. Ohnishi J. Mitsuhashi S. Hayashi M. Ando S. Yokoi H. Ochiai K. Ikeda M. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl. Microbiol. Biotechnol. 2002 58 2 217 223 10.1007/s00253‑001‑0883‑6 11876415
    [Google Scholar]
  10. Matthews D.E. Review of lysine metabolism with a focus on humans. J. Nutr. 2020 150 Suppl. 1 2548S 2555S 10.1093/jn/nxaa224 33000162
    [Google Scholar]
  11. Galili G. Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol. J. 2013 11 2 211 222 10.1111/pbi.12025 23279001
    [Google Scholar]
  12. Tomé D. Bos C. Lysine requirement through the human life cycle. J. Nutr. 2007 137 6 Suppl. 2 1642S 1645S 10.1093/jn/137.6.1642S 17513440
    [Google Scholar]
  13. Yoshida T. Nagasawa T. ? -Poly-l-lysine: Microbial production, biodegradation and application potential. Appl. Microbiol. Biotechnol. 2003 62 1 21 26 10.1007/s00253‑003‑1312‑9 12728342
    [Google Scholar]
  14. L-Lysine. American Chemical Society. Available from: https://www.acs.org/molecule-of-the-week/archive/l/l-lysine.html
  15. Kimura E. L-glutamate production. Handbook of Corynebacterium Glutamicum. CRC Press 2005
    [Google Scholar]
  16. Hashimoto S. Discovery and history of amino acid fermentation. Amino Acid Fermentation Springer 2016 15 34 10.1007/10_2016_24
    [Google Scholar]
  17. Xu J. Han M. Zhang J. Guo Y. Zhang W. Metabolic engineering Corynebacterium glutamicum for the l-lysine production by increasing the flux into l-lysine biosynthetic pathway. Amino Acids 2014 46 9 2165 2175 10.1007/s00726‑014‑1768‑1 24879631
    [Google Scholar]
  18. Zhou J.F.J. Xiao Y. Fung Kin Yuen V. Gözaydın G. Ma X. Panda S. Pham T.T. Yan N. Zhou K. An integrated process for l-tyrosine production from sugarcane bagasse. ACS Sustain. Chem.& Eng. 2021 9 35 11758 11768 10.1021/acssuschemeng.1c03098
    [Google Scholar]
  19. Heggeset T.M.B. Krog A. Balzer S. Wentzel A. Ellingsen T.E. Brautaset T. Genome sequence of thermotolerant Bacillus methanolicus: Features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl. Environ. Microbiol. 2012 78 15 5170 5181 10.1128/AEM.00703‑12 22610424
    [Google Scholar]
  20. Nelson D.L. Lehninger A.L. Cox M.M. Lehninger principles of biochemistry. Macmillan 2008
    [Google Scholar]
  21. Roseiro L.C. Santos C. Carnitines (including l-carnitine, acetyl- carnitine, and proprionyl-carnitine). Nonvitamin and Nonmineral Nutritional Supplements. Elsevier 2019 10.1016/B978‑0‑12‑812491‑8.00006‑0
    [Google Scholar]
  22. Pedrazini M.C. da Silva M.H. Groppo F.C. L-lysine: Its antagonism with L-arginine in controlling viral infection. Narrative literature review. Br. J. Clin. Pharmacol. 2022 88 11 4708 4723 10.1111/bcp.15444 35723628
    [Google Scholar]
  23. Li L. Vorobyov I. Allen T.W. The different interactions of lysine and arginine side chains with lipid membranes. J. Phys. Chem. B 2013 117 40 11906 11920 10.1021/jp405418y 24007457
    [Google Scholar]
  24. Cave N.J. Dennis K. Gopakumar G. Dunowska M. Effects of physiologic concentrations of l-lysine on in vitro replication of feline herpesvirus 1. Am. J. Vet. Res. 2014 75 6 572 580 10.2460/ajvr.75.6.572 24866513
    [Google Scholar]
  25. McCoy A.J. Adams N.E. Hudson A.O. Gilvarg C. Leustek T. Maurelli A.T. l, l -diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc. Natl. Acad. Sci. USA 2006 103 47 17909 17914 10.1073/pnas.0608643103 17093042
    [Google Scholar]
  26. Yoshida A. Tomita T. Atomi H. Kuzuyama T. Nishiyama M. Lysine biosynthesis of Thermococcus kodakarensis with the capacity to function as an ornithine biosynthetic system. J. Biol. Chem. 2016 291 41 21630 21643 10.1074/jbc.M116.743021 27566549
    [Google Scholar]
  27. Félix F.K.C. Letti L.A.J. Vinícius de Melo Pereira G. Bonfim P.G.B. Soccol V.T. Soccol C.R. L-lysine production improvement: A review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Crit. Rev. Biotechnol. 2019 39 8 1031 1055 10.1080/07388551.2019.1663149 31544527
    [Google Scholar]
  28. Atkinson S.C. Dogovski C. Downton M.T. Czabotar P.E. Dobson R.C.J. Gerrard J.A. Wagner J. Perugini M.A. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. Plant Mol. Biol. 2013 81 4-5 431 446 10.1007/s11103‑013‑0014‑7 23354837
    [Google Scholar]
  29. Griffin M.D.W. Billakanti J.M. Wason A. Keller S. Mertens H.D.T. Atkinson S.C. Dobson R.C.J. Perugini M.A. Gerrard J.A. Pearce F.G. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana. PLoS One 2012 7 7 e40318 10.1371/journal.pone.0040318 22792278
    [Google Scholar]
  30. Soares Da Costa, T.P.; Christensen, J.B.; Desbois, S.; Gordon, S.E.; Gupta, R.; Hogan, C.J. Chapter 9-quaternary structure analyses of an essential oligomeric enzyme. Methods Enzymol., 2015, 562, 205–223.
  31. Soares da Costa T.P. Muscroft-Taylor A.C. Dobson R.C.J. Devenish S.R.A. Jameson G.B. Gerrard J.A. How essential is the ‘essential’ active-site lysine in dihydrodipicolinate synthase? Biochimie 2010 92 7 837 845 10.1016/j.biochi.2010.03.004 20353808
    [Google Scholar]
  32. Muscroft-Taylor A.C. Soares da Costa T.P. Gerrard J.A. New insights into the mechanism of dihydrodipicolinate synthase using isothermal titration calorimetry. Biochimie 2010 92 3 254 262 10.1016/j.biochi.2009.12.004 20025926
    [Google Scholar]
  33. Christensen J.B. Soares da Costa T.P. Faou P. Pearce F.G. Panjikar S. Perugini M.A. Structure and function of cyanobacterial DHDPS and DHDPR. Sci. Rep. 2016 6 1 37111 10.1038/srep37111 27845445
    [Google Scholar]
  34. Hudson A.O. Bless C. Macedo P. Chatterjee S.P. Singh B.K. Gilvarg C. Leustek T. Biosynthesis of lysine in plants: evidence for a variant of the known bacterial pathways. Biochim. Biophys. Acta, Gen. Subj. 2005 1721 1-3 27 36 10.1016/j.bbagen.2004.09.008 15652176
    [Google Scholar]
  35. Hudson A.O. Gilvarg C. Leustek T. Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of LL-diaminopimelate aminotransferase. J. Bacteriol. 2008 190 9 3256 3263 10.1128/JB.01381‑07 18310350
    [Google Scholar]
  36. Peverelli M.G. Perugini M.A. An optimized coupled assay for quantifying diaminopimelate decarboxylase activity. Biochimie 2015 115 78 85 10.1016/j.biochi.2015.05.004 25986217
    [Google Scholar]
  37. Soares da Costa T.P. Desbois S. Dogovski C. Gorman M.A. Ketaren N.E. Paxman J.J. Siddiqui T. Zammit L.M. Abbott B.M. Robins-Browne R.M. Parker M.W. Jameson G.B. Hall N.E. Panjikar S. Perugini M.A. Structural determinants defining the allosteric inhibition of an essential antibiotic target. Structure 2016 24 8 1282 1291 10.1016/j.str.2016.05.019 27427481
    [Google Scholar]
  38. Jander G. Joshi V. Aspartate-derived amino acid biosynthesis in Arabidopsis thaliana. Arabidopsis Book 2009 7 e0121 10.1199/tab.0121 22303247
    [Google Scholar]
  39. Hermann T. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 2003 104 1-3 155 172 10.1016/S0168‑1656(03)00149‑4 12948636
    [Google Scholar]
  40. Wang J. Wu Y. Sun X. Yuan Q. Yan Y. De novo biosynthesis of glutarate via α-keto acid carbon chain extension and decarboxylation pathway in Escherichia coli. ACS Synth. Biol. 2017 6 10 1922 1930 10.1021/acssynbio.7b00136 28618222
    [Google Scholar]
  41. Song Z. He M. Zhao R. Qi L. Chen G. Yin W.B. Li W. Molecular evolution of lysine biosynthesis in Agaricomycetes. J. Fungi 2021 8 1 37 10.3390/jof8010037 35049977
    [Google Scholar]
  42. Nishida H. Nishiyama M. What is characteristic of fungal lysine synthesis through the α-aminoadipate pathway? J. Mol. Evol. 2000 51 3 299 302 10.1007/s002390010091 11029074
    [Google Scholar]
  43. Zabriskie T.M. Jackson M.D. Lysine biosynthesis and metabolism in fungi. Nat. Prod. Rep. 2000 17 1 85 97 10.1039/a801345d 10714900
    [Google Scholar]
  44. Xu H. Andi B. Qian J. West A.H. Cook P.F. The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem. Biophys. 2006 46 1 43 64 10.1385/CBB:46:1:43 16943623
    [Google Scholar]
  45. Zhu X. Galili G. Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Plant Physiol. 2004 135 1 129 136 10.1104/pp.103.037168 15122025
    [Google Scholar]
  46. Arruda P. Barreto P. Lysine catabolism through the saccharopine pathway: Enzymes and intermediates involved in plant responses to abiotic and biotic stress. Front. Plant Sci. 2020 11 587 10.3389/fpls.2020.00587 32508857
    [Google Scholar]
  47. de Mello Serrano G.C. Figueira T.R. Kiyota E. Zanata N. Arruda P. Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes. FEBS Lett. 2012 586 6 905 911 10.1016/j.febslet.2012.02.023 22449979
    [Google Scholar]
  48. Danhauser K. Sauer S.W. Haack T.B. Wieland T. Staufner C. Graf E. Zschocke J. Strom T.M. Traub T. Okun J.G. Meitinger T. Hoffmann G.F. Prokisch H. Kölker S. DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am. J. Hum. Genet. 2012 91 6 1082 1087 10.1016/j.ajhg.2012.10.006 23141293
    [Google Scholar]
  49. Sauer S.W. Opp S. Hoffmann G.F. Koeller D.M. Okun J.G. Kölker S. Therapeutic modulation of cerebral l-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 2011 134 1 157 170 10.1093/brain/awq269 20923787
    [Google Scholar]
  50. Goncalves R.L.S. Bunik V.I. Brand M.D. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radic. Biol. Med. 2016 91 247 255 10.1016/j.freeradbiomed.2015.12.020 26708453
    [Google Scholar]
  51. Goh D.L.M. Patel A. Thomas G.H. Salomons G.S. Schor D.S.M. Jakobs C. Geraghty M.T. Characterization of the human gene encoding α-aminoadipate aminotransferase (AADAT). Mol. Genet. Metab. 2002 76 3 172 180 10.1016/S1096‑7192(02)00037‑9 12126930
    [Google Scholar]
  52. Härtel U. Eckel E. Koch J. Fuchs G. Linder D. Buckel W. Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch. Microbiol. 1993 159 2 174 181 10.1007/BF00250279 8439237
    [Google Scholar]
  53. Sauer S.W. Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis. 2007 30 5 673 680 10.1007/s10545‑007‑0678‑8 17879145
    [Google Scholar]
  54. Authority E.F.S. European Food Safety Authority (EFSA) Magnesium L-lysinate, calcium L- lysinate, zinc L- lysinate as sources for magnesium, calcium and zinc added for nutritional purposes in food supplements - Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J. 2008 6 7 761 37213827
    [Google Scholar]
  55. Vieira BM Nutritional nlms I: Nutrients, Proteins, Carbohydrates, and Lipids. Fundamentals of Drug and Non-Drug Interactions: Physiopathological Perspectives and Clinical Approaches. Elsevier 2025 35 56
    [Google Scholar]
  56. Almeida C.C. Monteiro M.L.G. Costa-Lima B.R.C. Alvares T.S. Conte-Junior C.A. In vitro digestibility of commercial whey protein supplements. Lebensm. Wiss. Technol. 2015 61 1 7 11 10.1016/j.lwt.2014.11.038
    [Google Scholar]
  57. Gahl M.J. Finke M.D. Crenshaw T.D. Benevenga N.J. Use of a four-parameter logistic equation to evaluate the response of growing rats to ten levels of each indispensable amino acid. J. Nutr. 1991 121 11 1720 1729 10.1093/jn/121.11.1720 1941179
    [Google Scholar]
  58. Ikeda M. Amino acid production processes. Microbial Production of L-Amino Acids Springer 2003 1 35
    [Google Scholar]
  59. Hoffmann S.L. Kohlstedt M. Jungmann L. Hutter M. Poblete-Castro I. Becker J. Wittmann C. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metab. Eng. 2021 67 293 307 10.1016/j.ymben.2021.07.010 34314893
    [Google Scholar]
  60. Hoffmann S.L. Jungmann L. Schiefelbein S. Peyriga L. Cahoreau E. Portais J.C. Becker J. Wittmann C. Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab. Eng. 2018 47 475 487 10.1016/j.ymben.2018.04.019 29709649
    [Google Scholar]
  61. Isowa Y. Ohmori M. Synthesis of N ε-Hydroxy- l -lysine. Bull. Chem. Soc. Jpn. 1974 47 11 2672 2675 10.1246/bcsj.47.2672
    [Google Scholar]
  62. Yang R. Pasunooti K.K. Li F. Liu X.W. Liu C.F. Dual native chemical ligation at lysine. J. Am. Chem. Soc. 2009 131 38 13592 13593 10.1021/ja905491p 19728708
    [Google Scholar]
  63. Wang A. Tian W. Cheng L. Xu Y. Wang X. Qin J. Yu B. Enhanced ε-Poly-L-lysine production by the synergistic effect of ε-Poly-L-Lysine synthetase overexpression and citrate in Streptomyces albulus. Front. Bioeng. Biotechnol. 2020 8 288 10.3389/fbioe.2020.00288 32391338
    [Google Scholar]
  64. Chen Y. Liu W.Q. Zheng X. Liu Y. Ling S. Li J. Cell-free biosynthesis of lysine-derived unnatural amino acids with chloro, alkene, and alkyne groups. ACS Synth. Biol. 2023 12 4 1349 1357 10.1021/acssynbio.3c00132 37040607
    [Google Scholar]
  65. Maurer S.J. Petrarca de Albuquerque J.L. McCallum M.E. Recent developments in the biosynthesis of aziridines. ChemBioChem 2024 25 16 e202400295 10.1002/cbic.202400295 38830838
    [Google Scholar]
  66. Frey P.A. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem. 2001 70 1 121 148 10.1146/annurev.biochem.70.1.121 11395404
    [Google Scholar]
  67. Valmaseda E.M.M. Campoy S. Naranjo L. Casqueiro J. Martín J.F. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Mol. Genet. Genomics 2005 274 3 272 282 10.1007/s00438‑005‑0018‑3 16049680
    [Google Scholar]
  68. Ehmann D.E. Gehring A.M. Walsh C.T. Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of α-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry 1999 38 19 6171 6177 10.1021/bi9829940 10320345
    [Google Scholar]
  69. Karsten W.E. Dihydrodipicolinate synthase from Escherichia coli: pH dependent changes in the kinetic mechanism and kinetic mechanism of allosteric inhibition by L-lysine. Biochemistry 1997 36 7 1730 1739 10.1021/bi962264x 9048556
    [Google Scholar]
  70. Karsten W.E. Nimmo S.A. Liu J. Chooback L. Identification of 2, 3-dihydrodipicolinate as the product of the dihydrodipicolinate synthase reaction from Escherichia coli. Arch. Biochem. Biophys. 2018 653 50 62 10.1016/j.abb.2018.06.011 29944868
    [Google Scholar]
  71. Wu Z. Chen T. Sun W. Chen Y. Ying H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: a review. Front. Microbiol. 2024 15 1485624 10.3389/fmicb.2024.1485624 39430105
    [Google Scholar]
  72. Lei M. Peng X. Sun W. Zhang D. Wang Z. Yang Z. Zhang C. Yu B. Niu H. Ying H. Ouyang P. Liu D. Chen Y. Nonsterile l -Lysine fermentation using engineered phosphite-grown Corynebacterium glutamicum. ACS Omega 2021 6 15 10160 10167 10.1021/acsomega.1c00226 34056170
    [Google Scholar]
  73. Saleem S. Sarfraz M. Ahmad Z. Munawar N. Rehman Z. Ahmad S. Production and escalation of l-lysine via bacterial fermentation utilizing Streptococcus Sp. Research Square 2021 10.21203/rs.3.rs‑1038970/v1
    [Google Scholar]
  74. Wang J. Wang S. Zhao S. Sun P. Zhang Z. Xu Q. Productivity enhancement in L-lysine fermentation using oxygen-enhanced bioreactor and oxygen vector. Front. Bioeng. Biotechnol. 2023 11 1181963 10.3389/fbioe.2023.1181963 37200843
    [Google Scholar]
  75. Anaya-Reza O. Lopez-Arenas T. Comprehensive assessment of the l-lysine production process from fermentation of sugarcane molasses. Bioprocess Biosyst. Eng. 2017 40 7 1033 1048 10.1007/s00449‑017‑1766‑2 28409400
    [Google Scholar]
  76. Xu J.Z. Ruan H.Z. Yu H.B. Liu L.M. Zhang W. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of l-lysine production from mixed sugar. Microb. Cell Fact. 2020 19 1 39 10.1186/s12934‑020‑1294‑7 32070345
    [Google Scholar]
  77. Dambacher S. Hahn M. Schotta G. Epigenetic regulation of development by histone lysine methylation. Heredity 2010 105 1 24 37 10.1038/hdy.2010.49 20442736
    [Google Scholar]
  78. Martin C. Zhang Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 2005 6 11 838 849 10.1038/nrm1761 16261189
    [Google Scholar]
  79. Black J.C. Van Rechem C. Whetstine J.R. Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol. Cell 2012 48 4 491 507 10.1016/j.molcel.2012.11.006 23200123
    [Google Scholar]
  80. Choudhary C. Kumar C. Gnad F. Nielsen M.L. Rehman M. Walther T.C. Olsen J.V. Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009 325 5942 834 840 10.1126/science.1175371 19608861
    [Google Scholar]
  81. Yamauchi M. Sricholpech M. Lysine post-translational modifications of collagen. Essays Biochem. 2012 52 113 133 10.1042/bse0520113 22708567
    [Google Scholar]
  82. Vollmer W. Blanot D. De Pedro M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008 32 2 149 167 10.1111/j.1574‑6976.2007.00094.x 18194336
    [Google Scholar]
  83. Cuenca M. Pfister S.P. Buschor S. Bayramova F. Hernandez S.B. Cava F. Kuru E. Van Nieuwenhze M.S. Brun Y.V. Coelho F.M. Hapfelmeier S. D-alanine-controlled transient intestinal mono-colonization with non-laboratory-adapted commensal E. coli strain HS. PLoS One 2016 11 3 e0151872 10.1371/journal.pone.0151872 27002976
    [Google Scholar]
  84. Flanagan J.L. Simmons P.A. Vehige J. Willcox M.D.P. Garrett Q. Role of carnitine in disease. Nutr. Metab. (Lond.) 2010 7 1 30 10.1186/1743‑7075‑7‑30 20398344
    [Google Scholar]
  85. Lukasheva E.V. Berezov T.T. L-Lysine α-oxidase: Physicochemical and biological properties. Biochemistry (Mosc.) 2002 67 10 1152 1158 10.1023/A:1020967408229 12460113
    [Google Scholar]
  86. Hartmann M. Zeier J. l -lysine metabolism to N -hydroxypipecolic acid: An integral immune-activating pathway in plants. Plant J. 2018 96 1 5 21 10.1111/tpj.14037 30035374
    [Google Scholar]
  87. Wang Z.A. Cole P.A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol. 2020 27 8 953 969 10.1016/j.chembiol.2020.07.002 32698016
    [Google Scholar]
  88. Moreno-Yruela C. Bæk M. Monda F. Olsen C.A. Chiral posttranslational modification to lysine ε-amino groups. Acc. Chem. Res. 2022 55 10 1456 1466 10.1021/acs.accounts.2c00115 35500056
    [Google Scholar]
  89. Wang L. Zhang C. Zhang J. Rao Z. Xu X. Mao Z. Chen X. Epsilon-poly-L-lysine: Recent advances in biomanufacturing and applications. Front. Bioeng. Biotechnol. 2021 9 748976 10.3389/fbioe.2021.748976 34650962
    [Google Scholar]
  90. Chen S. Huang S. Li Y. Zhou C. Recent advances in Epsilon-Poly-L-Lysine and L-Lysine-based dendrimer synthesis, modification, and biomedical applications. Front. Chem. 2021 9 659304 10.3389/fchem.2021.659304 33869146
    [Google Scholar]
  91. Papes F. Surpili M.J. Langone F. Trigo J.R. Arruda P. The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. FEBS Lett. 2001 488 1-2 34 38 10.1016/S0014‑5793(00)02401‑7 11163791
    [Google Scholar]
  92. Kim D. Kim K.I. Baek S.H. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J. Biomed. Sci. 2021 28 1 41 10.1186/s12929‑021‑00737‑3 34082769
    [Google Scholar]
  93. Pricing for 28 L-lysine combination Brands. 2025 Available from: https://www.medindia.net/drug-price/l-lysine-combination.htm
  94. Zheng Q. Zhang W. Rao G.W. Protein Lysine Methyltransferase SMYD2: A promising small molecule target for cancer therapy. J. Med. Chem. 2022 65 15 10119 10132 10.1021/acs.jmedchem.2c00325 35914250
    [Google Scholar]
  95. Basith S. Chang H.J. Nithiyanandam S. Shin T.H. Manavalan B. Lee G. Recent trends on the development of machine learning approaches for the prediction of lysine acetylation sites. Curr. Med. Chem. 2022 29 2 235 250 10.2174/0929867328999210902125308 34477504
    [Google Scholar]
  96. Arifuzzaman S. Khatun M.R. Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed. Pharmacother. 2020 129 110392 10.1016/j.biopha.2020.110392 32574968
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037381647250526073248
Loading
/content/journals/cpps/10.2174/0113892037381647250526073248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test