Skip to content
2000
Volume 31, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Ginger () has a long history as a culinary and medicinal plant, widely recognized in traditional medicine for the treatment of various diseases. In recent years, advances in nanotechnology have provided innovative delivery systems, enhancing ginger’s bioavailability and efficacy in modern therapeutic applications. This study aims to explore ginger’s pharmacological and therapeutic potential, tracing its evolution from traditional medicine to its integration into modern nanotechnological innovations. By analysing emerging trends, this study seeks to highlight ginger’s diverse bioactivities and its potential to enhance therapeutic efficacy through advanced delivery systems.

Methods

Literature was searched from various databases, mainly from 1984 to 2024, such as Scopus, Web of Science, Google Scholar, PubMed and Science Direct using keywords including “Ginger”, “”, “Gingerols”, “Shogaols”, “Paradols” and “Nanocarriers” and their combination. This study examines the therapeutic potential of ginger by reviewing its traditional applications and exploring nanotechnological innovations in ginger-based drug delivery systems. Nanoemulsions, liposomes, and nanoparticles were assessed for their ability to improve the stability, bioavailability, and targeted delivery of ginger’s bioactive compounds.

Results

Ginger’s bioactive constituents, including gingerols, shogaols, and paradols, exhibited significant pharmacological activities, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and gastroprotective effects. Nano-based delivery systems have shown improved stability, controlled release, and targeted delivery, thereby maximising therapeutic efficacy in treating various diseases.

Conclusion

Ginger holds significant therapeutic promise in both traditional and modern medicine, mainly when used with nanotechnology for improved bioavailability and efficacy. These findings support the development of ginger-based treatments as complementary therapies in holistic healthcare. Further research and clinical trials are essential to validate these applications and optimize dosages for clinical use.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128372023250324050304
2025-05-08
2025-09-09
Loading full text...

Full text loading...

References

  1. DhanikJ. AryaN. NandV. A review on Zingiber officinale.J. Pharmacogn. Phytochem.201763174184
    [Google Scholar]
  2. KressW.J. The phylogeny and classification of the Zingiberales.Ann. Mo. Bot. Gard.199077469872110.2307/2399669
    [Google Scholar]
  3. ShahrajabianM.H. SunW. ChengQ. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry.Acta Agric. Scand. B Soil Plant Sci.201969654655610.1080/09064710.2019.1606930
    [Google Scholar]
  4. DukeJ. Medicinal Plants of China.Reference Publications, Inc1985
    [Google Scholar]
  5. LangnerE. GreifenbergS. GruenwaldJ. Ginger: History and use.Adv. Ther.19981512544 10178636
    [Google Scholar]
  6. AvatoP. TursiF. VitaliC. MiccolisV. CandidoV. Allylsulfide constituents of garlic volatile oil as antimicrobial agents.Phytomedicine20007323924310.1016/S0944‑7113(00)80010‑0 11185736
    [Google Scholar]
  7. GrzannaR. LindmarkL. FrondozaC.G. Ginger-an herbal medicinal product with broad anti-inflammatory actions.J. Med. Food20058212513210.1089/jmf.2005.8.125 16117603
    [Google Scholar]
  8. DissanayakeK.G.C. WaliwitaW. LiyanageR.P. A review on medicinal uses of Zingiber officinale (ginger).Int. J. Health Sci. Res.2020106142148
    [Google Scholar]
  9. ElzebroekA.T.G. Guide to cultivated plants.CABI200810.1079/9781845933562.0000
    [Google Scholar]
  10. RavindranP.N. BabuK.N. Ginger: The genus Zingiber.CRC press201610.1201/9781420023367
    [Google Scholar]
  11. ZhangC. RaoA. ChenC. Pharmacological activity and clinical application analysis of traditional Chinese medicine ginger from the perspective of one source and multiple substances.Chin. Med.20241919710.1186/s13020‑024‑00969‑z 38997763
    [Google Scholar]
  12. ZhangM. ZhaoR. WangD. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents.Phytother. Res.202135271174210.1002/ptr.6858 32954562
    [Google Scholar]
  13. ChanK. The evolutional development of Traditional Chinese Medicine (TCM) outside the Chinese mainland: Challenges, training, practice, research, and future development.World J. Tradit. Chin. Med.20162462810.15806/j.issn.2311‑8571.2016.0026
    [Google Scholar]
  14. ChahandeS.J. JachakR. ChahandeR. PantawaneP. Herbal spices and nanotechnology for the benefit of human health. In: Biogenic Sustainable Nanotechnology.Elsevier202210712910.1016/B978‑0‑323‑88535‑5.00009‑3
    [Google Scholar]
  15. RachmawatiH. LarasatiA. AdiA.C. ShegokarR. Role of nanocarriers and their surface modification in targeting delivery of bioactive compounds. In: Nanopharmaceuticals.Elsevier2020174310.1016/B978‑0‑12‑817778‑5.00002‑6
    [Google Scholar]
  16. MarxW. McKavanaghD. McCarthyA.L. The effect of ginger (Zingiber officinale) on platelet aggregation: A systematic literature review.PLoS One20151010e014111910.1371/journal.pone.0141119 26488162
    [Google Scholar]
  17. PrasadS. TyagiA.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer.Gastroenterol. Res. Pract.20152015111110.1155/2015/142979 25838819
    [Google Scholar]
  18. GingerS.K. Nutr. Today201045417118310.1097/NT.0b013e3181ed3543
    [Google Scholar]
  19. TerryR. PosadzkiP. WatsonL.K. ErnstE. The use of ginger (Zingiber officinale) for the treatment of pain: A systematic review of clinical trials.Pain Med.201112121808181810.1111/j.1526‑4637.2011.01261.x 22054010
    [Google Scholar]
  20. NairM.N.B. GrootM.J. Medicinal plants for home herbal gardens, Institutional gardens and animal health.Natural Livestock Farming India2021
    [Google Scholar]
  21. UddinJ. AhmedH. AsiriY.I. KamalG.M. MusharrafS.G. Ginger essential oil: Chemical composition, extraction, characterization, pharmacological activities, and applications. In: Essential Oils.Elsevier202334537610.1016/B978‑0‑323‑91740‑7.00014‑1
    [Google Scholar]
  22. MaR.H. NiZ.J. ZhuY.Y. A recent update on the multifaceted health benefits associated with ginger and its bioactive components.Food Funct.202112251954210.1039/D0FO02834G 33367423
    [Google Scholar]
  23. NairK.P. NairK.P. The chemistry of ginger. In: Turmeric (Curcuma longa L) and Ginger (Zingiber officinale Rosc)-World’s Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger.ChamSpringer201931736510.1007/978‑3‑030‑29189‑1_16
    [Google Scholar]
  24. JoladS.D. LantzR.C. ChenG.J. BatesR.B. TimmermannB.N. Commercially processed dry ginger (Zingiber officinale): Composition and effects on LPS-stimulated PGE2 production.Phytochemistry200566131614163510.1016/j.phytochem.2005.05.007 15996695
    [Google Scholar]
  25. PratapS.R. v GH, K M. Ginger: A potential neutraceutical, an updated review.Int. J. Pharmacogn. Phytochem. Res.2017991227123810.25258/phyto.v9i09.10311
    [Google Scholar]
  26. SangS. SnookH.D. TareqF.S. FasinaY. Precision research on ginger: The type of ginger matters.J. Agric. Food Chem.202068328517852310.1021/acs.jafc.0c03888 32663000
    [Google Scholar]
  27. MahomoodallyM.F. AumeeruddyM.Z. RengasamyK.R.R. RoshanS. HammadS. PandoheeJ. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. In: Seminars in cancer biology.Elsevier202114014910.1016/j.semcancer.2019.08.009
    [Google Scholar]
  28. AfzalM. Al-HadidiD. MenonM. PesekJ. DhamiM.S.I. Ginger: An ethnomedical, chemical and pharmacological review.Drug Metabol. Drug Interact.2001183-415919010.1515/DMDI.2001.18.3‑4.159 11791883
    [Google Scholar]
  29. ShaukatM.N. NazirA. FallicoB. Ginger bioactives: A comprehensive review of health benefits and potential food applications.Antioxidants20231211201510.3390/antiox12112015 38001868
    [Google Scholar]
  30. LiuY. LiuJ. ZhangY. Research progress on chemical constituents of Zingiber officinale Roscoe.BioMed Res. Int.20192019112110.1155/2019/5370823 31930125
    [Google Scholar]
  31. KulkarniD. GadadeD. KapareH. DhasN.L. BanM. Characterization techniques for stimuli-responsive delivery nanoplatforms in cancer treatment.Site-specific Cancer Nanotheranostics.CRC Press2024322338
    [Google Scholar]
  32. YoungH.Y. LuoY.L. ChengH.Y. HsiehW.C. LiaoJ.C. PengW.H. Analgesic and anti-inflammatory activities of [6]-gingerol.J. Ethnopharmacol.2005961-220721010.1016/j.jep.2004.09.009 15588672
    [Google Scholar]
  33. MasudaY. KikuzakiH. HisamotoM. NakataniN. Antioxidant properties of gingerol related compounds from ginger.Biofactors2004211-429329610.1002/biof.552210157 15630214
    [Google Scholar]
  34. ParkY.J. WenJ. BangS. ParkS.W. SongS.Y. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells.Yonsei Med. J.200647568869710.3349/ymj.2006.47.5.688 17066513
    [Google Scholar]
  35. SasidharanI. MenonA.N. Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe).Int. J. Curr. Pharm. Res.2010244043
    [Google Scholar]
  36. LiJ. ThangaiyanR. GovindasamyK. WeiJ. Anti-inflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals.Hum. Exp. Toxicol.202140691592710.1177/0960327120975131 33242989
    [Google Scholar]
  37. HöferlM. StoilovaI. WannerJ. SchmidtE. JirovetzL. TrifonovaD. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador.Nat. Prod. Commun.201510610851090 26197557
    [Google Scholar]
  38. SulaimanM.R. PerimalE.K. AkhtarM.N. Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice.Fitoterapia201081785585810.1016/j.fitote.2010.05.009 20546845
    [Google Scholar]
  39. KiranaC. McIntoshG.H. RecordI.R. JonesG.P. Antitumor activity of extract of Zingiber aromaticum and its bioactive sesquiterpenoid zerumbone.Nutr. Cancer200345221822510.1207/S15327914NC4502_12 12881017
    [Google Scholar]
  40. SidahmedH.M.A. HashimN.M. AbdullaM.A. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) Smith.PLoS One2015103e012106010.1371/journal.pone.0121060 25798602
    [Google Scholar]
  41. AbdulA.B. AbdelwahabS.I. Al-ZubairiA.S. ElhassanM.M. MuraliS.M. Anticancer and antimicrobial activities of zerumbone from the rhizomes of Zingiber zerumbut.Int. J. Pharmacol.20084430130410.3923/ijp.2008.301.304
    [Google Scholar]
  42. LiF. NitteranonV. TangX. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin.Food Chem.2012135233233710.1016/j.foodchem.2012.04.145 22868095
    [Google Scholar]
  43. DugasaniS. PichikaM.R. NadarajahV.D. BalijepalliM.K. TandraS. KorlakuntaJ.N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol.J. Ethnopharmacol.2010127251552010.1016/j.jep.2009.10.004 19833188
    [Google Scholar]
  44. HaS.K. MoonE. JuM.S. 6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection.Neuropharmacology201263221122310.1016/j.neuropharm.2012.03.016 22465818
    [Google Scholar]
  45. JiaY. LiX. MengX. LeiJ. XiaY. YuL. Anticancer perspective of 6-shogaol: Anticancer properties, mechanism of action, synergism and delivery system.Chin. Med.202318113810.1186/s13020‑023‑00839‑0 37875983
    [Google Scholar]
  46. GhasemzadehA. JaafarH.Z.E. BaghdadiA. Tayebi-MeigooniA. Formation of 6-, 8-and 10-shogaol in ginger through application of different drying methods: Altered antioxidant and antimicrobial activity.Molecules2018237164610.3390/molecules23071646 29976903
    [Google Scholar]
  47. ChungW.Y. JungY.J. SurhY.J. LeeS.S. ParkK.K. Antioxidative and antitumor promoting effects of [6]-paradol and its homologs.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20014961-219920610.1016/S1383‑5718(01)00221‑2 11551496
    [Google Scholar]
  48. RafeeqM. MuradH.A.S. AbdallahH.M. El-HalawanyA.M. Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats.BMC Complement. Med. Ther.202121110
    [Google Scholar]
  49. Shahedur RahmanS.R. Faizus SalehinF.S. Asif IqbalA.I. In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines.BMC Complement. Altern. Med.2011117610.1186/1472‑6882‑11‑76
    [Google Scholar]
  50. LeeH.Y. ParkS.H. LeeM. 1-Dehydro-[10]-gingerdione from ginger inhibits IKKβ activity for NF-κB activation and suppresses NF-κB-regulated expression of inflammatory genes.Br. J. Pharmacol.2012167112814010.1111/j.1476‑5381.2012.01980.x 22489648
    [Google Scholar]
  51. LiuY. WhelanR.J. PattnaikB.R. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53.PLoS One2012712e5317810.1371/journal.pone.0053178 23300887
    [Google Scholar]
  52. JafarzadehA. NematiM. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties.J. Neuroimmunol.2018324547510.1016/j.jneuroim.2018.09.003 30243185
    [Google Scholar]
  53. WilsonP.B. Ginger (Zingiber officinale) as an analgesic and ergogenic aid in sport: A systemic review.J. Strength Cond. Res.201529102980299510.1519/JSC.0000000000001098 26200194
    [Google Scholar]
  54. GurungA. KhatiwadaB. KayasthaB. ParsekarS. MistryS.K. YadavU.N. Effectiveness of Zingiber officinale (ginger) compared with non-steroidal anti-inflammatory drugs and complementary therapy in primary dysmenorrhoea: A systematic review.Clin. Epidemiol. Glob. Health20221810115210.1016/j.cegh.2022.101152
    [Google Scholar]
  55. KimE.C. MinJ.K. KimT.Y. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo.Biochem. Biophys. Res. Commun.2005335230030810.1016/j.bbrc.2005.07.076 16081047
    [Google Scholar]
  56. KimS.O. KunduJ.K. ShinY.K. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κB in phorbol ester-stimulated mouse skin.Oncogene200524152558256710.1038/sj.onc.1208446 15735738
    [Google Scholar]
  57. KimS.O. ChunK.S. KunduJ.K. SurhY.J. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-κB and p38 MAPK in mouse skin.Biofactors2004211-4273110.1002/biof.552210107 15630166
    [Google Scholar]
  58. RamakrishnanR. Anticancer properties of Zingiber officinale-Ginger: A review.Int J Med Pharm Sci2013351120
    [Google Scholar]
  59. NguyenT-N. NguyenK-A.T. LeT-V.N. NguyenC-K. NguyenN-T.T. KuoP-C. Research on chemical constituents, anti-bacterial and anti-cancer effects of components isolated from Zingiber officinale Roscoe from Vietnam.Plant Sci. Today2024111156165
    [Google Scholar]
  60. AlibakhshiT. KhodayarM.J. KhorsandiL. RashnoM. ZeidooniL. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity.Biomed. Pharmacother.201810522523210.1016/j.biopha.2018.05.085 29857302
    [Google Scholar]
  61. NwabuezeE.U. KorieM.C. NnodimJ. Phytochemical composition and anti-prostrate cancer potentials of two different ginger (Zingiber officinale) samples grown in parts of oru-east LGA, Imo State, Nigeria.Afr J Adv Sci Technol Res202261111
    [Google Scholar]
  62. AkimotoM. IizukaM. KanematsuR. YoshidaM. TakenagaK. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death.PLoS One2015105e012660510.1371/journal.pone.0126605 25961833
    [Google Scholar]
  63. BernardM.M. McConneryJ.R. HoskinD.W. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.Exp. Mol. Pathol.2017102237037610.1016/j.yexmp.2017.03.006 28315687
    [Google Scholar]
  64. ShidfarF. RajabA. RahidehT. KhandouziN. HosseiniS. ShidfarS. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes.J. Complement. Integr. Med.201512216517010.1515/jcim‑2014‑0021 25719344
    [Google Scholar]
  65. Al-AminZ.M. ThomsonM. Al-QattanK.K. Peltonen-ShalabyR. AliM. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats.Br. J. Nutr.200696466066610.1079/BJN20061849 17010224
    [Google Scholar]
  66. MorakinyoA.O. AkindeleA.J. AhmedZ. Modulation of antioxidant enzymes and inflammatory cytokines: Possible mechanism of anti-diabetic effect of ginger extracts.Afr. J. Biomed. Res.2011143195202
    [Google Scholar]
  67. AfshariA.T. ShirpoorA. FarshidA. The effect of ginger on diabetic nephropathy, plasma antioxidant capacity and lipid peroxidation in rats.Food Chem.2007101114815310.1016/j.foodchem.2006.01.013
    [Google Scholar]
  68. ArablouT. AryaeianN. ValizadehM. SharifiF. HosseiniA. DjalaliM. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus.Int. J. Food Sci. Nutr.201465451552010.3109/09637486.2014.880671 24490949
    [Google Scholar]
  69. AliA. GilaniA.H. Medicinal value of ginger with focus on its use in nausea and vomiting of pregnancy.Int. J. Food Prop.200710226927810.1080/10942910601045297
    [Google Scholar]
  70. MaoQ.Q. XuX.Y. CaoS.Y. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods8060185 31151279
    [Google Scholar]
  71. VutyavanichT. KraisarinT. RuangsriR.A. Ginger for nausea and vomiting in pregnancy: Randomized, double-masked, placebo-controlled trial.Obstet. Gynecol.200197457758210.1097/00006250‑200104000‑00017 11275030
    [Google Scholar]
  72. BhattaraiS. TranV.H. DukeC.C. The stability of gingerol and shogaol in aqueous solutions.J. Pharm. Sci.200190101658166410.1002/jps.1116 11745724
    [Google Scholar]
  73. M Fawzi M. Antiemetic activity of ginger in childrenreceiving cancer chemotherapy. Annals of the College of Medicine.Mosul2009352104110
    [Google Scholar]
  74. SharmaS.S. KochupillaiV. GuptaS.K. SethS.D. GuptaY.K. Antiemetic efficacy of ginger (Zingiber officinale) against cisplatin-induced emesis in dogs.J. Ethnopharmacol.1997572939610.1016/S0378‑8741(97)00054‑8 9254112
    [Google Scholar]
  75. JohjiY. KeizoM. TakeshiC. Cholagogic effect of ginger and its active constituents.J. Ethnopharmacol.198513221722510.1016/0378‑8741(85)90009‑1 4021519
    [Google Scholar]
  76. SrivastavaK.C. MustafaT. Ginger (Zingiber officinale) and rheumatic disorders.Med. Hypotheses1989291252810.1016/0306‑9877(89)90162‑X 2501634
    [Google Scholar]
  77. ChrubasikS. PittlerM.H. RoufogalisB.D. Zingiberis rhizoma: A comprehensive review on the ginger effect and efficacy profiles.Phytomedicine200512968470110.1016/j.phymed.2004.07.009 16194058
    [Google Scholar]
  78. NicollR. HeneinM.Y. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease?Int. J. Cardiol.2009131340840910.1016/j.ijcard.2007.07.107 18037515
    [Google Scholar]
  79. PanM.H. HsiehM.C. KuoJ.M. 6‐Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression.Mol. Nutr. Food Res.200852552753710.1002/mnfr.200700157 18384088
    [Google Scholar]
  80. EzzatS.M. EzzatM.I. OkbaM.M. MenzeE.T. Abdel-NaimA.B. The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity.J. Ethnopharmacol.201821411312310.1016/j.jep.2017.12.019 29253614
    [Google Scholar]
  81. MinghettiP. SosaS. CilurzoF. Evaluation of the topical anti-inflammatory activity of ginger dry extracts from solutions and plasters.Planta Med.200773151525153010.1055/s‑2007‑993741 18058610
    [Google Scholar]
  82. KravchenkoI. EberleL. NesterkinaM. KobernikA. Anti-inflammatory and analgesic activity of ointment based on dense ginger extract (Zingiber officinale).J Herbmed Pharmacol20198212613210.15171/jhp.2019.20
    [Google Scholar]
  83. JeenaK. LijuV.B. KuttanR. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger.Indian J. Physiol. Pharmacol.20135715162 24020099
    [Google Scholar]
  84. ChaiyakunaprukN. KitikannakornN. NathisuwanS. LeeprakobboonK. LeelasettagoolC. The efficacy of ginger for the prevention of postoperative nausea and vomiting: A meta-analysis.Am. J. Obstet. Gynecol.20061941959910.1016/j.ajog.2005.06.046 16389016
    [Google Scholar]
  85. RamkissoonJ.S. MahomoodallyM.F. AhmedN. SubrattyA.H. Relationship between total phenolic content, antioxidant potential, and antiglycation abilities of common culinary herbs and spices.J. Med. Food201215121116112310.1089/jmf.2012.0113 23134460
    [Google Scholar]
  86. Al-AwwadiN.A.J. Anti diabetics effect of Achillea santolina aqueous leaves extract.Int J Med Plants Res201347151156
    [Google Scholar]
  87. JangT.W. ChoiJ.S. ParkJ.H. Protective and inhibitory effects of acteoside from Abeliophyllum distichum Nakai against oxidative DNA damage.Mol. Med. Rep.20202232076208410.3892/mmr.2020.11258 32582974
    [Google Scholar]
  88. SousaC.M de M. Total phenolics and antioxidant activity of five medicinal plants.Quim. Nova20073035135510.1590/S0100‑40422007000200021
    [Google Scholar]
  89. MošovskáS. NovákováD. KaliňákM. Antioxidant activity of ginger extract and identification of its active components.Acta Chim. Slov.20158211511910.1515/acs‑2015‑0020
    [Google Scholar]
  90. GhasemzadehA. JaafarH.Z.E. RahmatA. WahabP.E.M. HalimM.R.A. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe).Int. J. Mol. Sci.201011103885389710.3390/ijms11103885 21152306
    [Google Scholar]
  91. RamadanG. Al-KahtaniM.A. El-SayedW.M. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis.Inflammation201134429130110.1007/s10753‑010‑9278‑0 21120596
    [Google Scholar]
  92. AlTahtawyR. ElBastawesyA. MonemM. ZekryZ. AlMehdarH. ElMerzabaniM. Antioxidant activity of the volatile oils of Zingiber officinale (ginger).Spatula DD2011111810.5455/spatula.20101209111419
    [Google Scholar]
  93. IranloyeB.O. ArikaweA.P. RotimiG. SogbadeA.O. Anti-diabetic and anti-oxidant effects of Zingiber officinale on alloxan-induced and insulin-resistant diabetic male rats.Niger. J. Physiol. Sci.20112618996 22314994
    [Google Scholar]
  94. MisawaK. HashizumeK. YamamotoM. MinegishiY. HaseT. ShimotoyodomeA. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway.J. Nutr. Biochem.201526101058106710.1016/j.jnutbio.2015.04.014 26101135
    [Google Scholar]
  95. MahmoudR.H. ElnourW.A. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats.Eur. Rev. Med. Pharmacol. Sci.20131717583 23329526
    [Google Scholar]
  96. SukS. KwonG.T. LeeE. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice.Mol. Nutr. Food Res.20176110170013910.1002/mnfr.201700139 28556482
    [Google Scholar]
  97. SaravananG. PonmuruganP. DeepaM.A. SenthilkumarB. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet.J. Sci. Food Agric.201494142972297710.1002/jsfa.6642 24615565
    [Google Scholar]
  98. NazishI. AnsariS.H. AroraP. AhmadA. Antiobesity activity of Zingiber officinale.Pharmacogn. J.20168544044610.5530/pj.2016.5.5
    [Google Scholar]
  99. LeeG.H. PengC. JeongS.Y. Ginger extract controls mTOR-SREBP1-ER stress-mitochondria dysfunction through AMPK activation in obesity model.J. Funct. Foods20218710462810.1016/j.jff.2021.104628
    [Google Scholar]
  100. ChurchN.A. McKillipJ.L. Antibiotic resistance crisis: Challenges and imperatives.Biologia20217651535155010.1007/s11756‑021‑00697‑x
    [Google Scholar]
  101. AwanU.A. AliS. ShahnawazA.M. Biological activities of Allium sativum and Zingiber officinale extracts on clinically important bacterial pathogens, their phytochemical and FT-IR spectroscopic analysis.Pak. J. Pharm. Sci.2017303729745 28653916
    [Google Scholar]
  102. MoonY.S. LeeH.S. LeeS.E. Inhibitory effects of three monoterpenes from ginger essential oil on growth and aflatoxin production of Aspergillus flavus and their gene regulation in aflatoxin biosynthesis.Appl. Biol. Chem.201861224325010.1007/s13765‑018‑0352‑x
    [Google Scholar]
  103. NassanM.A. MohamedE.H. Immunopathological and antimicrobial effect of black pepper, ginger and thyme extracts on experimental model of acute hematogenous pyelonephritis in albino rats.Int. J. Immunopathol. Pharmacol.201427453154110.1177/039463201402700409 25572733
    [Google Scholar]
  104. Ofongo-AbuleR. OhimainE. Antimicrobial effect induced by fresh ginger root extracts in broilers.Br. Biotechnol. J.2015911610.9734/BBJ/2015/18600
    [Google Scholar]
  105. IslamK. RowsniA.A. KhanM.M. KabirM.S. Antimicrobial activity of ginger (Zingiber officinale) extracts against food-borne pathogenic bacteria.Int. J. Sci. Environ. Technol.201433867871
    [Google Scholar]
  106. Beristain-BauzaS.D.C. Hernández-CarranzaP. Cid-PérezT.S. Ávila-SosaR. Ruiz-LópezI.I. Ochoa-VelascoC.E. Antimicrobial activity of ginger (Zingiber officinale) and its application in food products.Food Rev. Int.201935540742610.1080/87559129.2019.1573829
    [Google Scholar]
  107. AzadpourM. AzadpourN. BahmaniM. HassanzadazarH. Rafieian-KopaeiM. NaghdiN. Antimicrobial effect of Ginger (Zingiber officinale) and mallow (Malva sylvestris) hydroalcholic extracts on four pathogen bacteria.Pharm. Lett.201681181187
    [Google Scholar]
  108. OnyeagbaR.A. UgboguO.C. OkekeC.U. Iroakasi. Studies on the antimicrobial effects of garlic (Allium sativum Linn), ginger (Zingiber officinale Roscoe) and lime (Citrus aurantifolia Linn).Afr. J. Biotechnol.200431055255410.5897/AJB2004.000‑2108
    [Google Scholar]
  109. StoyanovaA. KonakchievA. DamyanovaS. StoilovaI. SuuP.T. Composition and antimicrobial activity of ginger essential oil from Vietnam.J. Essent. Oil-Bear. Plants200691939810.1080/0972060X.2006.10643478
    [Google Scholar]
  110. SebiomoA. AwofoduA.D. AwosanyaA.O. AwotonaF.E. AjayiA.J. Comparative studies of antibacterial effect of some antibiotics and ginger (Zingiber officinale) on two pathogenic bacteria.J. Microbiol. Antimicrob.2011311822
    [Google Scholar]
  111. AjayiO.A. OlaO.O. AkinwunmiO.O. Effect of drying method on nutritional composition, sensory and antimicrobial properties of Ginger (Zinginber officinale).Int. Food Res. J.2017242
    [Google Scholar]
  112. AnyamaobiO.P. WokemG.N. Enweani BessieI. OkosaN.J.A. OparaC.E. NwokejiM.C. Antimicrobial effect of garlic and ginger on Staphylococcus aureus from clinical specimens in Madonna University Teaching Hospital, Nigeria.Int. J. Recent Sci. Res.20201133784037845
    [Google Scholar]
  113. ThomsonM. Al-QattanK.K. Al-SawanS.M. AlnaqeebM.A. KhanI. AliM. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent.Prostaglandins Leukot. Essent. Fatty Acids200267647547810.1054/plef.2002.0441 12468270
    [Google Scholar]
  114. Al-YahyaMA RafatullahS MossaJS AgeelAM ParmarNS TariqM Gastroprotective activity of ginger Zingiber officinale rosc., in albino rats.Am J Chin Med19891701n02515610.1142/S0192415X890000972589236
    [Google Scholar]
  115. HaniadkaR. SaldanhaE. SunitaV. PalattyP.L. FayadR. BaligaM.S. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe).Food Funct.20134684585510.1039/c3fo30337c 23612703
    [Google Scholar]
  116. PertzH. LehmannJ. Roth-EhrangR. ElzS. Effects of ginger constituents on the gastrointestinal tract: Role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.Planta Med.2011771097397810.1055/s‑0030‑1270747 21305447
    [Google Scholar]
  117. GhayurM.N. GilaniA.H. Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders.Dig. Dis. Sci.200550101889189710.1007/s10620‑005‑2957‑2 16187193
    [Google Scholar]
  118. WangJ. ChenY. HuX. FengF. CaiL. ChenF. Assessing the effects of ginger extract on polyphenol profiles and the subsequent impact on the fecal microbiota by simulating digestion and fermentation in vitro.Nutrients20201210319410.3390/nu12103194 33086593
    [Google Scholar]
  119. Ebrahimzadeh AttariV. SomiM.H. Asghari JafarabadiM. OstadrahimiA. MoaddabS.Y. LotfiN. The gastro-protective effect of ginger (Zingiber officinale Roscoe) in Helicobacter pylori positive functional dyspepsia.Adv. Pharm. Bull.20199232132410.15171/apb.2019.038 31380260
    [Google Scholar]
  120. LimS. MoonM. OhH. KimH.G. KimS.Y. OhM.S. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse.J. Nutr. Biochem.201425101058106510.1016/j.jnutbio.2014.05.009 25049196
    [Google Scholar]
  121. HuhE. LimS. KimH.G. Ginger fermented with Schizosaccharomyces pombe alleviates memory impairment via protecting hippocampal neuronal cells in amyloid beta 1-42 plaque injected mice.Food Funct.20189117117810.1039/C7FO01149K 29171599
    [Google Scholar]
  122. ShanmugamK.R. MallikarjunaK. KesireddyN. Sathyavelu ReddyK. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats.Food Chem. Toxicol.201149489389710.1016/j.fct.2010.12.013 21184796
    [Google Scholar]
  123. El-AkabawyG. El-KholyW. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.Ann. Anat.20141962-311912810.1016/j.aanat.2014.01.003 24680376
    [Google Scholar]
  124. HusseinU. HassanN. ElhalwagyM. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats.Molecules20172211192810.3390/molecules22111928 29117134
    [Google Scholar]
  125. ParkH.Y. ChoiJ.W. ParkY. OhM.S. HaS.K. Fermentation enhances the neuroprotective effect of shogaol-enriched ginger extract via an increase in 6-paradol content.J. Funct. Foods20162114715210.1016/j.jff.2015.11.045
    [Google Scholar]
  126. ChoiJ.W. ParkH.Y. OhM.S. YooH.H. LeeS.H. HaS.K. Neuroprotective effect of 6-paradol enriched ginger extract by fermentation using Schizosaccharomyces pombe.J. Funct. Foods20173130431010.1016/j.jff.2017.02.010
    [Google Scholar]
  127. YassinN.A.Z. ElRokhE.M. El-ShenawyS.M.A. EhasnN.A. SayedW.H. HassaneinH. Study of the hepatoprotective effect of ginger aqueous infusion in rats.J. Chem. Pharm. Res.201024476488
    [Google Scholar]
  128. Abdel-AzeemA.S. HegazyA.M. IbrahimK.S. FarragA.R.H. El-SayedE.M. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.J. Diet. Suppl.201310319520910.3109/19390211.2013.822450 23927622
    [Google Scholar]
  129. FahmiA. HassanenN. Abdur-RahmanM. Shams-EldinE. Phytochemicals, antioxidant activity and hepatoprotective effect of ginger (Zingiber officinale) on diethylnitrosamine toxicity in rats.Biomarkers201924543644710.1080/1354750X.2019.1606280 30979347
    [Google Scholar]
  130. AttaA.H. ElkolyT.A. MouneirS.M. KamelG. AlwabelN.A. ZaherS. Hepatoprotective effect of methanol extracts of Zingiber officinale and Cichorium intybus.Indian J. Pharm. Sci.201072556457010.4103/0250‑474X.78521 21694986
    [Google Scholar]
  131. Abd AllahH. Abd El-wahab B, Ramadan K, Ali S. Ginger ethanolic extract, ginger oil or rice bran oil induced hepatoprotective effect against fatty liver in rats.Arab Univ J Agric Sci20182631135115010.21608/ajs.2018.28366
    [Google Scholar]
  132. ZhangG. NitteranonV. ChanL.Y. ParkinK.L. Glutathione conjugation attenuates biological activities of 6-dehydroshogaol from ginger.Food Chem.20131401-21810.1016/j.foodchem.2013.02.073 23578607
    [Google Scholar]
  133. LuettigJ. RosenthalR. LeeI.F.M. KrugS.M. SchulzkeJ.D. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling.Mol. Nutr. Food Res.201660122576258610.1002/mnfr.201600274 27487982
    [Google Scholar]
  134. HsiangC.Y. LoH.Y. HuangH.C. LiC.C. WuS.L. HoT.Y. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-κB activity and interleukin-1β signalling pathway.Food Chem.2013136117017710.1016/j.foodchem.2012.07.124 23017409
    [Google Scholar]
  135. UenoN. HasebeT. KanekoA. TU-100 (Daikenchuto) and ginger ameliorate anti-CD3 antibody induced T cell-mediated murine enteritis: Microbe-independent effects involving Akt and NF-κB suppression.PLoS One201495e9745610.1371/journal.pone.0097456 24857966
    [Google Scholar]
  136. OjewoleJ.A.O. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (roscoe) rhizomes (zingiberaceae) in mice and rats.Phytother. Res.200620976477210.1002/ptr.1952 16807883
    [Google Scholar]
  137. SharmaJ.N. SrivastavaK.C. GanE.K. Suppressive effects of eugenol and ginger oil on arthritic rats.Pharmacology199449531431810.1159/000139248 7862743
    [Google Scholar]
  138. JiK. FangL. ZhaoH. Ginger oleoresin alleviated γ-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells.Oxid. Med. Cell. Longev.201720171148029410.1155/2017/1480294 29181121
    [Google Scholar]
  139. YesilogluY. AydinH. KilicI. In vitro antioxidant activity of various extracts of ginger (Zingiber officinale L.) seed.Asian J. Chem.20132573573357810.14233/ajchem.2013.13657
    [Google Scholar]
  140. AbolajiA.O. OjoM. AfolabiT.T. ArowoogunM.D. NwawolorD. FarombiE.O. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats.Chem. Biol. Interact.2017270152310.1016/j.cbi.2017.03.017 28373059
    [Google Scholar]
  141. SaiahW. HalzouneH. DjaziriR. TabaniK. KoceirE.A. OmariN. Antioxidant and gastroprotective actions of butanol fraction of Zingiber officinale against diclofenac sodium-induced gastric damage in rats.J. Food Biochem.2018421e1245610.1111/jfbc.12456
    [Google Scholar]
  142. SchadichE. HlaváčJ. VolnáT. VaranasiL. HajdúchM. DžubákP. Effects of ginger phenylpropanoids and quercetin on Nrf2‐ARE pathway in human BJ fibroblasts and HaCaT keratinocytes.BioMed Res. Int.2016201611610.1155/2016/2173275 26942188
    [Google Scholar]
  143. AkinyemiA.J. AdemiluyiA.O. ObohG. Aqueous extracts of two varieties of ginger (Zingiber officinale) inhibit angiotensin I-converting enzyme, iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro.J. Med. Food201316764164610.1089/jmf.2012.0022 23875904
    [Google Scholar]
  144. ZhuY. WarinR.F. SorokaD.N. ChenH. SangS. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: Chemical synthesis and biological evaluation.PLoS One201381e5467710.1371/journal.pone.0054677 23382939
    [Google Scholar]
  145. PengF. TaoQ. WuX. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger.Fitoterapia201283356858510.1016/j.fitote.2011.12.028 22248534
    [Google Scholar]
  146. LingH. YangH. TanS-H. ChuiW-K. ChewE-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation.Br. J. Pharmacol.201016181763177710.1111/j.1476‑5381.2010.00991.x 20718733
    [Google Scholar]
  147. ZhangF. ZhangJ.G. QuJ. ZhangQ. PrasadC. WeiZ.J. Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells.Food Chem. Toxicol.2017109Pt 291092210.1016/j.fct.2017.02.038 28249781
    [Google Scholar]
  148. LiuC.M. KaoC.L. TsengY.T. LoY.C. ChenC.Y. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell.Molecules2017229147710.3390/molecules22091477 28872603
    [Google Scholar]
  149. TahirA.A. SaniN.F.A. MuradN.A. MakpolS. NgahW.Z.W. YusofY.A.M. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells.Nutr. J.20151413110.1186/s12937‑015‑0015‑2 25889965
    [Google Scholar]
  150. ChakotiyaA.S. TanwarA. NarulaA. SharmaR.K. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry.Microb. Pathog.201710725426010.1016/j.micpath.2017.03.029 28389345
    [Google Scholar]
  151. RampoguS. BaekA. GajulaR.G. Ginger (Zingiber officinale) phytochemicals—gingerenone-A and shogaol inhibit SaHPPK: Molecular docking, molecular dynamics simulations and in vitro approaches.Ann. Clin. Microbiol. Antimicrob.20181711610.1186/s12941‑018‑0266‑9 29609660
    [Google Scholar]
  152. Yamamoto-RibeiroM.M.G. GrespanR. KohiyamaC.Y. Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production.Food Chem.201314133147315210.1016/j.foodchem.2013.05.144 23871071
    [Google Scholar]
  153. AhmedN. KarobariM.I. YousafA. The antimicrobial efficacy against selective oral microbes, antioxidant activity and preliminary phytochemical screening of Zingiber officinale.Infect. Drug Resist.2022152773278510.2147/IDR.S364175 35668854
    [Google Scholar]
  154. AbdullahiA. KhairulmazmiA. YasmeenS. Phytochemical profiling and antimicrobial activity of ginger (Zingiber officinale) essential oils against important phytopathogens.Arab. J. Chem.202013118012802510.1016/j.arabjc.2020.09.031
    [Google Scholar]
  155. BiltoY.Y. AlabdallatN.G. Ex vivo and in vivo antioxidant related effects of Zingiber officinale Roscoe (Ginger) extracts in humans.European J. Med. Plants2015729910810.9734/EJMP/2015/16618
    [Google Scholar]
  156. AjithT.A. HemaU. AswathyM.S. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status.Food Chem. Toxicol.200745112267227210.1016/j.fct.2007.06.001 17637489
    [Google Scholar]
  157. PinhoR. AguiarR. SpironelloR. Hepatoprotective effect of pretreatment with rosemary and ginger essential oil in experimental model of acetaminophen-induced injury.Br. J. Pharm. Res.20144182126213510.9734/BJPR/2014/13025
    [Google Scholar]
  158. SuekawaM. IshigeA. YuasaK. SudoK. AburadaM. HosoyaE. Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents, (6)-gingerol and (6)-shogaol.J. Pharmacobiodyn.198471183684810.1248/bpb1978.7.836 6335723
    [Google Scholar]
  159. JohjiY. MichihikoM. HisashiM. HajimeF. FujimuraH. The anti-ulcer effect in rats of ginger constituents.J. Ethnopharmacol.1988232-329930410.1016/0378‑8741(88)90009‑8 3193792
    [Google Scholar]
  160. WaggasA.M. Neuroprotective evaluation of extract of ginger (Zingiber officinale) root in monosodium glutamate-induced toxicity in different brain areas male albino rats.Pak. J. Biol. Sci.200912320121210.3923/pjbs.2009.201.212 19579948
    [Google Scholar]
  161. SattarN.A. HussainF. IqbalT. SheikhM.A. Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe.Braz. J. Pharm. Sci.201248460160710.1590/S1984‑82502012000400003
    [Google Scholar]
  162. SukalingamK. GanesanK. GaniS.B. Hypoglycemic effect of 6-gingerol, an active principle of ginger in streptozotocin induced diabetic rats.J Pharmacol Toxicol Stud2013122330
    [Google Scholar]
  163. AbdulrazaqN.B. ChoM.M. WinN.N. ZamanR. RahmanM.T. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats.Br. J. Nutr.201210871194120110.1017/S0007114511006635 22152092
    [Google Scholar]
  164. BaskarV. SelvakumarK. MadhanR. SrinivasanG. MuralidharanM. Study on improving bioavailability ratio of anti-inflammatory compound from ginger through nano transdermal delivery.Asian J. Pharm. Clin. Res.201253241246
    [Google Scholar]
  165. JorgeN. AndreoD. Antioxidant activity of ginger extract (Zingiber officinale) in soybean oil under thermoxidation.Nutr. Food Sci.2013431495410.1108/00346651311295905
    [Google Scholar]
  166. MallJ. NaseemN. HaiderM.F. RahmanM.A. KhanS. SiddiquiS.N. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications.Intelligent Pharmacy2024
    [Google Scholar]
  167. BeginesB. OrtizT. Pérez-ArandaM. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  168. ChatterjeeP. DhibarS. Nanomaterial marvels: Pioneering applications and cutting-edge advancements in drug delivery.Nano and Medical Materials20233222010.59400/nmm.v3i1.220
    [Google Scholar]
  169. UpadhyayS. BhushanR. RudrapalM. Nanophytomedicine in disease and therapy. In: Phytoantioxidants and Nanotherapeutics.1st edWiley2022173201
    [Google Scholar]
  170. EkramiM. BabaeiM. FathiM. AbbaszadehS. NobakhtM. Ginger essential oil (Zingiber officinale) encapsulated in nanoliposome as innovative antioxidant and antipathogenic smart sustained-release system.Food Biosci.20235310279610.1016/j.fbio.2023.102796
    [Google Scholar]
  171. YavariM. JaafariM.R. MirzaviF. MosayebiG. GhazaviA. GanjiA. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice.Iran. J. Basic Med. Sci.2022257890896 36033959
    [Google Scholar]
  172. GanjiS. Sayyed-AlangiS.Z. Encapsulation of ginger ethanolic extract in nanoliposome and evaluation of its antioxidant activity on sunflower oil.Chem. Pap.20177191781178910.1007/s11696‑017‑0164‑1
    [Google Scholar]
  173. ThangaveluP. SundaramV. GunasekaranK. Development of optimized novel liposome loaded with 6-gingerol and assessment of its therapeutic activity against NSCLC In vitro and In vivo experimental models.Chem. Phys. Lipids202224510520610.1016/j.chemphyslip.2022.105206 35483420
    [Google Scholar]
  174. IslamR. SunL. ZhangL. Biomedical applications of Chinese herb-synthesized silver nanoparticles by phytonanotechnology.Nanomaterials20211110275710.3390/nano11102757 34685197
    [Google Scholar]
  175. MuQ. JiangG. ChenL. Chemical basis of interactions between engineered nanoparticles and biological systems.Chem. Rev.2014114157740778110.1021/cr400295a 24927254
    [Google Scholar]
  176. PlachaD. JampilekJ. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems.Pharmaceutics20211316410.3390/pharmaceutics13010064 33419176
    [Google Scholar]
  177. MehrotraS. GoyalV. DimkpaC.O. ChhokarV. Green synthesis and characterization of ginger-derived silver nanoparticles and evaluation of their antioxidant, antibacterial, and anticancer activities.Plants2024139125510.3390/plants13091255 38732470
    [Google Scholar]
  178. HuD. GaoT. KongX. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26.PLoS One2022178e027140810.1371/journal.pone.0271408 36006900
    [Google Scholar]
  179. MohammadiM. ShahisaraeeS.A. TavajjohiA. PournooriN. MuhammadnejadS. MohammadiS.R. Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: Characterisation, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole.IET Nanobiotechnol.201913211411910.1049/iet‑nbt.2018.5146
    [Google Scholar]
  180. MehataM.S. Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye.Mater. Sci. Eng. B202127311541810.1016/j.mseb.2021.115418
    [Google Scholar]
  181. TikiY.L. TolesaL.D. TiwikramaA.H. ChalaT.F. Ginger (Zingiber officinale)-mediated green synthesis of silver-doped tin oxide nanoparticles and evaluation of its antimicrobial activity.ACS Omega2024910114431145210.1021/acsomega.3c07855 38496979
    [Google Scholar]
  182. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J. Drug Target.2012201081383010.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  183. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  184. YoonG. ParkJ.W. YoonI.S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Recent advances in drug delivery.J. Pharm. Investig.201343535336210.1007/s40005‑013‑0087‑y
    [Google Scholar]
  185. Fonseca-SantosB. SilvaP.B. RigonR.B. SatoM.R. ChorilliM. Formulating SLN and NLC as innovative drug delivery systems for non-invasive routes of drug administration.Curr. Med. Chem.202027223623365610.2174/0929867326666190624155938 31232233
    [Google Scholar]
  186. AmorndoljaiP. TaneepanichskulS. NiempoogS. NimmannitU. A comparative of ginger extract in nanostructure lipid carrier (NLC) and 1% diclofenac gel for treatment of knee osteoarthritis (OA).J. Med. Assoc. Thai.20171004447456 29911849
    [Google Scholar]
  187. Ayshah RosliN. HashamR. Abdul AzizA. Ubaidah NohT. JemonK. Nanostructured lipid carrier loaded with Zingiber officinale oil to enhance transdermal bioactive delivery for topical formulation.Microchem. J.202420011047010.1016/j.microc.2024.110470
    [Google Scholar]
  188. SadiahS. AnwarE. DjufriM. CahyaningsihU. Preparation and characteristics of nanostructured lipid carrier (NLC) loaded red ginger extract using high pressure homogenizer method.J Pharm Sci Res201791018891893
    [Google Scholar]
  189. Hernández-EsquivelR-A. Navarro-TovarG. Zárate-HernándezE. Aguirre-BañuelosP. Solid lipid nanoparticles (SLN). In: Nanocomposite Materials for Biomedical and Energy Storage Applications.IntechOpen2022
    [Google Scholar]
  190. BhalekarM.R. MadgulkarA. JagtapT.V. Demonstration of lymphatic uptake of (6)-gingerol solid lipid nanoparticles.J. Drug Deliv. Ther.20199446146910.22270/jddt.v9i4.3193
    [Google Scholar]
  191. SawantP. KarekarP. WaghmareK. Formulation and characterization of solid lipid nanoparticles containing ginger oil for enhancement of stability.Int. J. Pharm. Pharm. Sci.2020126364410.22159/ijpps.2020v12i6.37357
    [Google Scholar]
  192. ThaoDT NgaNT VanNA HungKD Potential anticancer activities of a combination of curcumin, ginger oleoresin, and rutin solid lipid nanoparticles (Vietlife-Antican) in LLC tumor-bearing mice.Nat Prod Commun.20191461934578X19858461
    [Google Scholar]
  193. KumarS. BaldiA. SharmaD.K. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals.J. Dev. Drugs2019918
    [Google Scholar]
  194. PalachaiN. WattanathornJ. MuchimapuraS. Thukham-meeW. Phytosome loading the combined extract of mulberry fruit and ginger protects against cerebral ischemia in metabolic syndrome rats.Oxid. Med. Cell. Longev.20202020111510.1155/2020/5305437 32774678
    [Google Scholar]
  195. DeleanuM. TomaL. SandaG.M. Formulation of phytosomes with extracts of ginger rhizomes and rosehips with improved bioavailability, antioxidant and anti-inflammatory effects in vivo.Pharmaceutics2023154106610.3390/pharmaceutics15041066 37111552
    [Google Scholar]
  196. PratapS.R. GangadharappaH.V. MruthunjayaK. Formulation and evaluation of phytosome loaded drug delivery of gingerol for the treatment of respiratory infection.J Innov Pharm Sci20182216
    [Google Scholar]
  197. IndelicatoS. BongiornoD. CalabreseV. Micelles, rods, liposomes, and other supramolecular surfactant aggregates: Computational approaches.Interdiscip. Sci.20179339240510.1007/s12539‑017‑0234‑7 28478537
    [Google Scholar]
  198. ZhangM. XiaoB. WangH. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy.Mol. Ther.201624101783179610.1038/mt.2016.159 27491931
    [Google Scholar]
  199. BhattP. MadhavS. A detailed review on nanoemulsion drug delivery system.Int. J. Pharm. Sci. Res.20112102482
    [Google Scholar]
  200. Zanesco-FontesI. SilvaA.C.L. da SilvaP.B. [10]-Gingerol-loaded nanoemulsion and its biological effects on triple-negative breast cancer cells.AAPS PharmSciTech202122515710.1208/s12249‑021‑02006‑w 34008089
    [Google Scholar]
  201. FirooziM. Rezapour-JahaniS. ShahvegharaslZ. AnarjanN. Ginger essential oil nanoemulsions: Preparation and physicochemical characterization and antibacterial activities evaluation.J. Food Process Eng.2020438e1343410.1111/jfpe.13434
    [Google Scholar]
  202. AdamuA. AhmadK. SiddiquiY. Ginger essential oils-loaded nanoemulsions: Potential strategy to manage bacterial leaf blight disease and enhanced rice yield.Molecules20212613390210.3390/molecules26133902 34202405
    [Google Scholar]
  203. MostafaN.M. Antibacterial activity of ginger (Zingiber officinale) leaves essential oil nanoemulsion against the cariogenic Streptococcus mutans.J. Appl. Pharm. Sci.201889344110.7324/JAPS.2018.8906
    [Google Scholar]
  204. AlharbiD.S. AlbalawiS.F. AlghridS.T. Ginger oil nanoemulsion formulation augments its antiproliferative effect in ehrlich solid tumor model.Foods20231222413910.3390/foods12224139 38002196
    [Google Scholar]
  205. JoshyK.S. SnigdhaS. ThomasS. LiT. An overview of the recent developments in hydrogels. In: Nano Hydrogels: Physico-Chemical Properties and Recent Advances in Structural Designing.Springer202123124610.1007/978‑981‑15‑7138‑1_13
    [Google Scholar]
  206. ArpaM.D. KesmenE.E. ArslanT. KaradağA.E. BiltekinS.N. DemirciF. Ginger essential oil-loaded hydrogels: Preparation, characterization, cytotoxicity, antimicrobial and anti-inflammatory activity.J. Essent. Oil Res.2024361162910.1080/10412905.2023.2299854
    [Google Scholar]
  207. KhanB.A. UllahS. KhanM.K. UzairB. MenaaF. BragaV.A. Fabrication, physical characterizations, and in vitro, in vivo evaluation of ginger extract-loaded gelatin/poly (vinyl alcohol) hydrogel films against burn wound healing in animal model.AAPS PharmSciTech202021832310.1208/s12249‑020‑01866‑y 33200249
    [Google Scholar]
  208. NgampunwetchakulL. ToonkaewS. SupapholP. SuwantongO. Semi-solid poly(vinyl alcohol) hydrogels containing ginger essential oil encapsulated in chitosan nanoparticles for use in wound management.J. Polym. Res.201926922410.1007/s10965‑019‑1880‑8
    [Google Scholar]
  209. KimS. ChoiA. ParkJ.E. JangY. LeeM. Antibacterial activity and biocompatibility with the concentration of ginger fraction in biodegradable gelatin methacryloyl (GelMA) hydrogel coating for medical implants.Polymers20221423531710.3390/polym14235317 36501711
    [Google Scholar]
  210. KemkarK. SathiyanarayananL. SathiyanarayananA. MahadikK. 6-shogaol from ginger oleoresin loaded liposomes using DMPG-Na as a carrier enhances the in-vitro and in-vivo anticancer activity.J. Appl. Pharm. Sci.201882110
    [Google Scholar]
  211. WangQ. WeiQ. YangQ. A novel formulation of [6]-gingerol: Proliposomes with enhanced oral bioavailability and antitumor effect.Int. J. Pharm.20185351-230831510.1016/j.ijpharm.2017.11.006 29126908
    [Google Scholar]
  212. MohammadiM HaghirosadatBF larypoor M, et al Synthesis, characterization and evaluation of liponiosome containing ginger extract as a new strategy for potent antifungal formulation.J. Cluster Sci.202031597198110.1007/s10876‑019‑01702‑9
    [Google Scholar]
  213. MalekiH. AzadiH. YousefpoorY. DoostanM. DoostanM. FarzaeiM.H. Encapsulation of ginger extract in nanoemulsions: Preparation, characterization and in vivo evaluation in rheumatoid arthritis.J. Pharm. Sci.202311261687169710.1016/j.xphs.2023.02.003 36773928
    [Google Scholar]
  214. AhmadN. KhalidM.S. KhanM.F. UllahZ. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic.J. Drug Deliv. Sci. Technol.20238010409410.1016/j.jddst.2022.104094
    [Google Scholar]
  215. BaoR. WangQ.L. LiR. Improved oral bioavailability and target delivery of 6-shogaol via vitamin E TPGS-modified liposomes: Preparation, in-vitro and in-vivo characterizations.J. Drug Deliv. Sci. Technol.20205910184210.1016/j.jddst.2020.101842
    [Google Scholar]
  216. AscarI.F. Al-A’ArajiS.B. AlshanonA.F. Cytotoxicity and antioxidant effect of ginger gold nanoparticles on thyroid carcinoma cells.J Pharm Sci Res201911310441051
    [Google Scholar]
  217. FoudaA. EidA.M. GuibalE. Green synthesis of gold nanoparticles by aqueous extract of Zingiber officinale: characterization and insight into antimicrobial, antioxidant, and in vitro cytotoxic activities.Appl. Sci.202212241287910.3390/app122412879
    [Google Scholar]
  218. YadiM. AziziM. Dianat-MoghadamH. AkbarzadehA. AbyadehM. MilaniM. Antibacterial activity of green gold and silver nanoparticles using ginger root extract.Bioprocess Biosyst. Eng.202245121905191710.1007/s00449‑022‑02780‑2 36269380
    [Google Scholar]
  219. OngtanasupT. KamdenlekP. ManasponC. EawsakulK. Green-synthesized silver nanoparticles from Zingiber officinale extract: Antioxidant potential, biocompatibility, anti-LOX properties, and in silico analysis.BMC Complement. Med. Ther.20242418410.1186/s12906‑024‑04381‑w 38350963
    [Google Scholar]
  220. HassanA.S.II HofniA. AbourehabM.A.S. Abdel-RahmanI.A.M. Ginger extract-loaded transethosomes for effective transdermal permeation and anti-inflammation in rat model.Int. J. Nanomedicine2023181259128010.2147/IJN.S400604 36945254
    [Google Scholar]
  221. GhazwaniM. AlqarniM.H. HaniU. AlamA. QbD-optimized, phospholipid-based elastic nanovesicles for the effective delivery of 6-Gingerol: A promising topical option for pain-related disorders.Int. J. Mol. Sci.20232412998310.3390/ijms24129983 37373129
    [Google Scholar]
  222. MarkamR. BajpaiJ. BajpaiA.K. Synthesis of ginger derived nanocarriers (GDNC) and study of in vitro release of 5-amino salicylic acid (5-ASA) as an anti inflammatory drug.J. Drug Deliv. Sci. Technol.20195035536410.1016/j.jddst.2019.01.039
    [Google Scholar]
  223. MarkamR. BajpaiA.K. Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-ASA) in treatment of inflammatory bowel diseases: An in vitro study.React. Funct. Polym.202014910452010.1016/j.reactfunctpolym.2020.104520
    [Google Scholar]
  224. LiZ. WangH. YinH. BennettC. ZhangH. GuoP. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression.Sci. Rep.2018811464410.1038/s41598‑018‑32953‑7 30279553
    [Google Scholar]
  225. Al-SamydaiA. QaralehM.A. AlshaerW. Preparation, characterization, wound healing, and cytotoxicity assay of PEGylated nanophytosomes loaded with 6-gingerol.Nutrients20221423517010.3390/nu14235170 36501201
    [Google Scholar]
  226. ZhenL. WeiQ. WangQ. Preparation and in vitro/in vivo evaluation of 6-Gingerol TPGS/PEG-PCL polymeric micelles.Pharm. Dev. Technol.20202511810.1080/10837450.2018.1558239 30557068
    [Google Scholar]
  227. KemkarK. L S, Sathiyanarayanan A, Mahadik K. 6-Shogaol rich ginger oleoresin loaded mixed micelles enhances in vitro cytotoxicity on MCF-7 cells and in vivo anticancer activity against dal cells.Int. J. Pharm. Pharm. Sci.201810116016810.22159/ijpps.2018v10i1.23077
    [Google Scholar]
  228. ChandraA. AryaR.K.K. PalG.R. TewariB. Formulation and evaluation of ginger extract loaded nanoemulgel for the treatment of rheumatoid arthritis.J. Drug Deliv. Ther.20199455957010.22270/jddt.v9i4.3143
    [Google Scholar]
  229. Safety study of feeding with ginger extract in acute respiratory distress syndrome. NCT00958685, 2009.
    [Google Scholar]
  230. The effects of ginger supplementation on inflammation in exercising individuals. NCT00958685, 2018.
    [Google Scholar]
  231. Ginger's therapeutic potential in asthma (GINGER). NCT03705832, 2023.
    [Google Scholar]
  232. Ginger and gut microbiome (GINGER). NCT03268655, 2020
    [Google Scholar]
  233. Effects of ginger supplementation on NF-KB in peripheral blood mononuclear cells in type 2 diabetes mellitus. NCT02666807, 2016. https://clinicaltrials.gov/search?cond=NCT02666807
    [Google Scholar]
  234. The effects of daily ginger tea consumption in reducing discomfort during menstruation. NCT03300999, 2018.
    [Google Scholar]
  235. Efficacy study of ginger (Zingiber officinale) extract "Ginpax" to manage nausea in cancer patients receiving high emetogenic treatments and standard anti-emetogenic therapy. NCT01887314, 2009. https://clinicaltrials.gov/study/NCT01887314?cond=NCT01887314&rank=1
    [Google Scholar]
  236. Ginger control of chemotherapy induced nausea and vomiting. NCT00065221, 2008.
    [Google Scholar]
  237. Protective effect of Zingiber officinale L. Extract in hypertensive patients. NCT05682911, 2023.
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128372023250324050304
Loading
/content/journals/cpd/10.2174/0113816128372023250324050304
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Ginger; gingerols; nanocarriers system; paradols; shogaols; Zingiber officinale
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test