Skip to content
2000
Volume 31, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Molecularly Imprinted Polymers (MIPs) are specialized synthetic materials with custom-designed molecular recognition properties. They are created by polymerizing monomers around a template molecule. MIPs play a crucial role in various analytical fields, including drug detection in biological samples, protein and peptide identification, pollutant monitoring in water and soil, and detecting additives, contaminants, and pesticide residues in food. Additionally, they aid in identifying toxins, viruses, and small molecules. Their versatility, cost-effectiveness, and reusability enhance precision and efficiency in analytical processes. As technology and knowledge in the field continue to advance, the potential applications of MIPs are expected to expand, making them a crucial asset in various scientific and industrial endeavors. In this review, various techniques, which include analyte, sample type, key analytical parameters (limit of detection, limit of quantification, relative standard deviation, recovery, and correlation coefficient), and corresponding references, along with an overview of MIP applications across multiple domains, are described.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128384530250423181805
2025-05-06
2025-10-27
Loading full text...

Full text loading...

References

  1. PolyakovM. Adsorption properties and structure of silica gel.Zhur Fiz Khim19312799805
    [Google Scholar]
  2. WulffG. SarhanA. Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung.Angew. Chem.197284836410.1002/ange.19720840838
    [Google Scholar]
  3. ArshadyR. MosbachK. Synthesis of substrate‐selective polymers by host‐guest polymerization.Makromol. Chem.1981182268769210.1002/macp.1981.021820240
    [Google Scholar]
  4. RefaatD. AggourM.G. FarghaliA.A. Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies—Synthesis and applications.Int. J. Mol. Sci.20192024630410.3390/ijms20246304 31847152
    [Google Scholar]
  5. ChenL. WangX. LuW. WuX. LiJ. Molecular imprinting: Perspectives and applications.Chem. Soc. Rev.20164582137221110.1039/C6CS00061D 26936282
    [Google Scholar]
  6. MosbachK. Molecular imprinting.Trends Biochem. Sci.199419191410.1016/0968‑0004(94)90166‑X 8140624
    [Google Scholar]
  7. VasapolloG. SoleR.D. MergolaL. Molecularly imprinted polymers: Present and future prospective.Int. J. Mol. Sci.20111295908594510.3390/ijms12095908 22016636
    [Google Scholar]
  8. YeL. Molecular imprinting: Principles and applications of micro-and nanostructure polymers.Boca Raton, FLCRC press201318
    [Google Scholar]
  9. Moreno-BondiM.C. Navarro-VillosladaF. Benito-PenaE. UrracaJ.L. Molecularly imprinted polymers as selective recognition elements in optical sensing.Curr. Anal. Chem.20084431634010.2174/157341108785914925
    [Google Scholar]
  10. HauptK. Molecular imprinting.1st edSpringer Berlin Heidelberg201210.1007/978‑3‑642‑28421‑2
    [Google Scholar]
  11. RajpalS. MishraP. MizaikoffB. Rational in silico design of molecularly imprinted polymers: Current challenges and future potential.Int. J. Mol. Sci.2023247678510.3390/ijms24076785 37047758
    [Google Scholar]
  12. WłochM. DattaJ. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: Comprehensive analytical chemistry. Marc M, Ed.; ElsevierAmsterdam, Netherlands2019Vol. 861740
    [Google Scholar]
  13. AhmadO.S. BedwellT.S. EsenC. Garcia-CruzA. PiletskyS.A. Molecularly imprinted polymers in electrochemical and optical sensors.Trends Biotechnol.201937329430910.1016/j.tibtech.2018.08.009 30241923
    [Google Scholar]
  14. LeiblN. HauptK. GonzatoC. DumaL. Molecularly imprinted polymers for chemical sensing: A tutorial review.Chemosensors20219612310.3390/chemosensors9060123
    [Google Scholar]
  15. CleggJ.R. PeppasN.A. Molecular recognition with soft biomaterials.Soft Matter202016485686910.1039/C9SM01981B 31932836
    [Google Scholar]
  16. AkgönüllüS. KılıçS. EsenC. DenizliA. Molecularly imprinted polymer-based sensors for protein detection.Polymers202315362910.3390/polym15030629 36771930
    [Google Scholar]
  17. ParisiO.I. FrancomanoF. DattiloM. The evolution of molecular recognition: From antibodies to molecularly imprinted polymers (MIPs) as artificial counterpart.J. Funct. Biomater.20221311210.3390/jfb13010012 35225975
    [Google Scholar]
  18. HatamluyiB. HashemzadehA. DarroudiM. A novel molecularly imprinted polymer decorated by CQDs@HBNNS nanocomposite and UiO-66-NH2 for ultra-selective electrochemical sensing of oxaliplatin in biological samples.Sens. Actuators B Chem.202030712761410.1016/j.snb.2019.127614
    [Google Scholar]
  19. AlbertiG. ZanoniC. SpinaS. MagnaghiL. BiesuzR. Trends in molecularly imprinted polymers (MIPs)-based plasmonic sensors.Chemosensors202311214410.3390/chemosensors11020144
    [Google Scholar]
  20. RamazanS. DimitrakopoulosR. Traditional and new MIP models for production scheduling with in situ grade variability.Inter J Surface Mini Reclamat Environ2004182859810.1080/13895260412331295367
    [Google Scholar]
  21. RoushaniM. ZalpourN. Selective detection of Asulam with in situ dopamine electropolymerization based electrochemical MIP sensor.React. Funct. Polym.202116910506910.1016/j.reactfunctpolym.2021.105069
    [Google Scholar]
  22. SajiniT. MathewB. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting.Talanta Open2021410007210.1016/j.talo.2021.100072
    [Google Scholar]
  23. NichollsI.A. AnderssonH.S. GolkerK. Rational design of biomimetic molecularly imprinted materials: Theoretical and computational strategies for guiding nanoscale structured polymer development.Anal. Bioanal. Chem.201140061771178610.1007/s00216‑011‑4935‑1 21475943
    [Google Scholar]
  24. McCluskeyA. HoldsworthC.I. BowyerM.C. Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity?Org. Biomol. Chem.20075203233324410.1039/b708660a 17912377
    [Google Scholar]
  25. ArabiM. OstovanA. BagheriA.R. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis.Trends Analyt. Chem.202012811592310.1016/j.trac.2020.115923
    [Google Scholar]
  26. WackerligJ. SchirhaglR. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use.A Review Anal. Chem.201688125026110.1021/acs.analchem.5b03804 26539750
    [Google Scholar]
  27. Tse Sum BuiB. HauptK. Molecularly imprinted polymers: Synthetic receptors in bioanalysis.Anal. Bioanal. Chem.201039862481249210.1007/s00216‑010‑4158‑x 20845034
    [Google Scholar]
  28. SargaziS. FatimaI. KianiH.M. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review.Int. J. Biol. Macromol.202220611514710.1016/j.ijbiomac.2022.02.137 35231532
    [Google Scholar]
  29. RahmanS. Bozal-PalabiyikB. UnalD.N. ErkmenC. SiddiqM. ShahA. Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants.Trends Environ Analy Chem202236e0017610.1016/j.teac.2022.e00176
    [Google Scholar]
  30. CaldaraM. KulpaJ. LowdonJ.W. Recent advances in molecularly imprinted polymers for glucose monitoring: From fundamental research to commercial application.Chemosensors20231113210.3390/chemosensors11010032
    [Google Scholar]
  31. Díaz-ÁlvarezM. TurielE. Martín-EstebanA. Recent advances and future trends in molecularly imprinted polymers‐based sample preparation.J. Sep. Sci.20234612230015710.1002/jssc.202300157 37070351
    [Google Scholar]
  32. UzunL. TurnerA.P.F. Molecularly-imprinted polymer sensors: Realising their potential.Biosens. Bioelectron.20167613114410.1016/j.bios.2015.07.013 26189406
    [Google Scholar]
  33. Lazarević-PaštiT. TasićT. MilankovićV. PotkonjakN. Molecularly imprinted plasmonic-based sensors for environmental contaminants—current state and future perspectives.Chemosensors20231113510.3390/chemosensors11010035
    [Google Scholar]
  34. CuiB. LiuP. LiuX. LiuS. ZhangZ. Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives.J. Mater. Res. Technol.202096125681258410.1016/j.jmrt.2020.08.052
    [Google Scholar]
  35. RebeloP. Costa-RamaE. SeguroI. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis.Biosens. Bioelectron.202117211271910.1016/j.bios.2020.112719 33166805
    [Google Scholar]
  36. AyerduraiV. CieplakM. KutnerW. Molecularly imprinted polymer-based electrochemical sensors for food contaminants determination.Trends Analyt. Chem.202215811683010.1016/j.trac.2022.116830
    [Google Scholar]
  37. HuangC. WangH. MaS. BoC. OuJ. GongB. Recent application of molecular imprinting technique in food safety.J. Chromatogr. A2021165746257910.1016/j.chroma.2021.462579 34607292
    [Google Scholar]
  38. ZhangY. WangQ. ZhaoX. MaY. ZhangH. PanG. Molecularly imprinted nanomaterials with stimuli responsiveness for applications in biomedicine.Molecules202328391810.3390/molecules28030918 36770595
    [Google Scholar]
  39. SaylanY. AkgönüllüS. YavuzH. ÜnalS. DenizliA. Molecularly imprinted polymer based sensors for medical applications.Sensors 2019196127910.3390/s19061279 30871280
    [Google Scholar]
  40. ParkR. JeonS. JeongJ. ParkS.Y. HanD.W. HongS.W. Recent advances of point-of-care devices integrated with molecularly imprinted polymers-based biosensors: From biomolecule sensing design to intraoral fluid testing.Biosensors 202212313610.3390/bios12030136 35323406
    [Google Scholar]
  41. KangM.S. ChoE. ChoiH.E. AmriC. LeeJ.H. KimK.S. Molecularly imprinted polymers (MIPs): Emerging biomaterials for cancer theragnostic applications.Biomater. Res.20232714510.1186/s40824‑023‑00388‑5 37173721
    [Google Scholar]
  42. ArabiM. OstovanA. LiJ. Molecular imprinting: Green perspectives and strategies.Adv. Mater.20213330210054310.1002/adma.202100543 34145950
    [Google Scholar]
  43. DongC. ShiH. HanY. YangY. WangR. MenJ. Molecularly imprinted polymers by the surface imprinting technique.Eur. Polym. J.202114511023110.1016/j.eurpolymj.2020.110231
    [Google Scholar]
  44. HeidariG. AfruziF.H. ZareE.N. Molecularly imprinted magnetic nanocomposite based on carboxymethyl dextrin for removal of ciprofloxacin antibiotic from contaminated water.Nanomaterials 202313348910.3390/nano13030489 36770450
    [Google Scholar]
  45. WangX. DingH. YuX. Characterization and application of molecularly imprinted polymer-coated quantum dots for sensitive fluorescent determination of diethylstilbestrol in water samples.Talanta20191979810410.1016/j.talanta.2019.01.017 30771994
    [Google Scholar]
  46. NegarianM. MohammadinejadA. MohajeriS.A. Preparation, evaluation and application of core–shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk.Food Chem.2019288293810.1016/j.foodchem.2019.02.087 30902295
    [Google Scholar]
  47. SongX. ZhouT. ZhangJ. SuY. ZhouH. HeL. Preparation and application of molecularly imprinted monolithic extraction column for the selective microextraction of multiple macrolide antibiotics from animal muscles.Polymers 2019117110910.3390/polym11071109 31266161
    [Google Scholar]
  48. ChenX. YeN. A graphene oxide surface–molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples.RSC Advances2017754340773408510.1039/C7RA02985C
    [Google Scholar]
  49. MustafaY.L. KeirouzA. LeeseH.S. Molecularly imprinted polymers in diagnostics: Accessing analytes in biofluids.J. Mater. Chem. B Mater. Biol. Med.202210377418744910.1039/D2TB00703G 35822255
    [Google Scholar]
  50. LiuL. ZhongT. XuQ. ChenY. Efficient molecular imprinting strategy for quantitative targeted proteomics of human transferrin receptor in depleted human serum.Anal. Chem.20158721109101091910.1021/acs.analchem.5b02633 26496531
    [Google Scholar]
  51. WangX. YuS. LiuW. Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin.ACS Sens.20183237838510.1021/acssensors.7b00804 29336149
    [Google Scholar]
  52. BakhtiarS. BhawaniS.A. ShafqatS.R. Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenylphenol from spiked blood serum and river water.Chem. Biol. Technol. Agric.2019611510.1186/s40538‑019‑0152‑5
    [Google Scholar]
  53. OliveiraD.H.L. TeixeiraL.S. DinaliL.A.F. PiresB.C. SimõesN.S. BorgesK.B. Microextraction by packed sorbent using a new restricted molecularly imprinted polymer for the determination of estrogens from human urine samples.Microchem. J.201915010416210.1016/j.microc.2019.104162
    [Google Scholar]
  54. KadivarM. AliakbarA. A molecularly imprinted poly 2-aminophenol–gold nanoparticle–reduced graphene oxide composite for electrochemical determination of flutamide in environmental and biological samples.Anal. Methods202113453655110.1039/D0AY01812K 33449062
    [Google Scholar]
  55. KumariS. ChauhanJ.S. HadaV. The importance of molecularly imprinted polymers in wastewater treatment. In: Molecularly Imprinted Polymers for Environmental Monitoring: Fundamentals and Applications.IOP Publishing20231910.1088/978‑0‑7503‑4962‑8ch6
    [Google Scholar]
  56. QiuX.Z. LiangY. GuoH.S. WangX.B. LinC.X. Determination of phenolic compounds in environmental water by HPLC combination with on-line solid-phase extraction using molecularly imprinted polymers.J. Nanosci. Nanotechnol.201515129578958410.1166/jnn.2015.10495 26682381
    [Google Scholar]
  57. KalogiouriN.P. TsalbourisA. KabirA. FurtonK.G. SamanidouV.F. Synthesis and application of molecularly imprinted polymers using sol-gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water.Microchem. J.202015710496510.1016/j.microc.2020.104965
    [Google Scholar]
  58. XuS. ChenL. LiJ. QinW. MaJ. Preparation of hollow porous molecularly imprinted polymers and their applications to solid-phase extraction of triazines in soil samples.J. Mater. Chem.20112132120471205310.1039/c1jm10905g
    [Google Scholar]
  59. ElfadilD. LamaouiA. PelleD.F. AmineA. CompagnoneD. Molecularly imprinted polymers combined with electrochemical sensors for food contaminants analysis.Molecules20212615460710.3390/molecules26154607 34361757
    [Google Scholar]
  60. MohammadinejadA. RadK.S.Z. KarimiG. MotamedshariatyV.S. MohajeriS.A. Preparation, evaluation, and application of dummy molecularly imprinted polymer for analysis of hesperidin in lime juice.J. Sep. Sci.20214471490150010.1002/jssc.202001094 33433060
    [Google Scholar]
  61. LiuY. YangQ. ChenX. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips.Talanta201920423824710.1016/j.talanta.2019.05.102 31357288
    [Google Scholar]
  62. KhanS. BhatiaT. TrivediP. Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples.Food Chem.201619987087510.1016/j.foodchem.2015.12.091 26776046
    [Google Scholar]
  63. LiuX. ZhuL. GaoX. Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food.Food Chem.201620230931510.1016/j.foodchem.2016.02.015 26920299
    [Google Scholar]
  64. ZhangQ. XiaoX. LiG. Porous molecularly imprinted monolithic capillary column for on-line extraction coupled to high-performance liquid chromatography for trace analysis of antimicrobials in food samples.Talanta2014123637010.1016/j.talanta.2014.02.010 24725865
    [Google Scholar]
  65. ChauhanP. PandeyA. Molecularly imprinted polymer based detection of pesticides. In: Molecularly Imprinted Polymers for Environmental Monitoring: Fundamentals and Applications.IOP Publishing Bristol, UK202312210.1088/978‑0‑7503‑4962‑8ch11
    [Google Scholar]
  66. ChenJ. HuangX. WangL. MaC. WuS. WangH. The synthesis of a dual-template surface molecularly imprinted polymer based on silica gel and its application in the removal of pesticides from tea polyphenols.Anal. Methods2020127996100410.1039/C9AY02708D
    [Google Scholar]
  67. LiX. CaoX. ZhangZ. ZhangZ. JiangZ. YinJ. Synthesis of molecularly imprinted polymer adsorbents for solid‐phase extraction of strobilurin fungicides from agricultural products.J. Sep. Sci.202043112133214110.1002/jssc.201901261 32100419
    [Google Scholar]
  68. HayatM. RazaN. JamalU. Targeted extraction of pesticide from agricultural run-off using novel molecularly imprinted polymeric pendants.J. Ind. Eng. Chem.202210920220910.1016/j.jiec.2022.02.005
    [Google Scholar]
  69. MartelloL. AinaliN.M. BikiarisD.N. LambropoulouD.A. Multivariate design and application of novel molecularly imprinted polymers selective for triazole fungicides in juice and water samples.Microchem. J.202319210896810.1016/j.microc.2023.108968
    [Google Scholar]
  70. ZengS. LiC. HuangL. Carbon nanotube-supported dummy template molecularly imprinted polymers for selective adsorption of amide herbicides in aquatic products.Nanomaterials2023139152110.3390/nano13091521 37177066
    [Google Scholar]
  71. AbdulhusseinA.Q. JamilA.K.M. BakarN.K.A. Magnetic molecularly imprinted polymer nanoparticles for the extraction and clean-up of thiamethoxam and thiacloprid in light and dark honey.Food Chem.202135912993610.1016/j.foodchem.2021.129936 33957328
    [Google Scholar]
  72. MatsumotoH. SunayamaH. KitayamaY. TakanoE. TakeuchiT. Site-specific post-imprinting modification of molecularly imprinted polymer nanocavities with a modifiable functional monomer for prostate cancer biomarker recognition.Sci. Technol. Adv. Mater.201920130531210.1080/14686996.2019.1583495 30988832
    [Google Scholar]
  73. LinZ. ZhangH. PengA. LinY. LiL. HuangZ. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.Food Chem.2016200323710.1016/j.foodchem.2016.01.001 26830557
    [Google Scholar]
  74. LiZ.B. LiuJ. LiuJ.X. WangZ.H. WangJ.P. Determination of sulfonamides in meat with dummy-template molecularly imprinted polymer-based chemiluminescence sensor.Anal. Bioanal. Chem.2019411143179318910.1007/s00216‑019‑01792‑4 30989269
    [Google Scholar]
  75. WangL. LiangK. FengW. ChenC. GongH. CaiC. Molecularly imprinted polymers based on magnetically fluorescent metal–organic frameworks for the selective detection of hepatitis A virus.Microchem. J.202116410604710.1016/j.microc.2021.106047
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128384530250423181805
Loading
/content/journals/cpd/10.2174/0113816128384530250423181805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test