Skip to content
2000
Volume 31, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Long non-coding RNAs (lncRNAs) are a complex and diverse group of transcripts, typically longer than 200 nucleotides, which do not encode proteins but play crucial roles in regulating gene expression. They exert their influence through various mechanisms, such as interacting with DNA, mRNA, and proteins, which allows them to modulate a wide array of biological processes. Recent studies have underscored the importance of lncRNAs in the development of the nervous system and the pathogenesis of neurological diseases, particularly in the context of hypoxic-ischemic brain injury. Hypoxic-ischemic brain injury, caused by reduced blood flow and oxygen supply to the brain, is a leading cause of long-term neurological deficits. This review delves into the emerging role of lncRNAs in hypoxic-ischemic brain injury, exploring how these non-coding RNAs influence critical molecular and cellular pathways involved in the brain's response to hypoxia-ischemia. Notable advancements, such as the identification of lncRNAs, like BC088414 and FosDT, highlight their dual roles as mediators of injury and potential therapeutic targets. Additionally, we discuss the feasibility of lncRNAs as biomarkers for early diagnosis and prognosis of hypoxic-ischemic brain injury. Despite these advancements, challenges remain in translating lncRNA research into clinical applications. Issues, such as delivery mechanisms, off-target effects, and the ethical considerations surrounding gene modulation, must be addressed. By synthesizing current research, this review aims to provide a comprehensive understanding of the multifaceted roles of lncRNAs in hypoxic-ischemic brain injury, paving the way for future research and novel therapeutic strategies targeting these non-coding RNAs in neurological disorders.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128367792250325061252
2025-04-21
2025-09-14
Loading full text...

Full text loading...

References

  1. ZhangY.Y. BaoH.L. DongL.X. LiuY. ZhangG.W. AnF.M. Silenced lncRNA H19 and up-regulated microRNA-129 accelerates viability and restrains apoptosis of PC12 cells induced by Aβ 25-35 in a cellular model of Alzheimer’s disease.Cell Cycle202120111212510.1080/15384101.2020.186368133410377
    [Google Scholar]
  2. BeylerliO. JuJ. BeilerliA. GareevI. ShumadalovaA. IlyasovaT. BaiY. YangB. The roles of long non-coding RNAs in atrial fibrillation.Noncoding RNA Res.20238454254910.1016/j.ncrna.2023.08.00437602317
    [Google Scholar]
  3. MaP. LiY. ZhangW. FangF. SunJ. LiuM. LiK. DongL. Long non-coding RNA MALAT1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MIR-125B mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s disease.Curr. Alzheimer Res.201916759661210.2174/156720501666619072513013431345147
    [Google Scholar]
  4. BaghdadiH. HeidariR. ZavvarM. AhmadiN. KhomartashS.M. VahidiM. MohammadimehrM. BashashD. GhorbaniM. Long non-coding RNA signatures in lymphopoiesis and lymphoid malignancies.Noncoding RNA2023944410.3390/ncrna904004437624036
    [Google Scholar]
  5. BeylerliO. GareevI. SufianovA. IlyasovaT. GuangY. Long non-coding RNAs as promising biomarkers in cancer.Noncoding RNA Res.202272667010.1016/j.ncrna.2022.02.00435310927
    [Google Scholar]
  6. GoffL.A. GroffA.F. SauvageauM. Trayes-GibsonZ. Sanchez-GomezD.B. MorseM. MartinR.D. ElcavageL.E. LiapisS.C. Gonzalez-CeleiroM. PlanaO. LiE. GerhardingerC. TomassyG.S. ArlottaP. RinnJ.L. Spatiotemporal expression and transcriptional perturbations by long non-coding RNAs in the mouse brain.Proc. Natl. Acad. Sci. USA2015112226855686210.1073/pnas.141126311226034286
    [Google Scholar]
  7. ApreaJ. CalegariF. Long non-coding RNAs in corticogenesis: Deciphering the non-coding code of the brain.EMBO J.201534232865288410.15252/embj.20159265526516210
    [Google Scholar]
  8. PolicarpoR. SierksmaA. StrooperD.B. d’YdewalleC. From junk to function: LncRNAS in CNS health and disease.Front. Mol. Neurosci.20211471476810.3389/fnmol.2021.71476834349622
    [Google Scholar]
  9. AtnafA. AkelewY. AbebawD. MucheY. GetachewM. MengistH.M. TsegayeA. The role of long non-coding RNAs in the diagnosis, prognosis and therapeutic biomarkers of acute myeloid leukemia.Ann. Hematol.2024103124931494210.1007/s00277‑024‑05987‑339264436
    [Google Scholar]
  10. KorfJ.M. McCulloughL.D. CarettiV. A narrative review on treatment strategies for neonatal hypoxic ischemic encephalopathy.Transl. Pediatr.20231281552157110.21037/tp‑23‑25337692539
    [Google Scholar]
  11. ZhouH. WangX. ChengR. HouX. ChenY. FengY. QiuJ. Analysis of long non-coding RNA expression profiles in neonatal rats with hypoxic-ischemic brain damage.J. Neurochem.2019149334636110.1111/jnc.1468930802942
    [Google Scholar]
  12. AhmadS. AbbasM. UllahM.F. AzizM.H. BeylerliO. AlamM.A. SyedM.A. UddinS. AhmadA. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: Micromanaging by not so small non-coding RNAs.Semin. Cancer Biol.20228515516310.1016/j.semcancer.2021.07.01534314819
    [Google Scholar]
  13. FerrerJ. DimitrovaN. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance.Nat. Rev. Mol. Cell Biol.202425539641510.1038/s41580‑023‑00694‑938242953
    [Google Scholar]
  14. NickersonJ.A. Momen-HeraviF. Long non-coding RNAs: Roles in cellular stress responses and epigenetic mechanisms regulating chromatin.Nucleus2024151235018010.1080/19491034.2024.235018038773934
    [Google Scholar]
  15. ChenY. FuX. LiZ. PengL. ZhuoL. Prediction of lncRNA–protein interactions via the multiple information integration.Front. Bioeng. Biotechnol.2021964711310.3389/fbioe.2021.64711333718346
    [Google Scholar]
  16. SchmitzS.U. GroteP. HerrmannB.G. Mechanisms of long non- coding RNA function in development and disease.Cell. Mol. Life Sci.201673132491250910.1007/s00018‑016‑2174‑527007508
    [Google Scholar]
  17. BöhmdorferG. WierzbickiA.T. Control of chromatin structure by long non-coding RNA.Trends Cell Biol.2015251062363210.1016/j.tcb.2015.07.00226410408
    [Google Scholar]
  18. LongY. WangX. YoumansD.T. CechT.R. How do lncRNAs regulate transcription?Sci. Adv.201739eaao211010.1126/sciadv.aao211028959731
    [Google Scholar]
  19. GudenasB.L. WangL. Prediction of LncRNA subcellular localization with deep learning from sequence features.Sci. Rep.2018811638510.1038/s41598‑018‑34708‑w30401954
    [Google Scholar]
  20. ZequnN. XuemeiZ. WeiL. ZongjuanM. YujieZ. YanliH. YupingZ. XiaM. WeiW. WenjingD. NaF. ShuanyingY. The role and potential mechanisms of LncRNA-TATDN1 on metastasis and invasion of non-small cell lung cancer.Oncotarget2016714182191822810.18632/oncotarget.778826943769
    [Google Scholar]
  21. SufianovA. KostinA. BegliarzadeS. KudriashovV. IlyasovaT. LiangY. MukhamedzyanovA. BeylerliO. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications.Noncoding RNA Res.20238219220410.1016/j.ncrna.2023.02.00136818396
    [Google Scholar]
  22. BeylerliO. BeilerliA. IlyasovaT. ShumadalovaA. ShiH. SufianovA. CircRNAs in Alzheimer’s disease: What are the prospects?Noncoding RNA Res.20249120321010.1016/j.ncrna.2023.11.01138125754
    [Google Scholar]
  23. YaoJ. DuY. LiuJ. GareevI. YangG. KangX. WangX. BeylerliO. ChenX. Hypoxia related long non-coding RNAs in ischemic stroke.Noncoding RNA Res.20216415315810.1016/j.ncrna.2021.10.00134703955
    [Google Scholar]
  24. QuX. SongX. YuanW. ShuY. WangY. ZhaoX. GaoM. LuR. LuoS. ZhaoW. ZhangY. SunL. LuY. Expression signature of lncRNAs and their potential roles in cardiac fibrosis of post-infarct mice.Biosci. Rep.2016363e0033710.1042/BSR2015027827129287
    [Google Scholar]
  25. GareevI. BeylerliO. AlievG. PavlovV. IzmailovA. ZhangY. LiangY. YangG. The role of long non-coding RNAs in intracranial aneurysms and subarachnoid hemorrhage.Life202010915510.3390/life1009015532825276
    [Google Scholar]
  26. MaW. ZhuK. YinL. YangJ. ZhangJ. WuH. LiuK. LiC. LiuW. GuoJ. LiL. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke.Bioengineered2022136147991481410.1080/21655979.2022.210826636420646
    [Google Scholar]
  27. MehtaS.L. KimT. VemugantiR. Long non-coding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins.J. Neurosci.20153550164431644910.1523/JNEUROSCI.2943‑15.201526674869
    [Google Scholar]
  28. PuyalJ. VaslinA. MottierV. ClarkeP.G.H. Postischemic treatment of neonatal cerebral ischemia should target autophagy.Ann. Neurol.200966337838910.1002/ana.2171419551849
    [Google Scholar]
  29. GaoH. ZhangY. XueH. ZhangQ. ZhangY. ShenY. BingX. Long non-coding RNA PEG13 alleviates hypoxic-ischemic brain damage in neonatal mice via miR-20a-5p/XIAP axis.Neurochem. Res.202247365666610.1007/s11064‑021‑03474‑z35043374
    [Google Scholar]
  30. WangL. ZhangZ. WangH. Downregulation of lncRNA GAS5 prevents mitochondrial apoptosis and hypoxic-ischemic brain damage in neonatal rats through the microRNA-128-3p/Bax/Akt/ GSK-3β axis.Neuroreport202132171395140210.1097/WNR.000000000000173034718247
    [Google Scholar]
  31. TaoJ. ShenC. SunY. ChenW. YanG. Neuroprotective effects of pinocembrin on ischemia/reperfusion-induced brain injury by inhibiting autophagy.Biomed. Pharmacother.20181061003101010.1016/j.biopha.2018.07.02630119165
    [Google Scholar]
  32. ZhangY. LiD. GaoH. ZhaoH. ZhangS. LiT. Rapamycin alleviates neuronal injury and modulates microglial activation after cerebral ischemia.Mol. Neurobiol.20246185699571710.1007/s12035‑023‑03904‑938224443
    [Google Scholar]
  33. MontaldoP. BurgodC. HerbergJ.A. KaforouM. CunningtonA.J. MejiasA. CirilloG. GiudiceM.D.E. CapristoC. BandiyaP. KamalaratnamC.N. ChandramohanR. ManerkarS. RodrigoR. SumanasenaS. KrishnanV. PantS. ShankaranS. ThayyilS. Whole-blood gene expression profile after hypoxic-ischemic encephalopathy.JAMA Netw. Open202472e235443310.1001/jamanetworkopen.2023.5443338306098
    [Google Scholar]
  34. LiangJ. HanR. ZhouB. Metabolic reprogramming: Strategy for ischemic stroke treatment by ischemic preconditioning.Biology202110542410.3390/biology1005042434064579
    [Google Scholar]
  35. AlizadehJ. da Silva RosaS.C. WengX. JacobsJ. LorzadehS. RavandiA. VitorinoR. PecicS. ZivkovicA. StarkH. ShojaeiS. GhavamiS. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy.Eur. J. Cell Biol.2023102315133710.1016/j.ejcb.2023.15133737392580
    [Google Scholar]
  36. WangK. LiuC.Y. ZhouL.Y. WangJ.X. WangM. ZhaoB. ZhaoW.K. XuS.J. FanL.H. ZhangX.J. FengC. WangC.Q. ZhaoY.F. LiP.F. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p.Nat. Commun.201561677910.1038/ncomms777925858075
    [Google Scholar]
  37. LimL.J. WongS.Y.S. HuangF. LimS. ChongS.S. OoiL.L. KonO.L. LeeC.G. Roles and regulation of long non-coding RNAS in hepatocellular carcinoma.Cancer Res.201979205131513910.1158/0008‑5472.CAN‑19‑025531337653
    [Google Scholar]
  38. LiZ. HaoS. YinH. GaoJ. YangZ. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice.Behav. Brain Res.201630526527710.1016/j.bbr.2016.03.02326971628
    [Google Scholar]
  39. FuC.H. LaiF.F. ChenS. YanC.X. ZhangB.H. FangC.Z. WangG.H. Silencing of long non-coding RNA CRNDE promotes autophagy and alleviates neonatal hypoxic-ischemic brain damage in rats.Mol. Cell. Biochem.20204721-21810.1007/s11010‑020‑03754‑232632609
    [Google Scholar]
  40. YuZ. XiaY. LiJ. JiangJ. LiY. LiY. WangL. METTL3 mediates m6A modification of lncRNA CRNDE to promote ATG10 expression and improve brain ischemia/reperfusion injury through YTHDC1.Biol. Direct20241919210.1186/s13062‑024‑00536‑439407279
    [Google Scholar]
  41. JiangT. CaiZ. JiZ. ZouJ. LiangZ. ZhangG. LiangY. LinH. TanM. The lncRNA MALAT1/miR-30/spastin axis regulates hippocampal neurite outgrowth.Front. Cell. Neurosci.20201455574710.3389/fncel.2020.55574733192306
    [Google Scholar]
  42. ZhuJ. LiuS. YeF. ShenY. TieY. ZhuJ. WeiL. JinY. FuH. WuY. ZhengX. Long non-coding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells.PLoS One20151010e013979010.1371/journal.pone.013979026444285
    [Google Scholar]
  43. WangS. HeQ. QuY. YinW. ZhaoR. WangX. YangY. GuoZ.N. Emerging strategies for nerve repair and regeneration in ischemic stroke: Neural stem cell therapy.Neural Regen. Res.202419112430244310.4103/1673‑5374.39131338526280
    [Google Scholar]
  44. HanP.P. HanY. ShenX.Y. GaoZ.K. BiX. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms.Front. Cell. Neurosci.202317121036110.3389/fncel.2023.121036137484824
    [Google Scholar]
  45. PurvisE.M. Garcia-EpelboimA.D. KrizmanE.N. O’DonnellJ.C. CullenD.K. A three-dimensional tissue-engineered rostral migratory stream as an in vitro platform for subventricular zone-derived cell migration.Front. Bioeng. Biotechnol.202412141071710.3389/fbioe.2024.141071738933539
    [Google Scholar]
  46. WangL. LiuY. SunS. LuM. XiaY. Regulation of neuronal-glial fate specification by long non-coding RNAs.Rev. Neurosci.201627549149910.1515/revneuro‑2015‑006126943605
    [Google Scholar]
  47. RamosA.D. AndersenR.E. LiuS.J. NowakowskiT.J. HongS.J. GertzC.C. SalinasR.D. ZarabiH. KriegsteinA.R. LimD.A. The long non-coding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells.Cell Stem Cell201516443944710.1016/j.stem.2015.02.00725800779
    [Google Scholar]
  48. WhiteZ.B.II NairS. BredelM. The role of annexins in central nervous system development and disease.J. Mol. Med.2024102675176010.1007/s00109‑024‑02443‑738639785
    [Google Scholar]
  49. FerrareseR. HarshG.R.IV YadavA.K. BugE. MaticzkaD. ReichardtW. DombrowskiS.M. MillerT.E. MasilamaniA.P. DaiF. KimH. HadlerM. ScholtensD.M. YuI.L.Y. BeckJ. SrinivasasainagendraV. CostaF. BaxanN. PfeiferD. ElverfeldtV.D. BackofenR. WeyerbrockA. DuarteC.W. HeX. PrinzM. ChandlerJ.P. VogelH. ChakravartiA. RichJ.N. CarroM.S. BredelM. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression.J. Clin. Invest.201412472861287610.1172/JCI6883624865424
    [Google Scholar]
  50. FukuiY. MoriharaR. HuX. NakanoY. YunokiT. TakemotoM. AbeK. YamashitaT. Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia.Sci. Rep.20241412052110.1038/s41598‑024‑71212‑w39227632
    [Google Scholar]
  51. ZhangY. YangY. LiH. FengQ. GeW. XuX. Investigating the potential mechanisms and therapeutic targets of inflammatory cytokines in post-stroke depression.Mol. Neurobiol.202461113214710.1007/s12035‑023‑03563‑w37592185
    [Google Scholar]
  52. AlmanghadimHG KarimiB ValizadehS GhaediK Biological functions and affected signaling pathways by long non-coding RNAs in the immune system.Noncoding RNA Res.202410709010.1016/j.ncrna.2024.09.00139315339
    [Google Scholar]
  53. CuiH. XieN. TanZ. BanerjeeS. ThannickalV.J. AbrahamE. LiuG. The human long non-coding RNAlnc-IL7R regulates the inflammatory response.Eur. J. Immunol.20144472085209510.1002/eji.20134412624723426
    [Google Scholar]
  54. LiF. LncRNA SNHG14 promoted inflammation of cerebral apoplexy by miR-124-3p/TRAF6 axis.Mol. Cell. Toxicol.202218223324110.1007/s13273‑021‑00197‑8
    [Google Scholar]
  55. YaoM. WangX. LinH. ShuH. XuZ. TangL. GuoW. XuP. LncRNA tug1 regulates post-stroke microglial pyroptosis via PINK1/PARKIN-mediated mitophagy.Inflammation202410.1007/s10753‑024‑02219‑839739230
    [Google Scholar]
  56. VerdonschotJ.A.J. VanhoutteE.K. ClaesG.R.F. EndenH.V.D.A.T.J.M. HoeijmakersJ.G.J. HellebrekersD.M.E.I. HaanA. ChristiaansI. DeprezL.R.H. BoenH.M. CraenenbroeckE.M. LoeysB.L. HoedemaekersY.M. MarcelisC. KempersM. BrusseE. WaningJ.I. BaasA.F. DooijesD. AsselbergsF.W. Barge-SchaapveldD.Q.C.M. KoopmanP. WijngaardA. HeymansS.R.B. KrapelsI.P.C. BrunnerH.G. A mutation update for the FLNC gene in myopathies and cardiomyopathies.Hum. Mutat.20204161091111110.1002/humu.2400432112656
    [Google Scholar]
  57. BulyginK.V. BeerakaN.M. SaitgareevaA.R. NikolenkoV.N. GareevI. BeylerliO. AkhmadeevaL.R. MikhalevaL.M. SolisT.L.F. HerreraS.A. Avila-RodriguezM.F. SomasundaramS.G. KirklandC.E. AlievG. Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis?—current status.Int. J. Mol. Sci.20202118672810.3390/ijms2118672832937836
    [Google Scholar]
  58. WangZ. LiX. HuangL. LiuG. ChenY. LiB. ZhaoX. XieR. LiY. FangW. Long non-coding RNAs (lncRNAs), a new target in stroke.Cell. Mol. Neurobiol.202242350151910.1007/s10571‑020‑00954‑832865676
    [Google Scholar]
  59. BadowskiC. HeB. GarmireL.X. Blood-derived lncRNAs as biomarkers for cancer diagnosis: The Good, the Bad and the Beauty.NPJ Precis. Oncol.2022614010.1038/s41698‑022‑00283‑735729321
    [Google Scholar]
  60. EbbesenM. JensenT.G. AndersenS. PedersenF.S. Ethical perspectives on RNA interference therapeutics.Int. J. Med. Sci.20085315916810.7150/ijms.5.15918612370
    [Google Scholar]
  61. CullenB.R. Enhancing and confirming the specificity of RNAi experiments.Nat. Methods20063967768110.1038/nmeth91316929311
    [Google Scholar]
  62. BeauchampT. ChildressJ. Principles of biomedical ethics: Marking its fortieth anniversary.Am. J. Bioeth.2019191191210.1080/15265161.2019.166540231647760
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128367792250325061252
Loading
/content/journals/cpd/10.2174/0113816128367792250325061252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test