Skip to content
2000
image of Aquatic BPI/LBPs: A Promising Antimicrobial Peptide Resource for Disease Control in Aquaculture

Abstract

Aquaculture is currently the fastest-growing food supply industry worldwide. Disease control has always been a core concern in the sector of aquaculture. In recent years, the frequency of aquaculture disease outbreaks has increased dramatically due to the continuously increased antibiotic resistance of pathogens. Therefore, it is imperative to find effective antibiotic alternatives for disease control in aquaculture. Bactericidal permeability increasing/lipopolysaccharide binding proteins (BPI/LBPs) are endogenous peptides ubiquitously expressed in aquatic animals that exhibit antimicrobial effects similar to antibiotics. This review presents an overview of current research on BPI/LBPs derived from aquatic animals, the predicted antimicrobial mechanisms of aquatic BPI/LBPs, and the application potential and prospects of aquatic BPI/LBPs as an antimicrobial peptide (AMP) resource. To sum up, the systematic research on aquatic BPI/LBPs may not only enrich AMP resources but also provide new clues for the development of eco-friendly disease control strategies in aquaculture.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037364423250516032256
2025-05-27
2025-09-26
Loading full text...

Full text loading...

References

  1. Little D.C. Newton R.W. Beveridge M.C.M. Aquaculture: A rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc. Nutr. Soc. 2016 75 3 274 286 10.1017/S0029665116000665 27476856
    [Google Scholar]
  2. FAO The state of world fisheries and aquaculture. 2024 Available from: https://openknowledge.fao.org/items/06690fd0-d133-424c-9673-1849e414543d
  3. Subasinghe R.P. Aquaculture future: An analysis. FAN 2014 52 19 23
    [Google Scholar]
  4. Yuan C. Zhan W. Cui Q. Antibacterial activity and mechanism of the gallnut water extract against Vibrio parahaemolyticus. J. Aquat. Anim. Health 2022 34 4 159 166 10.1002/aah.10152 35262205
    [Google Scholar]
  5. Schulz P. Pajdak-Czaus J. Siwicki A.K. In vivo bacteriophages’ application for the prevention and therapy of aquaculture animals–chosen aspects. Animals 2022 12 10 1233 10.3390/ani12101233 35625078
    [Google Scholar]
  6. Oishi K. Morise M. Vo L.K. Tran N.T. Sahashi D. Ueda-Wakamatsu R. Nishimura W. Komatsu M. Shiozaki K. Host lactosylceramide enhances Edwardsiella tarda infection. Cell. Microbiol. 2021 23 9 e13365 10.1111/cmi.13365 33988901
    [Google Scholar]
  7. Chen J. Sun R. Pan C. Sun Y. Mai B. Li Q.X. Antibiotics and food safety in aquaculture. J. Agric. Food Chem. 2020 68 43 11908 11919 10.1021/acs.jafc.0c03996 32970417
    [Google Scholar]
  8. Barathan M. Ng S.L. Lokanathan Y. Ng M.H. Law J.X. Unseen weapons: Bacterial extracellular vesicles and the spread of antibiotic resistance in aquatic environments. Int. J. Mol. Sci. 2024 25 6 3080 10.3390/ijms25063080 38542054
    [Google Scholar]
  9. Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020 12 12 3313 10.3390/w12123313
    [Google Scholar]
  10. Rajaei M. Moosavy M.H. Gharajalar S.N. Khatibi S.A. Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: Phenotypic and genotypic study. BMC Microbiol. 2021 21 1 272 10.1186/s12866‑021‑02326‑8 34615465
    [Google Scholar]
  11. Aslam B. Khurshid M. Arshad M.I. Muzammil S. Rasool M. Yasmeen N. Shah T. Chaudhry T.H. Rasool M.H. Shahid A. Xueshan X. Baloch Z. Antibiotic resistance: One health one world outlook. Front. Cell. Infect. Microbiol. 2021 11 771510 10.3389/fcimb.2021.771510 34900756
    [Google Scholar]
  12. Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021 27 101 111 10.1016/j.jgar.2021.08.001 34454098
    [Google Scholar]
  13. Lozano I. Díaz N.F. Muñoz S. Riquelme C. Antibiotics in Chilean aquaculture: A review. InTech 2018 3 25 44
    [Google Scholar]
  14. Wang R. Lin X. Zha G. Wang J. Huang W. Wang J. Hou Y. Mou H. Zhang T. Zhu H. Wang J. Mechanism of enrofloxacin-induced multidrug resistance in the pathogenic Vibrio harveyi from diseased abalones. Sci. Total Environ. 2022 830 154738 10.1016/j.scitotenv.2022.154738 35331762
    [Google Scholar]
  15. Zhao Y. Yang Q.E. Zhou X. Wang F.H. Muurinen J. Virta M.P. Brandt K.K. Zhu Y.G. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. Technol. 2021 51 19 2159 2196 10.1080/10643389.2020.1777815
    [Google Scholar]
  16. Guan Y. Xue X. Jia J. Li X. Xing H. Wang Z. Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. J. Environ. Manage. 2022 318 115521 10.1016/j.jenvman.2022.115521 35716556
    [Google Scholar]
  17. Sáenz J.S. Marques T.V. Barone R.S.C. Cyrino J.E.P. Kublik S. Nesme J. Schloter M. Rath S. Vestergaard G. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome 2019 7 1 24 10.1186/s40168‑019‑0632‑7 30773139
    [Google Scholar]
  18. Liu R. Han G. Li Z. Cun S. Hao B. Zhang J. Liu X. Bacteriophage therapy in aquaculture: Current status and future challenges. Folia Microbiol. 2022 67 4 573 590 10.1007/s12223‑022‑00965‑6 35305247
    [Google Scholar]
  19. Wickramasuriya S.S. Ault J. Ritchie S. Gay C.G. Lillehoj H.S. Alternatives to antibiotic growth promoters for poultry: A bibliometric analysis of the research journals. Poult. Sci. 2024 103 9 103987 10.1016/j.psj.2024.103987 39003792
    [Google Scholar]
  20. Mwangi J. Kamau P. Thuku R. Lai R. Design methods for antimicrobial peptides with improved performance. Zool. Res. 2023 0 0 0 10.24272/j.issn.2095‑8137.2023.246 37914524
    [Google Scholar]
  21. Zhang R. Xu L. Dong C. Antimicrobial peptides: An overview of their structure, function and mechanism of action. Protein Pept. Lett. 2022 29 8 641 650 10.2174/0929866529666220613102145 35702771
    [Google Scholar]
  22. Koo H.B. Seo J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019 111 5 e24122 10.1002/pep2.24122
    [Google Scholar]
  23. Magana M. Pushpanathan M. Santos A.L. Leanse L. Fernandez M. Ioannidis A. Giulianotti M.A. Apidianakis Y. Bradfute S. Ferguson A.L. Cherkasov A. Seleem M.N. Pinilla C. de la Fuente-Nunez C. Lazaridis T. Dai T. Houghten R.A. Hancock R.E.W. Tegos G.P. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020 20 9 e216 e230 10.1016/S1473‑3099(20)30327‑3 32653070
    [Google Scholar]
  24. Xuan J. Feng W. Wang J. Wang R. Zhang B. Bo L. Chen Z.S. Yang H. Sun L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 2023 68 100954 10.1016/j.drup.2023.100954 36905712
    [Google Scholar]
  25. Erdem Büyükkiraz M. Kesmen Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2022 132 3 1573 1596 10.1111/jam.15314 34606679
    [Google Scholar]
  26. Selvarajan V. Tram N.D.T. Xu J. Ngen S.T.Y. Koh J.J. Teo J.W.P. Yuen T.Y. Ee P.L.R. Stapled β-hairpin antimicrobial peptides with improved stability and activity against drug-resistant gram negative bacteria. J. Med. Chem. 2023 66 13 8498 8509 10.1021/acs.jmedchem.3c00140 37357499
    [Google Scholar]
  27. Mylonakis E. Podsiadlowski L. Muhammed M. Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans R Soc. Lond B Biol. Sci. 2016 371 1695 20150290 10.1098/rstb.2015.0290 27160593
    [Google Scholar]
  28. Kumar P. Kizhakkedathu J. Straus S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018 8 1 4 10.3390/biom8010004 29351202
    [Google Scholar]
  29. Tang L. Liang Y. Jiang Y. Liu S. Zhang F. He X. Wang T. Zhou Y. Zhong H. Yan J. Identification and expression analysis on bactericidal permeability-increasing protein/lipopolysaccharide-binding protein of blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol. 2015 45 2 630 640 10.1016/j.fsi.2015.05.013 25982396
    [Google Scholar]
  30. Liu Y. Zha H. Han X. Yu S. Chai Y. Zhong J. Zhu Q. Molecular characterization and functional analysis of the bactericidal permeability-increasing protein/LPS-binding protein (BPI/LBP) from roughskin sculpin (Trachidermus fasciatus). Dev. Comp. Immunol. 2021 123 104133 10.1016/j.dci.2021.104133 34000320
    [Google Scholar]
  31. Weitz A. Spotnitz R. Collins J. Ovadia S. Iovine N.M. Log reduction of multidrug-resistant Gram-negative bacteria by the neutrophil-derived recombinant bactericidal/permeability-increasing protein. Int. J. Antimicrob. Agents 2013 42 6 571 574 10.1016/j.ijantimicag.2013.07.019 24189329
    [Google Scholar]
  32. Tobias P.S. Soldau K. Iovine N.M. Elsbach P. Weiss J. Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J. Biol. Chem. 1997 272 30 18682 18685 10.1074/jbc.272.30.18682 9228038
    [Google Scholar]
  33. Theprungsirikul J. Skopelja-Gardner S. Burns A.S. Wierzbicki R.M. Rigby W.F.C. Bactericidal/permeability-increasing protein preeminently mediates clearance of Pseudomonas aeruginosain vivovia CD18-dependent phagocytosis. Front. Immunol. 2021 12 659523 10.3389/fimmu.2021.659523 33981306
    [Google Scholar]
  34. Bülow S. Zeller L. Werner M. Toelge M. Holzinger J. Entzian C. Schubert T. Waldow F. Gisch N. Hammerschmidt S. Gessner A. Bactericidal/permeability-increasing protein is an enhancer of bacterial lipoprotein recognition. Front. Immunol. 2018 9 2768 10.3389/fimmu.2018.02768 30581431
    [Google Scholar]
  35. Theprungsirikul J. Skopelja-Gardner S. Rigby W.F.C. Killing three birds with one BPI: Bactericidal, opsonic, and anti-inflammatory functions. J. Transl. Autoimmun. 2021 4 100105 10.1016/j.jtauto.2021.100105 34142075
    [Google Scholar]
  36. Greenhalgh D.G. Green T.L. Lim D. Cho K. Bacterial pathogen-associated molecular patterns upregulate human glucocorticoid receptor expression in peripheral blood mononuclear cells. Shock 2022 58 5 393 399 10.1097/SHK.0000000000002004 36156050
    [Google Scholar]
  37. Vassallo C. Pathak D.T. Cao P. Zuckerman D.M. Hoiczyk E. Wall D. Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. Proc. Natl. Acad. Sci. USA 2015 112 22 E2939 E2946 10.1073/pnas.1503553112 26038568
    [Google Scholar]
  38. Fjell C.D. Hiss J.A. Hancock R.E.W. Schneider G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012 11 1 37 51 10.1038/nrd3591 22173434
    [Google Scholar]
  39. Baek D.H. Lee S.H. Anti-inflammatory efficacy of human-derived Streptococcus salivarius on periodontopathogen-induced inflammation. J. Microbiol. Biotechnol. 2023 33 8 998 1005 10.4014/jmb.2302.02002 37635315
    [Google Scholar]
  40. Schröder N.W.J. Schumann R.R. Non-LPS targets and actions of LPS binding protein (LBP). J. Endotoxin Res. 2005 11 4 237 242 10.1177/09680519050110040901 16176661
    [Google Scholar]
  41. Zhang J. Shang D. Research progress of TLR4 signaling pathway and its targeted drugs. Xibao Yu Fenzi Mianyixue Zazhi 2021 37 7 657 662 34140078
    [Google Scholar]
  42. Alva V. Lupas A.N. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016 1861 8 913 923 10.1016/j.bbalip.2016.01.016 26825693
    [Google Scholar]
  43. Eckert J.K. Kim Y.J. Kim J.I. Gürtler K. Oh D.Y. Sur S. Lundvall L. Hamann L. van der Ploeg A. Pickkers P. Giamarellos-Bourboulis E. Kubarenko A.V. Weber A.N. Kabesch M. Kumpf O. An H.J. Lee J.O. Schumann R.R. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity 2013 39 4 647 660 10.1016/j.immuni.2013.09.005 24120359
    [Google Scholar]
  44. Inagawa H. Honda T. Kohchi C. Nishizawa T. Yoshiura Y. Nakanishi T. Yokomizo Y. Soma G.I. Cloning and characterization of the homolog of mammalian lipopolysaccharide-binding protein and bactericidal permeability-increasing protein in rainbow trout Oncorhynchus mykiss. J. Immunol. 2002 168 11 5638 5644 10.4049/jimmunol.168.11.5638 12023361
    [Google Scholar]
  45. Holzinger J.M. Toelge M. Werner M. Ederer K.U. Siegmund H.I. Peterhoff D. Blaas S.H. Gisch N. Brochhausen C. Gessner A. Bülow S. Scorpionfish BPI is highly active against multiple drug-resistant Pseudomonas aeruginosa isolates from people with cystic fibrosis. eLife 2023 12 e86369 10.7554/eLife.86369 37461324
    [Google Scholar]
  46. Miniero D.Y. Xavier de Oliveira M.G. Paulo V.C.M. Soares F.L. Pulecio S.S.L. Zanolli M.L. Túlio de Moura G.V. Zanolli S.M.I. Schiavo N.M. Micke M.A. Becker S.A. Rose M.d.S. L.; Knöbl, T. Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil. Vet. Q. 2018 38 1 99 105 10.1080/01652176.2018.1540070 30668277
    [Google Scholar]
  47. Li M. Wu M. Sun Y. Sun L. Edwardsiella tarda TraT is an anti-complement factor and a cellular infection promoter. Commun. Biol. 2022 5 1 637 10.1038/s42003‑022‑03587‑3 35768577
    [Google Scholar]
  48. Juárez-Cortés M.Z. Vázquez L.E.C. Díaz S.F.M. Cardona F.C.S. Streptococcus iniae in aquaculture: A review of pathogenesis, virulence, and antibiotic resistance. Int. J. Vet. Sci. Med. 2024 12 1 25 38 10.1080/23144599.2024.2348408 38751408
    [Google Scholar]
  49. Nam B.H. Ahn K.J. Kim Y.O. Kong H.J. Kim W.J. Kim H.S. Lee S.J. Kim K.K. Molecular cloning and characterization of LPS-binding protein/bactericidal permeability-increasing protein (LBP/BPI) from olive flounder, Paralichthys olivaceus. Vet. Immunol. Immunopathol. 2010 133 2-4 256 263 10.1016/j.vetimm.2009.07.010 19698997
    [Google Scholar]
  50. Sun Y. Sun L. Pseudomonas fluorescens: Iron-responsive proteins and their involvement in host infection. Vet. Microbiol. 2015 176 3-4 309 320 10.1016/j.vetmic.2015.01.020 25680811
    [Google Scholar]
  51. Sun Y. Sun L. A teleost bactericidal permeability-increasing protein kills gram-negative bacteria, modulates innate immune response, and enhances resistance against bacterial and viral infection. PLoS One 2016 11 4 e0154045 10.1371/journal.pone.0154045 27105425
    [Google Scholar]
  52. Meng Q. Yin F. Fu C. Chen F. Liu C. Yuan N. Wang L. Zhang H. Qian D. Isolation, identification and pathogenicity analysis of Bacillus cereus from Chinese soft-shelled turtles, Pelodiscus sinensis. Shui Sheng Sheng Wu Hsueh Bao 2019 43 3 570 578
    [Google Scholar]
  53. Xiao Z. Cheng M. Hu X. Xue M. Jiang N. Liu W. Fan Y. Meng Y. Xu C. Zhou Y. Pathological changes of highly pathogenic Bacillus cereus on Pelodiscus sinensis. Vet. Q. 2023 43 1 1 10 10.1080/01652176.2023.2287191 38010068
    [Google Scholar]
  54. Chen F. Huang Y. Sun J. Lv A. Hu X. Shi H. Xing K. Isolation, identification and biological characteristics of Bacillus cereus from intestine of Carassius auratus. Jiangsu Agric. Sci. 2019 47 18 191 194 10.15889/j.issn.1002‑1302.2019.18.041
    [Google Scholar]
  55. Jiang Y. Zhou S. Chu W. The effects of dietary Bacillus cereus QSI-1 on skin mucus proteins profile and immune response in Crucian Carp (Carassius auratus gibelio). Fish Shellfish Immunol. 2019 89 319 325 10.1016/j.fsi.2019.04.014 30970281
    [Google Scholar]
  56. Baron O.L. Deleury E. Reichhart J.M. Coustau C. The LBP/BPI multigenic family in invertebrates: Evolutionary history and evidences of specialization in mollusks. Dev. Comp. Immunol. 2016 57 20 30 10.1016/j.dci.2015.11.006 26608112
    [Google Scholar]
  57. Gu L. Yan W. Wu H. Fan S. Ren W. Wang S. Lyu M. Liu J. Selection of DNAzymes for sensing aquatic bacteria: Vibrio anguillarum. Anal. Chem. 2019 91 12 7887 7893 10.1021/acs.analchem.9b01707 31117412
    [Google Scholar]
  58. Bekaert M. Goffin N. McMillan S. Desbois A.P. Essential genes of Vibrio anguillarum and other Vibrio spp. Guide the development of new drugs and vaccines. Front. Microbiol. 2021 12 755801 10.3389/fmicb.2021.755801 34745063
    [Google Scholar]
  59. Yang D. Han Y. Chen L. Cao R. Wang Q. Dong Z. Liu H. Zhang X. Zhang Q. Zhao J. A bactericidal permeability-increasing protein (BPI) from manila clam Ruditapes philippinarum: Investigation on the antibacterial activities and antibacterial action mode. Fish Shellfish Immunol. 2019 93 841 850 10.1016/j.fsi.2019.08.050 31430558
    [Google Scholar]
  60. Jiang C. Wang S. Identification and functional characterization of bactericidal permeability/increasing protein (BPI) from frog Nanorana yunnanensis (Paa yunnanensis). Dev. Comp. Immunol. 2022 137 104517 10.1016/j.dci.2022.104517 36028172
    [Google Scholar]
  61. Bian Z.C. Cai X.H. Tan K.A. Wang Y.D. Huang Z. Kwan K.Y. Xu P. Identification and functional analysis of ToBPI1/LBP and ToBPI2/LBP in anti-bacterial infection of Trachinotus ovatus. Genes 2023 14 4 826 10.3390/genes14040826 37107584
    [Google Scholar]
  62. Shao Y. Li C. Che Z. Zhang P. Zhang W. Duan X. Li Y. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability–increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production. Dev. Comp. Immunol. 2015 52 1 88 97 10.1016/j.dci.2015.04.015 25956196
    [Google Scholar]
  63. Jorquera A. Montecinos C. Borregales Y. Muñoz-Cerro K. González R. Santelices M. Rojas R. Mercado L. Ramírez F. Guzmán F. Farlora R. Valenzuela C. Brokordt K. Schmitt P. A novel LPS binding/bactericidal permeability-increasing protein (LBP/BPI) from the scallop Argopecten purpuratus plays an essential role in host resistance to Vibrio infection. Fish Shellfish Immunol. 2024 154 109989 10.1016/j.fsi.2024.109989 39471964
    [Google Scholar]
  64. Wu Y. Du H. Zhu L. Zhao N. Zhang S. Cao Z. Zhou Y. Sun Y. Bactericidal permeability-increasing protein/LPS-binding protein (BPI/LBP) enhances resistance of golden pompano Trachinotus ovatus against bacterial infection. Fish Shellfish Immunol. 2022 131 872 880 10.1016/j.fsi.2022.10.065 36347416
    [Google Scholar]
  65. Vieira R.V. Peiter G.C. de Melo F.F. Zarpelon-Schutz A.C. Teixeira K.N. In silico prospective analysis of the medicinal plants activity on the CagA oncoprotein from Helicobacter pylori. World J. Clin. Oncol. 2024 15 5 653 663 10.5306/wjco.v15.i5.653 38835850
    [Google Scholar]
  66. Seo P.W. Park S.Y. Hofmann A. Kim J.S. Crystal structures of UDP- N -acetylmuramic acid L -alanine ligase (MurC) from Mycobacterium bovis with and without UDP- N -acetylglucosamine. Acta Crystallogr. D Struct. Biol. 2021 77 5 618 627 10.1107/S2059798321002199 33950018
    [Google Scholar]
  67. Walter A. Unsleber S. Rismondo J. Jorge A.M. Peschel A. Gründling A. Mayer C. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. J. Biol. Chem. 2020 295 12 4024 4034 10.1074/jbc.RA120.012566 32047114
    [Google Scholar]
  68. Škanta F. Procházková P. Roubalová R. Dvořák J. Bilej M. LBP/BPI homologue in Eisenia andrei earthworms. Dev. Comp. Immunol. 2016 54 1 1 6 10.1016/j.dci.2015.08.008 26297397
    [Google Scholar]
  69. Iizasa S. Iizasa E. Matsuzaki S. Tanaka H. Kodama Y. Watanabe K. Nagano Y. Arabidopsis LBP/BPI related-1 and -2 bind to LPS directly and regulate PR1 expression. Sci. Rep. 2016 6 1 27527 10.1038/srep27527 27273538
    [Google Scholar]
  70. Gu Q. He S. Liu L. Wang G. Hao D. Liu H. Wang C. Li C. Zhang M. Li N. A teleost bactericidal permeability-increasing protein-derived peptide that possesses a broad antibacterial spectrum and inhibits bacterial infection as well as human colon cancer cells growth. Dev. Comp. Immunol. 2021 118 103995 10.1016/j.dci.2021.103995 33412232
    [Google Scholar]
  71. Yu Y. Hu B. Fan H. Zhang H. Lian S. Li H. Li S. Yan X. Wang S. Bai X. Molecular epidemiology of extraintestinal pathogenic Escherichia coli causing Hemorrhagic pneumonia in mink in northern China. Front. Cell. Infect. Microbiol. 2021 11 781068 10.3389/fcimb.2021.781068 34778114
    [Google Scholar]
  72. Guo Z. Zhao Q. Zhang X. Diagnosis and treatment of pneumonia caused by Pseudomonas aeruginosa in a Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis). Shou Lei Xue Bao 2007 27 1 86 91
    [Google Scholar]
  73. Hossain M.M.M. Farjana N. Afroz R. Hasan-Uj-Jaman; Saha, P.K.; Roy, H.S.; Rahman, M.A.; Farid, M.A. Genes expression in Penaeus monodon of Bangladesh; challenged with AHPND-causing Vibrio parahaemolyticus. Fish. Shellfish Immunol. Rep 2023 4 100092 10.1016/j.fsirep.2023.100092 37091065
    [Google Scholar]
  74. Yu L.H. Teh C.S.J. Yap K.P. Thong K.L. Diagnostic approaches and contribution of next-generation sequencing technologies in genomic investigation of Vibrio parahaemolyticus that caused acute hepatopancreatic necrosis disease (AHPND). Aquacult. Int. 2020 28 6 2547 2559 10.1007/s10499‑020‑00610‑4 33013008
    [Google Scholar]
  75. Zhang Y. Deng Y. Feng J. Hu J. Chen H. Guo Z. Gao R. Su Y. ToxR modulates biofilm formation in fish pathogen Vibrio harveyi. Lett. Appl. Microbiol. 2022 74 2 288 299 10.1111/lam.13606 34822732
    [Google Scholar]
  76. Shen G.M. Shi C.Y. Fan C. Jia D. Wang S.Q. Xie G.S. Li G.Y. Mo Z.L. Huang J. Isolation, identification and pathogenicity of Vibrio harveyi, the causal agent of skin ulcer disease in juvenile hybrid groupers Epinephelus fuscoguttatus × Epinephelus lanceolatus. J. Fish Dis. 2017 40 10 1351 1362 10.1111/jfd.12609 28252178
    [Google Scholar]
  77. Wang Z. Zhang W.J. Liu L. Leng X.F. Gao H.T. Jiang H.J. Chang Y.Q. Effects of artificial challenge of black mouth disease pathogen on phagocytosis related immune parameters in sea urchin Strongylocentrotus intermedius. Dalian Haiyang Daxue Xuebao 2021 36 2 241 247
    [Google Scholar]
  78. Hao P. Han L. Quan Z. Jin X. Li Y. Wu Y. Zhang X. Wang W. Gao C. Wang L. Wang H. Zhang W. Chang Y. Ding J. Integrative mRNA-miRNA interaction analysis associated with the immune response of Strongylocentrotus intermedius to Vibrio harveyi infection. Fish Shellfish Immunol. 2023 134 108577 10.1016/j.fsi.2023.108577 36773712
    [Google Scholar]
  79. Zhan F. Zhou S. Shi F. Li Q. Lin L. Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes in response to Staphylococcus aureus infection. Fish Shellfish Immunol. 2023 139 108927 10.1016/j.fsi.2023.108927 37406892
    [Google Scholar]
  80. Sun C.B. Wang G. Chan S.F. Effects of artificial infection of Litopenaeus vannamei by Micrococcus lysodeikticus and WSSV on the activity of immunity related enzymes. Fish Shellfish Immunol. 2015 46 2 778 786 10.1016/j.fsi.2015.06.029 26117730
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037364423250516032256
Loading
/content/journals/cpps/10.2174/0113892037364423250516032256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test