Skip to content
2000
image of Insects on the Plate: Nutritional Benefits, Health Impacts, and Market Dynamics

Abstract

Introduction

Edible insects are gaining popularity as a sustainable source of proteins, minerals, vitamins, and bioactive compounds. Insects are nutritious, antibacterial, anti-inflammatory, and antioxidant. Modern processing methods, including roasting, drying, fermentation, and hydrolysis, improve the taste, safety, and digestibility of foods derived from insects. This comprehensive review integrates nutritional, bioactive, and technical aspects to explain edible insects as a future food.

Objective

This study examines edible insects as a healthy, sustainable alternative to plant-based diets. It examines their nutritional profile, health advantages, and widespread diet acceptability potential and limitations.

Methods

This review paper covered the nutritional composition of edible insects, including minerals, fibre, fats, and amino acids. It also evaluated the health benefits of edible insects and chronic disease prevention. Finally, it explored consumer safety and acceptance of edible insects.

Results

Insects provide proteins, amino acids, vitamin B12, iron, zinc, and calcium. They promote health and reduce cardiovascular disease and cancer risk. Edible insects benefit musclebuilders and older adults since they are excellent sources of protein and amino acids. Their safety, nutritional efficacy, and defined regulatory frameworks were also reported to improve consumer trust and industry development.

Discussion

Edible insects provide high-quality, sustainable protein. This review highlights their high levels of protein, essential amino acids, and bioactive peptides for metabolic health and disease management. Polyphenols, chitin, and antimicrobial peptides are antioxidants, antihypertensives, and immunomodulators. Enzymatic hydrolysis and microencapsulation enhance nutritional bioavailability, safety, and flavor. Edible insects use less area and release fewer pollutants than animals, making them better for the environment. Legal, technological, and awareness initiatives can promote entomophagy worldwide.

Conclusion

Consuming insects provides nourishment and leads to good health. They better meet nutritional needs than animal and plant-based diets and supplement protein consumption. Large-scale deployment requires safety and nutritional studies, transparent regulations, and customer acceptance.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037382429250624123540
2025-07-11
2025-09-18
Loading full text...

Full text loading...

References

  1. Tan H.S.G. Fischer A.R.H. Tinchan P. Stieger M. Steenbekkers L.P.A. van Trijp H.C.M. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Qual. Prefer. 2015 42 78 89 10.1016/j.foodqual.2015.01.013
    [Google Scholar]
  2. Looking at edible insects from a food safety perspective. 2021 Available from: https://www.fao.org/3/cb4094en/ cb4094en.pdf
  3. Mittal R.K. Mishra R. Sharma V. Purohit P. Bioactive exploration in functional foods: Unlocking nature’s treasures. Curr. Pharm. Biotechnol. 2024 25 11 1419 1435 38031768
    [Google Scholar]
  4. Mittal R.K. Krishna G. Sharma V. Purohit P. Mishra R. Spirulina unveiled: A comprehensive review on biotechnological innovations, nutritional proficiency, and clinical implications. Curr. Pharm. Biotechnol. 2024 25 1 7 10.2174/0113892010304524240514023735 38803172
    [Google Scholar]
  5. Mittal R.K. Mishra R. Uddin R. Bhargav R. Kumar N. Epigallocatechin gallate (EGCG) formulations: Unlocking potential in nutraceutical and pharmaceutical sectors. Nat. Prod. J. 2024 15 2 13 10.2174/0122103155295035240330065048
    [Google Scholar]
  6. Feng Y. Zhao M. He Z. Chen Z. Sun L. Research and utilization of medicinal insects in China. Entomol. Res. 2009 39 5 313 316
    [Google Scholar]
  7. Nowakowski A.C. Miller A.C. Miller M.E. Xiao H. Wu X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2022 62 13 3499 3508 33397123
    [Google Scholar]
  8. van Huis A. Nutrition and health of edible insects. Curr. Opin. Clin. Nutr. Metab. Care 2020 23 3 228 231 32073413
    [Google Scholar]
  9. Mittal R.K. Krishna G. Sharma V. Exploring edible insects: A review on protein diversity, extraction techniques, and health benefits. Curr. Pharm. Biotechnol. 2024 1 8 38803171
    [Google Scholar]
  10. Mittal R.K. Krishna G. Sharma V. Biotechnological advances in enzymatic hydrolysis and fermentation for edible insects: Functionality, acceptability, and safety. Curr. Pharm. Biotechnol. 2024 1 6 10.2174/0113892010304236240517060354 38840395
    [Google Scholar]
  11. Lähteenmäki-Uutela A. Marimuthu S.B. Meijer N. Regulations on insects as food and feed: A global comparison. J. Insects Food Feed 2021 7 5 849 856
    [Google Scholar]
  12. Precup G Ververis E Azzollini D Rivero-Pino F Zakidou P Germini A The safety assessment of insects and products thereof as novel foods in the European Union. Novel Foods and Edible Insects in the European Union Cham Springer 2022 10.1007/978‑3‑031‑13494‑4_7
    [Google Scholar]
  13. Sogari G Dagevos H Amato M Taufik D Consumer perceptions and acceptance of insects as feed and food: Current findings and future outlook. Novel Foods and Edible Insects in the European Union Cham Springer 2022 10.1007/978‑3‑031‑13494‑4_8
    [Google Scholar]
  14. Aguilar-Toalá J.E. Cruz-Monterrosa R.G. Liceaga A.M. Beyond human nutrition of edible insects: Health benefits and safety aspects. Insects 2022 13 11 1007 36354831
    [Google Scholar]
  15. Omuse E.R. Tonnang H.E.Z. Yusuf A.A. Machekano H. Egonyu J.P. Kimathi E. Mohamed S.F. Kassie M. Subramanian S. Onditi J. Mwangi S. Ekesi S. Niassy S. The global atlas of edible insects: Analysis of diversity and commonality contributing to food systems and sustainability. Sci. Rep. 2024 14 1 5045 10.1038/s41598‑024‑55603‑7 38424443
    [Google Scholar]
  16. Jongema Y. List of edible insects of the world. 2017 Available from: www.wur.nl/en/Expertise-Services/Chair-groups/Plant-Sciences/ Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm
  17. Ai H. Wang F. Xia Y. Chen X. Lei C. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L. Food Chem. 2012 132 1 493 498 10.1016/j.foodchem.2011.11.033 26434321
    [Google Scholar]
  18. Psarianos M. Aghababaei F. Schlüter O.K. Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Res. Int. 2025 203 115802 10.1016/j.foodres.2025.115802 40022332
    [Google Scholar]
  19. Ran W. Zhao C. Research progress on the development and utilization of proteins in edible insects. Agric. Sci. Technol. 2014 15 4 683
    [Google Scholar]
  20. Lourenço F. Calado R. Medina I. Ameixa O.M.C.C. The potential impacts by the invasion of insects reared to feed livestock and pet animals in Europe and other regions: A critical review. Sustainability 2022 14 10 6361 10.3390/su14106361
    [Google Scholar]
  21. Zielińska E. Baraniak B. Karaś M. Rybczyńska K. Jakubczyk A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015 77 460 466 10.1016/j.foodres.2015.09.008
    [Google Scholar]
  22. Zielińska E. Karaś M. Baraniak B. Jakubczyk A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020 246 7 1361 1369 10.1007/s00217‑020‑03495‑y
    [Google Scholar]
  23. Zielińska E. Baraniak B. Karaś M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species ( Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria ). Int. J. Food Sci. Technol. 2018 53 11 2542 2551 10.1111/ijfs.13848
    [Google Scholar]
  24. Hall F. Reddivari L. Liceaga A.M. Identification and characterization of edible cricket peptides on hypertensive and glycemic in vitro inhibition and their anti-inflammatory activity on RAW 264.7 macrophage cells. Nutrients 2020 12 11 3588 10.3390/nu12113588 33238450
    [Google Scholar]
  25. Roncolini A. Milanović V. Aquilanti L. Cardinali F. Garofalo C. Sabbatini R. Clementi F. Belleggia L. Pasquini M. Mozzon M. Foligni R. Federica Trombetta M. Haouet M.N. Serena Altissimi M. Di Bella S. Piersanti A. Griffoni F. Reale A. Niro S. Osimani A. Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Res. Int. 2020 131 109031 10.1016/j.foodres.2020.109031 32247483
    [Google Scholar]
  26. Tejada L. Buendía-Moreno L. Hernández I. Abellán A. Cayuela J.M. Salazar E. Bueno-Gavilá E. Bioactivities of Mealworm (Alphitobius diaperinus L.) Larvae Hydrolysates Obtained from Artichoke (Cynara scolymus L.) Proteases. Biology (Basel) 2022 11 5 631 10.3390/biology11050631 35625359
    [Google Scholar]
  27. European Commission Commission implementing regulation (EU) 2021/882 of 1 June 2021 authorising the placing on the market of dried Tenebrio molitor larva as a novel food under Regulation (EU) 2015/2283 of the european parliament and of the council, and amending commission implementing regulation (EU) 2017/2470. Eur. Union 2021 50 16 20
    [Google Scholar]
  28. European Commission Commission implementing regulation (EU) 2022/169 of 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under regulation (EU) 2015/2283 of the european parliam. J. Eur. Union. 2022 2016 48 119
    [Google Scholar]
  29. Cho H.R. Lee S.O. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Res. Int. 2020 133 109194 10.1016/j.foodres.2020.109194 32466897
    [Google Scholar]
  30. Wu R.A. Ding Q. Lu H. Tan H. Sun N. Wang K. He R. Luo L. Ma H. Li Z. Caspase 3-mediated cytotoxicity of mealworm larvae (Tenebrio molitor) oil extract against human hepatocellular carcinoma and colorectal adenocarcinoma. J. Ethnopharmacol. 2020 250 112438 10.1016/j.jep.2019.112438 31816367
    [Google Scholar]
  31. Chen F. Jiang H. Lu Y. Chen W. Huang G. Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. Eur. Food Res. Technol. 2019 245 12 2687 2695 10.1007/s00217‑019‑03381‑2
    [Google Scholar]
  32. Surendra K.C. Olivier R. Tomberlin J.K. Jha R. Khanal S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016 98 197 202 10.1016/j.renene.2016.03.022
    [Google Scholar]
  33. Zhu D. Huang X. Tu F. Wang C. Yang F. Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly ( Hermetia illucens L.) larvae. J. Food Biochem. 2020 44 5 13186 10.1111/jfbc.13186 32163603
    [Google Scholar]
  34. Lu J. Guo Y. Muhmood A. Zeng B. Qiu Y. Wang P. Ren L. Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes. Sci. Rep. 2022 12 1 2799 10.1038/s41598‑022‑06668‑9 35181682
    [Google Scholar]
  35. Ghosh S. Meyer-Rochow V.B. Jung C. Honey bees and their brood: A potentially valuable resource of food, worthy of greater appreciation and scientific attention. J. Ecol. Environ. 2021 45 1 31 10.1186/s41610‑021‑00212‑y
    [Google Scholar]
  36. Ishara J. Matendo R. Ng’ang’a J. Siddiqui S.A. Niassy S. Katcho K. Kinyuru J. The contribution of commonly consumed edible insects to nutrition security in the Eastern D.R. Congo. Sci. Rep. 2024 14 1 16186 10.1038/s41598‑024‑64078‑5 39003308
    [Google Scholar]
  37. Yang X. Chen K. Liu H. Zhang Y. Luo Y. Purification and identification of peptides with high angiotensin-I converting enzyme (ACE) inhibitory activity from honeybee pupae (Apis mellifera) hydrolysates with in silico gastrointestinal digestion. Eur. Food Res. Technol. 2019 245 3 535 544 10.1007/s00217‑018‑03223‑7
    [Google Scholar]
  38. Pieterse E. Pretorius Q. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical-and broiler-based biological assays. Anim. Prod. Sci. 2013 54 3 347 355
    [Google Scholar]
  39. Sun T. Zhang S. Yang W. Zhao Z. Yang D. Housefly pupae-derived antioxidant peptides exerting neuroprotective effects on hydrogen peroxide-induced oxidative damage in PC12 cells. Molecules 2019 24 24 4486 31817866
    [Google Scholar]
  40. Koh J.A. Ong J.H. Abd Manan F. Ee K.Y. Wong F.C. Chai T.T. Discovery of bifunctional anti-DPP-IV and anti-ACE peptides from housefly larval proteins after in silico gastrointestinal digestion. Biointerface Res. Appl. Chem. 2022 12 4929 4944
    [Google Scholar]
  41. Montiel-Aguilar L.J. Torres-Castillo J.A. Rodríguez-Servin R. López-Flores A.B. Aguirre-Arzola V.E. Méndez-Zamora G. Sinagawa-García S.R. Nutraceutical effects of bioactive peptides obtained from Pterophylla beltrani (Bolivar & Bolivar) protein isolates. J. Asia Pac. Entomol. 2020 23 3 756 761
    [Google Scholar]
  42. Tzompa-Sosa D.A. Yi L. van Valenberg H.J. van Boekel M.A. Lakemond C.M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Res. Int. 2014 62 1087 1094
    [Google Scholar]
  43. Yin W. Liu J. Liu H. Lv B. Nutritional value, food ingredients, chemical and species composition of edible insects in China. Future Foods 2017 27 53 10.5772/intechopen.70085
    [Google Scholar]
  44. Siulapwa N. Mwambungu A. Lungu E. Sichilima W. Nutritional value of four common edible insects in Zambia. Int. J. Sci. Res. 2014 3 876 884
    [Google Scholar]
  45. Rumpold B.A. Schlüter O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013 57 5 802 823 10.1002/mnfr.201200735 23471778
    [Google Scholar]
  46. Roos N. Insects and human nutrition. Edible Insects in Sustainable Food Systems Cham Springer 2018 10.1007/978‑3‑319‑74011‑9_5
    [Google Scholar]
  47. Finke M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. ZooBiology 2002 21 3 269 285 10.1002/zoo.10031
    [Google Scholar]
  48. Finke M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015 34 6 554 564 10.1002/zoo.21246 26366856
    [Google Scholar]
  49. Finke M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013 32 1 27 36 10.1002/zoo.21012 22689347
    [Google Scholar]
  50. Kinyuru J.N. Nutrient content and lipid characteristics of desert locust (Schistoscerca gregaria) swarm in Kenya. Int. J. Trop. Insect Sci. 2021 41 3 1993 1999 10.1007/s42690‑020‑00308‑3
    [Google Scholar]
  51. Ghosh S. Jung C. Meyer-Rochow V.B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia Pac. Entomol. 2016 19 2 487 495 10.1016/j.aspen.2016.03.008
    [Google Scholar]
  52. Baek M. Kim M.A. Kwon Y.S. Hwang J.S. Goo T.W. Jun M. Yun E.Y. Effects of processing methods on nutritional composition and antioxidant activity of mealworm (Tenebrio molitor) larvae. Entomol. Res. 2019 49 6 284 293
    [Google Scholar]
  53. Seo M. Lee H.J. Lee J.H. Baek M. Kim I.W. Kim S.Y. Hwang J.S. Kim M. A study of the anti-inflammatory effect of protein derived from Tenebrio molitor larvae. J. Life Sci. 2019 29 8 854 860
    [Google Scholar]
  54. Rivero Pino F. Pérez Gálvez R. Espejo Carpio F.J. Guadix E.M. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processes. Food Funct. 2020 11 5 4376 4386 32373903
    [Google Scholar]
  55. Dai C. Ma H. Luo L. Yin X. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur. Food Res. Technol. 2013 236 681 689
    [Google Scholar]
  56. Park B.M. Lim H.J. Lee B.J. Anti-obesity effects of Tenebrio molitor larvae powder in high-fat diet-induced obese mice. J. Nutr. Health 2021 54 4 342 354
    [Google Scholar]
  57. Cheseto X. Kuate S.P. Tchouassi D.P. Ndung’u M. Teal P.E. Torto B. Potential of the desert locust Schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols. PLoS One 2015 10 5 0127171 25970517
    [Google Scholar]
  58. Batish I. Brits D. Valencia P. Miyai C. Rafeeq S. Xu Y. Galanopoulos M. Sismour E. Ovissipour R. Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects 2020 11 12 876 10.3390/insects11120876 33316988
    [Google Scholar]
  59. Xu X. Ji H. Belghit I. Liland N.S. Wu W. Li X. Effects of black soldier fly oil rich in n-3 HUFA on growth performance, metabolism and health response of juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture 2021 533 736144
    [Google Scholar]
  60. Sypniewski J. Kierończyk B. Benzertiha A. Mikołajczak Z. Pruszyńska-Oszmałek E. Kołodziejski P. Sassek M. Rawski M. Czekała W. Józefiak D. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: Effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci. 2020 61 3 294 302 31955595
    [Google Scholar]
  61. de Carvalho F.M.A. Schneider J.K. de Jesus C.V.F. de Andrade L.N. Amaral R.G. David J.M. Krause L.C. Severino P. Soares C.M.F. Bastos E.C. Padilha F.F. Gomes S.V.F. Capasso R. Santini A. Souto E.B. de Albuquerque-Júnior R.L.C. Brazilian red propolis: Extracts production, physicochemical characterization, and cytotoxicity profile for antitumor activity. Biomolecules 2020 10 5 726 10.3390/biom10050726 32384801
    [Google Scholar]
  62. Zhang H. Wang P. Zhang A.J. Li X. Zhang J.H. Qin Q.L. Wu Y.J. Antioxidant activities of protein hydrolysates obtained from the housefly larvae. Acta Biol. Hung. 2016 67 3 236 246 27630047
    [Google Scholar]
  63. Zhang L. Gui S. Liang Z. Liu A. Chen Z. Tang Y. Xiao M. Chu F. Liu W. Jin X. Zhu J. Lu X. Musca domestica cecropin (Mdc) alleviates Salmonella typhimurium-induced colonic mucosal barrier impairment: Associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora. Front. Microbiol. 2019 10 522 30930887
    [Google Scholar]
  64. Li S. Ji H. Zhang B. Zhou J. Yu H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 2017 477 62 70 10.1016/j.aquaculture.2017.04.015
    [Google Scholar]
  65. Matheswaran P Raja L Gani SB Anti-hypertensive and anti-microbial activity of protein hydrolysate obtained from seven edible insects. Bullet. Pure Appl. Sci. Geol. 2020 39 1 206 216 10.5958/2320‑3188.2020.00024.8
    [Google Scholar]
  66. Chu F.J. Jin X.B. Zhu J.Y. Housefly maggots (Musca domestica) protein-enriched fraction/extracts (PE) inhibit lipopolysaccharide-induced atherosclerosis pro-inflammatory responses. J. Atheroscler. Thromb. 2011 18 4 282 290 10.5551/jat.5991 21157115
    [Google Scholar]
  67. Hall F. Johnson P.E. Liceaga A. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem. 2018 262 39 47 10.1016/j.foodchem.2018.04.058 29751919
    [Google Scholar]
  68. Siddiqui S.A. Zhao T. Fitriani A. Rahmadhia S.N. Alirezalu K. Fernando I. Acheta domesticus (house cricket) as human foods - An approval of the European Commission - A systematic review. Food Front. 2024 5 2 435 473 10.1002/fft2.358
    [Google Scholar]
  69. Nongonierma A.B. Lamoureux C. FitzGerald R.J. Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket ( Gryllodes sigillatus ) proteins. Food Funct. 2018 9 1 407 416 10.1039/C7FO01568B 29218344
    [Google Scholar]
  70. Sousa P. Borges S. Pintado M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 2020 11 4 3539 3548 10.1039/D0FO00188K 32255460
    [Google Scholar]
  71. Ballon A. Queiroz L.S. de Lamo-Castellví S. Güell C. Ferrando M. Jacobsen C. Yesiltas B. Physical and oxidative stability of 5 % fish oil-in-water emulsions stabilized with lesser mealworm (Alphitobius diaperinus larva) protein hydrolysates pretreated with ultrasound and pulsed electric fields. Food Chem. 2025 476 143339 10.1016/j.foodchem.2025.143339 39977981
    [Google Scholar]
  72. Meijer N Safitri RA Tao W Hoek-Van den Hil EF Review: European Union legislation and regulatory framework for edible insect production - Safety issues. Animal 2025 25 101468 10.1016/j.animal.2025.101468
    [Google Scholar]
  73. Sudwischer P. Böschen V. Sitzmann W. Hellwig M. Cutting-edge insect processing: Unlocking the potential for bacterial reduction in black soldier fly ( Hermetia illucens ) protein. J. Food Saf. 2025 45 2 70012 10.1111/jfs.70012
    [Google Scholar]
  74. Ojha S. Bußler S. Schlüter O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020 118 600 609 10.1016/j.wasman.2020.09.010
    [Google Scholar]
  75. Gnana Moorthy Eswaran U. Karunanithi S. Gupta R.K. Rout S. Srivastav P.P. Edible insects as emerging food products-processing and product development perspective. J. Food Sci. Technol. 2023 60 8 2105 2120 37273559
    [Google Scholar]
  76. Mutungi C. Irungu F.G. Nduko J. Mutua F. Affognon H. Nakimbugwe D. Ekesi S. Fiaboe K.K.M. Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Crit. Rev. Food Sci. Nutr. 2019 59 2 276 298 28853909
    [Google Scholar]
  77. Durst P.B. Hanboonsong Y. Small-scale production of edible insects for enhanced food security and rural livelihoods: Experience from Thailand and Lao People’s Democratic Republic. J. Insects Food Feed 2015 1 1 25 32 10.3920/JIFF2014.0019
    [Google Scholar]
  78. Melgar-Lalanne G. Hernández-Álvarez A.J. Salinas-Castro A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019 18 4 1166 1191 10.1111/1541‑4337.12463 33336989
    [Google Scholar]
  79. Wynants E. Crauwels S. Verreth C. Gianotten N. Lievens B. Claes J. Van Campenhout L. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 2018 70 181 191 10.1016/j.fm.2017.09.012 29173626
    [Google Scholar]
  80. Nyangena D.N. Mutungi C. Imathiu S. Kinyuru J. Affognon H. Ekesi S. Nakimbugwe D. Fiaboe K.K.M. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods 2020 9 5 574 10.3390/foods9050574 32375385
    [Google Scholar]
  81. Kröncke N. Böschen V. Woyzichovski J. Demtröder S. Benning R. Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innov. Food Sci. Emerg. Technol. 2018 50 20 25 10.1016/j.ifset.2018.10.009
    [Google Scholar]
  82. Laroche M. Perreault V. Marciniak A. Gravel A. Chamberland J. Doyen A. Comparison of conventional and sustainable lipid extraction methods for the production of oil and protein isolate from edible insect meal. Foods 2019 8 11 572 10.3390/foods8110572 31766306
    [Google Scholar]
  83. Halloran A Flore R. A New world of ingredients: Aspiring chefs’ opinions on insects in gastronomy. Edible Insects In Sustainable Food Systems Cham Springer 2018 129 137
    [Google Scholar]
  84. Liceaga A.M. Processing insects for use in the food and feed industry. Curr. Opin. Insect Sci. 2021 48 32 36 10.1016/j.cois.2021.08.002 34455091
    [Google Scholar]
  85. Queiroz L.S. Nogueira Silva N.F. Jessen F. Mohammadifar M.A. Stephani R. Fernandes de Carvalho A. Perrone Í.T. Casanova F. Edible insect as an alternative protein source: A review on the chemistry and functionalities of proteins under different processing methods. Heliyon 2023 9 4 14831 10.1016/j.heliyon.2023.e14831 37025786
    [Google Scholar]
  86. Castro-López C. Santiago-López L. Vallejo-Cordoba B. González-Córdova A.F. Liceaga A.M. García H.S. Hernández-Mendoza A. An insight to fermented edible insects: A global perspective and prospective. Food Res. Int. 2020 137 109750 10.1016/j.foodres.2020.109750 33233312
    [Google Scholar]
  87. Kewuyemi Y.O. Kesa H. Chinma C.E. Adebo O.A. Fermented edible insects for promoting food security in Africa. Insects 2020 11 5 283 32380684
    [Google Scholar]
  88. Mittal R.K. Mishra R. Uddin R. Sharma V. Hydrogel breakthroughs in biomedicine: Recent advances and implications. Curr. Pharm. Biotechnol. 2024 25 11 1436 1451 38288792
    [Google Scholar]
  89. Biswas T. Mittal R.K. Sharma V. Kanupriya Mishra I. Kanupriya, Mishra I. nitrogen-fused heterocycles: Empowering anticancer drug discovery. Med. Chem. 2024 20 4 369 384 38192143
    [Google Scholar]
  90. Mittal R.K. Mishra R. Sharma V. Mishra I. 1, 3, 4-Thiadiazole: A versatile scaffold for drug discovery. Lett. Org. Chem. 2024 21 5 400 413
    [Google Scholar]
  91. Mittal R.K. Krishna G. Mishra R. Uddin R. Sharma V. From synthesis to solutions: Hydrogels’ impact on the biomedical landscape. Curr. Pharm. Biotechnol. 2024 1 8 10.2174/0113892010294727240502051954 38778590
    [Google Scholar]
  92. Purohit P Mittal RK Khatana K Quinoline-3-carboxylic acids “DNA minor groove-binding agent”. Anticancer Agents Med. Chem. 2022 22 2 344 348 10.2174/1871520621666210513160714
    [Google Scholar]
  93. Biswas T. Mittal R.K. Sharma V. Mishra I. Schiff bases: Versatile mediators of medicinal and multifunctional advancements. Lett. Org. Chem. 2024 21 6 505 519
    [Google Scholar]
  94. Wang F.X. Wu N. Wei J.T. Liu J. Zhao J. Ji A.G. Lin X.K. A novel protein from Eupolyphaga sinensis inhibits adhesion, migration, and invasion of human lung cancer A549 cells. Biochem. Cell Biol. 2013 91 4 244 251 23859019
    [Google Scholar]
  95. Hu D. Liu Q. Cui H. Wang H. Han D. Xu H. Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells. Life Sci. 2005 77 17 2098 2110 15978626
    [Google Scholar]
  96. Ji X. Wang J. Ma A. Feng D. He Y. Yan W. Effects of silkworm pupa protein on apoptosis and energy metabolism in human colon cancer DLD-1 cells. Food Sci. Hum. Wellness 2022 11 5 1171 1176
    [Google Scholar]
  97. Li X. Xie H. Chen Y. Lang M. Chen Y. Shi L. Silkworm pupa protein hydrolysate induces mitochondria-dependent apoptosis and S phase cell cycle arrest in human gastric cancer SGC-7901 cells. Int. J. Mol. Sci. 2018 19 4 1013 10.3390/ijms19041013 29597296
    [Google Scholar]
  98. Weixin L. Lixia M. Leiyan W. Yuxiao Z. Haifeng Z. Sentai L. Effects of silkworm pupa protein hydrolysates on mitochondrial substructure and metabolism in gastric cancer cells. J. Asia Pac. Entomol. 2019 22 2 387 392
    [Google Scholar]
  99. Carneiro-Lobo T.C. Konig S. Machado D.E. Nasciutti L.E. Forni M.F. Francischetti I.M. Sogayar M.C. Monteiro R.Q. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model. J. Thromb. Haemost. 2009 7 11 1855 1864 10.1111/j.1538‑7836.2009.03553.x 19624457
    [Google Scholar]
  100. Chukiatsiri S. Siriwong S. Thumanu K. Pupae protein extracts exert anticancer effects by downregulating the expression of IL-6, IL-1β and TNF-α through biomolecular changes in human breast cancer cells. Biomed. Pharmacother. 2020 128 110278 32480223
    [Google Scholar]
  101. Bílikova K. Huang S.C. Lin I.P. Šimuth J. Peng C.C. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides 2015 68 190 196 25784287
    [Google Scholar]
  102. Battampara P. Nimisha Sathish T. Reddy R. Guna V. Nagananda G.S. Reddy N. Ramesha B.S. Maharaddi V.H. Rao A.P. Ravikumar H.N. Biradar A. Radhakrishna P.G. Properties of chitin and chitosan extracted from silkworm pupae and egg shells. Int. J. Biol. Macromol. 2020 161 1296 1304 32693141
    [Google Scholar]
  103. Shapiro-Ilan D.I. Mizell R.F.III. An insect pupal cell with antimicrobial properties that suppress an entomopathogenic fungus. J. Invertebr. Pathol. 2015 124 114 116 10.1016/j.jip.2014.12.003 25510575
    [Google Scholar]
  104. Dutta S.R. Gauri S.S. Ghosh T. Halder S.K. DasMohapatra P.K. Mondal K.C. Ghosh A.K. Elucidation of structural and functional integration of a novel antimicrobial peptide from Antheraea mylitta. Bioorg. Med. Chem. Lett. 2017 27 8 1686 1692 10.1016/j.bmcl.2017.03.003 28302399
    [Google Scholar]
  105. Tang J.J. Fang P. Xia H.L. Tu Z.C. Hou B.Y. Yan Y.M. Di L. Zhang L. Cheng Y.X. Constituents from the edible Chinese black ants (Polyrhachis dives) showing protective effect on rat mesangial cells and anti-inflammatory activity. Food Res. Int. 2015 67 163 168 10.1016/j.foodres.2014.11.022
    [Google Scholar]
  106. Danneels E.L. Gerlo S. Heyninck K. Van Craenenbroeck K. De Bosscher K. Haegeman G. de Graaf D.C. How the venom from the ectoparasitoid Wasp nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines. PLoS One 2014 9 5 96825 10.1371/journal.pone.0096825 24821138
    [Google Scholar]
  107. Ghosh A. Ray M. Gangopadhyay D. Evaluation of proximate composition and antioxidant properties in silk-industrial byproduct. Lebensm. Wiss. Technol. 2020 132 109900 10.1016/j.lwt.2020.109900
    [Google Scholar]
  108. Wu S. Lu M. Wang S. Antiageing activities of water-soluble chitosan from Clanis bilineata larvae. Int. J. Biol. Macromol. 2017 102 376 379 10.1016/j.ijbiomac.2017.04.038 28412336
    [Google Scholar]
  109. Hyun C.K. Kim I.Y. Frost S.C. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 2004 134 12 3257 3263 10.1093/jn/134.12.3257 15570022
    [Google Scholar]
  110. Lee S.H. Park D. Yang G. Bae D.K. Yang Y.H. Kim T.K. Kim D. Kyung J. Yeon S. Koo K.C. Lee J.Y. Hwang S.Y. Joo S.S. Kim Y.B. Silk and silkworm pupa peptides suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet. Eur. J. Nutr. 2012 51 8 1011 1019 10.1007/s00394‑011‑0280‑6 22160191
    [Google Scholar]
  111. Kierończyk B. Rawski M. Mikołajczak Z. Homska N. Jankowski J. Ognik K. Józefiak A. Mazurkiewicz J. Józefiak D. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Anim. Nutr. 2022 11 60 79 10.1016/j.aninu.2022.06.015 36101841
    [Google Scholar]
  112. Purohit P. Mittal R.K. Sharma V. A synergistic broad-spectrum viral entry blocker: In silico approach. Biointerface Res. Appl. Chem. 2022 13 1 1 7
    [Google Scholar]
  113. Mittal R.K. Purohit P. Sankaranarayanan M. Muzaffar-Ur-Rehman M. Taramelli D. Signorini L. Dolci M. Basilico N. In- vitro antiviral activity and in-silico targeted study of quinoline-3- carboxylate derivatives against SARS-CoV-2 isolate. Mol. Divers. 2023 28 4 2651 2665 37480422
    [Google Scholar]
  114. Elieh Ali Komi D. Sharma L. Dela Cruz C.S. Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 2018 54 2 213 223 10.1007/s12016‑017‑8600‑0 28251581
    [Google Scholar]
  115. Kanupriya Mittal R.K. Sharma V. Biswas T. Mishra I. Kanupriya, Mittal RK, Sharma V, Biswas T, Mishra I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents. Med. Chem. 2024 20 5 487 502 10.2174/0115734064280150231212113012 38279757
    [Google Scholar]
  116. Mittal R.K. Purohit P. Aggarwal M. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors. Biointerface Res. Appl. Chem. 2023 13 2 69
    [Google Scholar]
  117. Okamoto I. Taniguchi Y. Kunikata T. Kohno K. Iwaki K. Ikeda M. Kurimoto M. Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci. 2003 73 16 2029 2045 10.1016/S0024‑3205(03)00562‑9 12899927
    [Google Scholar]
  118. Lee J.H. Jo Y.Y. Ju W.T. Kim K.Y. Kweon H. Effects of silkworm and its by-products on muscle mass and exercise performance in ICR mice. Int. J. Ind. Entomol. 2019 39 1 34 38
    [Google Scholar]
  119. Vangsoe M. Joergensen M. Heckmann L.H. Hansen M. Effects of insect protein supplementation during resistance training on changes in muscle mass and strength in young men. Nutrients 2018 10 3 335 10.3390/nu10030335 29534456
    [Google Scholar]
  120. Han S.M. Hong I.P. Woo S.O. Chun S.N. Park K.K. Nichollos Y.M. Pak S.C. The beneficial effects of honeybee-venom serum on facial wrinkles in humans. Clin. Interv. Aging 2015 10 1587 1592 10.2147/CIA.S84940 26491274
    [Google Scholar]
  121. Borrelli L. Coretti L. Dipineto L. Bovera F. Menna F. Chiariotti L. Nizza A. Lembo F. Fioretti A. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci. Rep. 2017 7 1 16269 10.1038/s41598‑017‑16560‑6 29176587
    [Google Scholar]
  122. Bruni L. Pastorelli R. Viti C. Gasco L. Parisi G. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 2018 487 56 63 10.1016/j.aquaculture.2018.01.006
    [Google Scholar]
  123. Stull V.J. Finer E. Bergmans R.S. Febvre H.P. Longhurst C. Manter D.K. Patz J.A. Weir T.L. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial. Sci. Rep. 2018 8 1 10762 10.1038/s41598‑018‑29032‑2 30018370
    [Google Scholar]
  124. Uzair B. Bushra R. Khan B.A. Zareen S. Fasim F. Potential uses of venom proteins in treatment of HIV. Protein Pept. Lett. 2018 25 7 619 625 10.2174/0929866525666180628161107 29956606
    [Google Scholar]
  125. Alvarez-Fischer D. Noelker C. Vulinović F. Grünewald A. Chevarin C. Klein C. Oertel W.H. Hirsch E.C. Michel P.P. Hartmann A. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS One 2013 8 4 61700 10.1371/journal.pone.0061700 23637888
    [Google Scholar]
  126. Wattanathorn J. Muchimapura S. Boosel A. Kongpa S. Kaewrueng W. Tong-Un T. Wannanon P. Thukhammee W. Silkworm pupae protect against Alzheimerâ S disease. Am. J. Agric. Biol. Sci. 2012 7 3 330 336 10.3844/ajabssp.2012.330.336
    [Google Scholar]
  127. Li S. Jin Y. Wang C. Chen J. Yu W. Jin Y. Lv Z. Effects of a 15-amino-acid isoform of amyloid- β expressed by silkworm pupae on B6C3-Tg Alzheimer’s disease transgenic mice. J. Biotechnol. 2019 296 83 92 30898688
    [Google Scholar]
  128. Kwon M-G. Kim D-S. Lee J-H. Park S-W. Choo Y-K. Han Y-S. Kim J-S. Hwang K-A. Ko K. Ko K. Isolation and analysis of natural compounds from silkworm pupae and effect of its extracts on alcohol detoxification. Entomol. Res. 2012 42 1 55 62 10.1111/j.1748‑5967.2011.00439.x
    [Google Scholar]
  129. Long X. Zhao X. Wang W. Zhang Y. Wang H. Liu X. Suo H. Protective effect of silkworm pupa oil on hydrochloric acid/ethanol-induced gastric ulcers. J. Sci. Food Agric. 2019 99 6 2974 2986 10.1002/jsfa.9511 30479041
    [Google Scholar]
  130. Hwang J. Hwang U.W. Beneficial effects of fermented cricket powder as a hair growth promoting agent in a mice model. J. Life Sci. 2022 32 3 196 201
    [Google Scholar]
  131. Godfray H.C.J. Crute I.R. Haddad L. Lawrence D. Muir J.F. Nisbett N. Pretty J. Robinson S. Toulmin C. Whiteley R. The future of the global food system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010 365 1554 2769 2777 10.1098/rstb.2010.0180 20713383
    [Google Scholar]
  132. Luan Y. Cui X. Ferrat M. Historical trends of food self-sufficiency in Africa. Food Secur. 2013 5 3 393 405 10.1007/s12571‑013‑0260‑1
    [Google Scholar]
  133. Cerritos R. Cano-Santana Z. Harvesting grasshoppers Sphenarium purpurascens in Mexico for human consumption: A comparison with insecticidal control for managing pest outbreaks. Crop Prot. 2008 27 3-5 473 480 10.1016/j.cropro.2007.08.001
    [Google Scholar]
  134. Huis A.V. Itterbeeck J.V. Klunder H. Mertens E. Halloran A. Muir G. Vantomme P. Edible insects: Future prospects for food and feed security. Rome FAO 2013
    [Google Scholar]
  135. Cerritos R. Insects as food: An ecological, social and economical approach. CABI Rev. 2009 4 027 1 7 10.1079/PAVSNNR20094027
    [Google Scholar]
  136. Finke M.D. Oonincx D.G. Nutrient content of insects. InInsects as food and feed: From production to consumption. Wageningen, Netherlands Wageningen Academic Publishers 2017 290 316
    [Google Scholar]
  137. Liceaga A.M. Aguilar-Toalá J.E. Vallejo-Cordoba B. González-Córdova A.F. Hernández-Mendoza A. Insects as an alternative protein source. Annu. Rev. Food Sci. Technol. 2022 13 1 19 34 10.1146/annurev‑food‑052720‑112443 34699254
    [Google Scholar]
  138. McCarthy E.J. Basic Marketing: A managerial Approach. 1st Ed Homewood, IL, USA Richard D. Irwin 1960 45 47
    [Google Scholar]
  139. Rozin P. Fallon A. The psychological categorization of foods and non-foods: A preliminary taxonomy of food rejections. Appetite 1980 1 3 193 201 10.1016/S0195‑6663(80)80027‑4
    [Google Scholar]
  140. Dagevos H. A literature review of consumer research on edible insects: Recent evidence and new vistas from 2019 studies. J. Insects Food Feed 2021 7 3 249 259 10.3920/JIFF2020.0052
    [Google Scholar]
  141. Wilkinson K. Muhlhausler B. Motley C. Crump A. Bray H. Ankeny R. Australian consumers’ awareness and acceptance of insects as food. Insects 2018 9 2 44 10.3390/insects9020044 29671798
    [Google Scholar]
  142. Laureati M. Proserpio C. Jucker C. Savoldelli S. New sustainable protein sources: Consumers’ willingness to adopt insects as feed and food. Italian J. Food Sci. 2016 28 4 652 668 10.14674/1120‑1770/ijfs.v476
    [Google Scholar]
  143. Berger S. Christandl F. Schmidt C. Baertsch C. Price-based quality inferences for insects as food. Br. Food J. 2018 120 7 1615 1627
    [Google Scholar]
  144. House J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite 2016 107 47 58 27444958
    [Google Scholar]
  145. Verneau F. La Barbera F. Kolle S. Amato M. Del Giudice T. Grunert K. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy. Appetite 2016 106 30 36 10.1016/j.appet.2016.02.006 26855371
    [Google Scholar]
  146. Van Thielen L. Vermuyten S. Storms B. Rumpold B. Van Campenhout L. Consumer acceptance of foods containing edible insects in Belgium two years after their introduction to the market. J. Insects Food Feed 2019 5 1 35 44
    [Google Scholar]
  147. Clarkson C. Mirosa M. Birch J. Consumer acceptance of insects and ideal product attributes. Br. Food J. 2018 120 12 2898 2911
    [Google Scholar]
  148. Pascucci S. Magistris T.D. Information bias condemning radical food innovators? The case of insect-based products in the Netherlands. Int. Food Agribus. Manag. Rev. 2013 16 3 1 6
    [Google Scholar]
  149. Alemu M.H. Olsen S.B. Vedel S.E. Pambo K.O. Owino V.O. Combining product attributes with recommendation and shopping location attributes to assess consumer preferences for insect-based food products. Food Qual. Prefer. 2017 55 45 57
    [Google Scholar]
  150. Halonen V. Uusitalo V. Levänen J. Sillman J. Leppäkoski L. Claudelin A. Recognizing potential pathways to increasing the consumption of edible insects from the perspective of consumer acceptance: Case study from Finland. Sustainability 2022 14 3 1439
    [Google Scholar]
  151. Bisconsin-Júnior A. Rodrigues H. Behrens J.H. da Silva M.A.A.P. Mariutti L.R.B. “Food made with edible insects”: Exploring the social representation of entomophagy where it is unfamiliar. Appetite 2022 173 106001 35306098
    [Google Scholar]
  152. Ibrahimi Jarchlo A. King L. Survey of consumer perceptions of alternative, or novel, sources of protein. Katie Pettifer Food Standards Agency 2022 8 9
    [Google Scholar]
  153. Bodenheimer F.S. Insects as Human Food: A Chapter of Thee Ecology of Man. Cham Springer 1951
    [Google Scholar]
  154. Castro M. Chambers I.V.E. Willingness to eat an insect based product and impact on brand equity: A global perspective. J. Sens. Stud. 2019 34 2 12486
    [Google Scholar]
  155. Wendin K.M. Nyberg M.E. Factors influencing consumer perception and acceptability of insect-based foods. Curr. Opin. Food Sci. 2021 40 67 71
    [Google Scholar]
  156. Pennisi E. All in the (bigger) family. Science 2015 347 6219 220 221 10.1126/science.347.6219.220 25593165
    [Google Scholar]
  157. Pomés A. Mueller G.A. Randall T.A. Chapman M.D. Arruda L.K. New insights into cockroach allergens. Curr. Allergy Asthma Rep. 2017 17 4 25 28421512
    [Google Scholar]
  158. Stanhope J. Carver S. Weinstein P. The risky business of being an entomologist: A systematic review. Environ. Res. 2015 140 619 633 10.1016/j.envres.2015.05.025 26069935
    [Google Scholar]
  159. de Gier S. Verhoeckx K. Insect (food) allergy and allergens. Mol. Immunol. 2018 100 82 106 10.1016/j.molimm.2018.03.015 29731166
    [Google Scholar]
  160. Jeong K.Y. Park J.W. Insect allergens on the dining table. Curr. Protein Pept. Sci. 2020 21 2 159 169 10.2174/1389203720666190715091951 31309888
    [Google Scholar]
  161. Ribeiro J.C. Cunha L.M. Sousa-Pinto B. Fonseca J. Allergic risks of consuming edible insects: A systematic review. Mol. Nutr. Food Res. 2018 62 1 1700030 10.1002/mnfr.201700030 28654197
    [Google Scholar]
  162. Forecast market value of edible insects worldwide from 2018 to 2023. Available from: https://www.statista.com/ statistics/882321/edible-insects-market-size-global/
  163. Edible insects market to reach $4.63 billion by 2027, growing at a CAGR of 26.5% from 2020 With COVID-19 impact - meticulous research® analysis. 2021 Available from: https://www.globenewswire.com/en/news-release/2021/01/12/2157080/0/en/Edible-Insects-Market-to-Reach-4-63-billion-by-2027-Growing-at-a-CAGR-of-26-5-from-2020-WithCOVID-19-Impact-Meticulous-Research-Analysis.html
  164. Global edible insects market overview source. 2025 Available from: https://www.marketresearchfuture.com/reports/edible-insects-market-4902
  165. Market value of edible insects worldwide in 2018. 2023 Available from: https://www.statista.com/ statistics/882360/edible-insects-market-size-global-by-region/
/content/journals/cpps/10.2174/0113892037382429250624123540
Loading
/content/journals/cpps/10.2174/0113892037382429250624123540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test