Skip to content
2000
Volume 31, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The human gut microbiome has emerged as a crucial component of health and disease, presenting novel opportunities for the development of drug delivery systems based on microbiome interactions. This paper explores advanced strategies utilizing microorganisms, engineered bacteria, viruses, and bacteria-encapsulated nanoparticles as next-generation therapeutic vehicles. Focusing on analytical approaches to phage therapy and bio-hybrid bacteria for targeted drug delivery, the article highlights recent breakthroughs in colon-specific targeting for gastrointestinal disorders. The study also delves into the emerging field of pharmacomicrobiomics, with an emphasis on applications in cancer, cardiovascular, digestive, and nervous system treatments, specifically targeting key drug classes such as ACE inhibitors, proton-pump inhibitors, and NSAIDs. Challenges related to cytotoxicity and toxicity are addressed, offering proposals for safer therapeutic applications. This review underscores the transformative potential of the microbiome in personalized medicine and targeted drug delivery, with a focus on its integration with advanced technologies to optimize therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128354250250326045943
2025-04-21
2025-10-24
Loading full text...

Full text loading...

References

  1. YangL. HungL.Y. ZhuY. DingS. MargolisK.G. LeongK.W. Material engineering in gut microbiome and human health.Research20222022980401410.34133/2022/980401435958108
    [Google Scholar]
  2. GulliverE. L. YoungR.B. ChonwerawongM. Review article: The future of microbiome-based therapeutics.Aliment. Pharmacol. Ther.202256219220810.1111/apt.1704935611465
    [Google Scholar]
  3. ShendeP. BasarkarV. Recent trends and advances in microbe-based drug delivery systems.Daru.201927279980910.1007/s40199‑019‑00291‑231376116
    [Google Scholar]
  4. ShahbaziM.A. HamidiM. MäkiläE.M. ZhangH. AlmeidaP.V. KaasalainenM. SalonenJ.J. HirvonenJ.T. SantosH.A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility.Biomaterials201334317776778910.1016/j.biomaterials.2013.06.05223866976
    [Google Scholar]
  5. ChangW. W. LeeC. H. Salmonella as an innovative therapeutic antitumor agent.Int. J. Mol. Sci.2014158145461455410.3390/ijms150814546
    [Google Scholar]
  6. MariñoE. RichardsJ.L. McLeodK.H. StanleyD. YapY.A. KnightJ. McKenzieC. KranichJ. OliveiraA.C. RosselloF.J. KrishnamurthyB. NefzgerC.M. MaciaL. ThorburnA. BaxterA.G. MorahanG. WongL.H. PoloJ.M. MooreR.J. LockettT.J. ClarkeJ.M. ToppingD.L. HarrisonL.C. MackayC.R. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes.Nat. Immunol.201718555256210.1038/ni.371328346408
    [Google Scholar]
  7. Leiva-GeaI. Sánchez-AlcoholadoL. Martín-TejedorB. Castellano-CastilloD. Moreno-IndiasI. Urda-CardonaA. TinahonesF.J. Fernández-GarcíaJ.C. Queipo-OrtuñoM.I. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study.Diabetes Care201841112385239510.2337/dc18‑025330224347
    [Google Scholar]
  8. de GrootP.F. BelzerC. AydinÖ. LevinE. LevelsJ.H. AalvinkS. BootF. HollemanF. van RaalteD.H. ScheithauerT.P. SimsekS. SchaapF.G. Olde DaminkS.W.M. RoepB.O. HoekstraJ.B. de VosW.M. NieuwdorpM. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study.PLoS One20171212e018847510.1371/journal.pone.018847529211757
    [Google Scholar]
  9. KleessenB. KroesenA.J. BuhrH.J. BlautM. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls.Scand. J. Gastroenterol.20023791034104110.1080/00365520232037822012374228
    [Google Scholar]
  10. HouK. WuZ.X. ChenX.Y. WangJ.Q. ZhangD. XiaoC. ZhuD. KoyaJ.B. WeiL. LiJ. ChenZ.S. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑435461318
    [Google Scholar]
  11. AlexanderL. M. van PijkerenJ. P. Modes of therapeutic delivery in synthetic microbiology.Tren. Microbiol.202331219721110.1016/j.tim.2022.09.00336220750
    [Google Scholar]
  12. FaghihkhorasaniA. AhmedH.H. MashoolN.M. The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection.Virol. J.202320122210.1186/s12985‑023‑02183‑z37789431
    [Google Scholar]
  13. Zalewska-PiątekB. Phage therapy-challenges, opportunities and future prospects.Pharmaceuticals.20231612163810.3390/ph1612163838139765
    [Google Scholar]
  14. SteidlerL. RottiersP. Therapeutic drug delivery by genetically modified Lactococcus lactis.Ann. N. Y. Acad. Sci.2006107217618610.1196/annals.1326.03117057198
    [Google Scholar]
  15. WexlerH. M. Bacteroides: The good, the bad, and the nitty-gritty.Clin. Microbiol. Rev.200720459362110.1128/CMR.00008‑0717934076
    [Google Scholar]
  16. HungM.N. ChenS.Y. WangJ.L. ChangS.C. HsuehP.R. LiaoC.H. ChenY.C. Community-acquired anaerobic bacteremia in adults: One-year experience in a medical center.J. Microbiol. Immunol. Infect.200538643644316341345
    [Google Scholar]
  17. FreitasM. TavanE. CayuelaC. DiopL. SapinC. TrugnanG. Host-pathogens cross-talk. Indigenous bacteria and probiotics also play the game.Biol. Cell200395850350610.1016/j.biolcel.2003.08.00414630386
    [Google Scholar]
  18. HooperL.V. WongM.H. ThelinA. HanssonL. FalkP.G. GordonJ.I. Molecular analysis of commensal host-microbial relationships in the intestine.Science2001291550588188410.1126/science.291.5505.88111157169
    [Google Scholar]
  19. ZhouY. HanY. Engineered bacteria as drug delivery vehicles: Principles and prospects.Eng. Microbiol.20222310003410.1016/j.engmic.2022.10003439629029
    [Google Scholar]
  20. KellyE. RussellS. J. History of oncolytic viruses: Genesis to genetic engineering.Mol. Ther.200715465165910.1038/sj.mt.630010817299401
    [Google Scholar]
  21. BayerM. E. BlumbergB. S. WernerB. Particles associated with Australia antigen in the sera of patients with leukaemia, down’s syndrome and hepatitis.Nature.196821851461057105910.1038/2181057a04231935
    [Google Scholar]
  22. AkahataW. YangZ.Y. AndersenH. SunS. HoldawayH.A. KongW.P. LewisM.G. HiggsS. RossmannM.G. RaoS. NabelG.J. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection.Nat. Med.201016333433810.1038/nm.210520111039
    [Google Scholar]
  23. AbedO.A. AttlassyY. XuJ. HanK. MoonJ.J. Emerging nanotechnologies and microbiome engineering for the treatment of inflammatory bowel disease.Mol. Pharm.202219124393441010.1021/acs.molpharmaceut.2c0022235878420
    [Google Scholar]
  24. AlbertK. HuangX. C. HsuH. Y. Bio-templated silica composites for next-generation biomedical applications.Adv. Coll. Interf. Sci.201724927228910.1016/j.cis.2017.04.01128499603
    [Google Scholar]
  25. SimovicS. Ghouchi-EskandarN. SinnA.M. LosicD. PrestidgeC.A. Silica materials in drug delivery applications.Curr. Drug Discov. Technol.20118326927610.2174/15701631179679902621291408
    [Google Scholar]
  26. ChaoJ. T. BiggsM. J. P. PanditA. S. Diatoms: A biotemplating approach to fabricating drug delivery reservoirs.Exp. Opin. Drug. Deliv.201411111687169510.1517/17425247.2014.93533625146231
    [Google Scholar]
  27. PetitN. DyerJ. M. ClerensS. GerrardJ. A. DomiganL. J. Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease.Food Funct.202011119468948810.1039/D0FO01801E
    [Google Scholar]
  28. LiS. XieA. LiH. ZouX. ZhangQ. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease.J. Control. Release2019316667810.1016/j.jconrel.2019.10.05431682913
    [Google Scholar]
  29. WangX. YanJ-J. WangL. PanD. YangR. XuY.P. ShengJ. HuangQ. ZhaoH. YangM. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy.Chem. Mater.201830124073408010.1021/acs.chemmater.8b01173
    [Google Scholar]
  30. ZhangQ. TaoH. LinY. HuY. AnH. ZhangD. FengS. HuH. WangR. LiX. ZhangJ. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.Biomaterials201610520622110.1016/j.biomaterials.2016.08.01027525680
    [Google Scholar]
  31. WangX. YanJ. WangL. PanD. XuY. WangF. ShengJ. LiX. YangM. Oral delivery of anti-TNF antibody shielded by natural polyphenol-mediated supramolecular assembly for inflammatory bowel disease therapy.Theranostics20201023108081082210.7150/thno.4760132929381
    [Google Scholar]
  32. ChungC.H. JungW. KeumH. KimT.W. JonS. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease.ACS Nano20201466887689610.1021/acsnano.0c0101832449857
    [Google Scholar]
  33. JayawardenaD. AnbazhaganA.N. GuzmanG. DudejaP.K. OnyukselH. Vasoactive intestinal peptide nanomedicine for the management of inflammatory bowel disease.Mol. Pharm.201714113698370810.1021/acs.molpharmaceut.7b0045228991483
    [Google Scholar]
  34. ZhangS. ErmannJ. SucciM.D. ZhouA. HamiltonM.J. CaoB. KorzenikJ.R. GlickmanJ.N. VemulaP.K. GlimcherL.H. TraversoG. LangerR. KarpJ.M. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.Sci. Transl. Med.20157300300ra12810.1126/scitranslmed.aaa565726268315
    [Google Scholar]
  35. SunQ. ArifM. ChiZ. LiG. LiuC.G. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD).Int. J. Biol. Macromol.202116920621510.1016/j.ijbiomac.2020.12.09433340633
    [Google Scholar]
  36. NaserifarM. HosseinzadehH. AbnousK. MohammadiM. TaghdisiS.M. RamezaniM. AlibolandiM. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats.Life Sci.202026211855510.1016/j.lfs.2020.11855533035579
    [Google Scholar]
  37. PriyamA. ShivhareK. YadavS. SharmaA.K. KumarP. Enhanced solubility and self-assembly of amphiphilic sulfasalazine-PEG-OMe (S-PEG) conjugate into core-shell nanostructures useful for colonic drug delivery.Colloids Surf. A Physicochem. Eng. Asp.201854715716710.1016/j.colsurfa.2018.03.048
    [Google Scholar]
  38. LeeY. SugiharaK. GillillandM.G.III JonS. KamadaN. MoonJ.J. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis.Nat. Mater.202019111812610.1038/s41563‑019‑0462‑931427744
    [Google Scholar]
  39. LiC. ZhaoY. ChengJ. GuoJ. ZhangQ. ZhangX. RenJ. WangF. HuangJ. HuH. WangR. ZhangJ. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota.Adv. Sci. (Weinh.)2019618190061010.1002/advs.20190061031559126
    [Google Scholar]
  40. TengY. RenY. SayedM. HuX. LeiC. KumarA. HutchinsE. MuJ. DengZ. LuoC. SundaramK. SriwastvaM.K. ZhangL. HsiehM. ReimanR. HaribabuB. YanJ. JalaV.R. MillerD.M. Van Keuren-JensenK. MerchantM.L. McClainC.J. ParkJ.W. EgilmezN.K. ZhangH.G. Plant-derived exosomal microRNAs shape the gut microbiota.Cell Host Microbe2018245637652.e810.1016/j.chom.2018.10.00130449315
    [Google Scholar]
  41. HuB. YuS. ShiC. GuJ. ShaoY. ChenQ. LiY. MezzengaR. Amyloid–polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis.ACS Nano20201432760277610.1021/acsnano.9b0912531961657
    [Google Scholar]
  42. CaoZ. WangX. PangY. ChengS. LiuJ. Biointerfacial self- assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment.Nat. Commun.2019101578310.1038/s41467‑019‑13727‑931857577
    [Google Scholar]
  43. UtembeW. TlotlengN. Kamng’onaA. W. A systematic review on the effects of nanomaterials on gut microbiota.Curr. Res. Microb. Sci.2022310011810.1016/j.crmicr.2022.10011835909630
    [Google Scholar]
  44. BhattacharyaS. MazumderB. Virosomes: A novel strategy for drug delivery and targeting.Biopharm Int.201124116
    [Google Scholar]
  45. GasiunasR. G. BarrangouP. HorvathV. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria A system for stable expression of short interfering RNAs in mammalian cells.Proc. Natl. Acad. Sci.2012337550
    [Google Scholar]
  46. PatelR.B. YeM. CarlsonP.M. JaquishA. ZanglL. MaB. WangY. ArthurI. XieR. BrownR.J. WangX. SriramaneniR. KimK. GongS. MorrisZ.S. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane- coated nanoparticles.Adv. Mater.20193143190262610.1002/adma.20190262631523868
    [Google Scholar]
  47. ShaoJ. XuanM. ZhangH. LinX. WuZ. HeQ. Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport.Angew. Chem. Int. Ed.20175642129351293910.1002/anie.20170657028816386
    [Google Scholar]
  48. HitchcockN. M. NunesD.D.G. ShiachJ. Current clinical landscape and global potential of bacteriophage therapy.Viruses.2023154102010.3390/v1504102037113000
    [Google Scholar]
  49. DąbrowskaK. AbedonS.T. Pharmacologically aware phage therapy: Pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies.Microbiol. Mol. Biol. Rev.2019834e00012-1910.1128/MMBR.00012‑1931666296
    [Google Scholar]
  50. LuongT. SalabarriaA. C. RoachD. R. Phage therapy in the resistance era: Where do we stand and where are we going?Clin. Ther.20204291659168010.1016/j.clinthera.2020.07.01432883528
    [Google Scholar]
  51. JainR. DanzigerL. H. Multidrug-resistant Acinetobacter infections: An emerging challenge to clinicians.Ann. Pharmacoth.20043891449145910.1345/aph.1D59215280512
    [Google Scholar]
  52. CarlsenR. W. SittiM. Bio-hybrid cell-based actuators for microsystems.Small.201410193831385110.1002/smll.20140038424895215
    [Google Scholar]
  53. MacfarlaneG.T. MacfarlaneS. Bacteria, colonic fermentation, and gastrointestinal health.J. AOAC Int.2012951506010.5740/jaoacint.SGE_Macfarlane22468341
    [Google Scholar]
  54. FluitmanK. S. De ClercqN. C. KeijserB. J. F. VisserM. NieuwdorpM. IjzermanR. G. The intestinal microbiota, energy balance, and malnutrition: Emphasis on the role of short-chain fatty acids.Exp. Rev. Endocrinol. Metab.201712321522610.1080/17446651.2017.131806030063458
    [Google Scholar]
  55. PanebiancoC. AndriulliA. PazienzaV. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies.Microbiome.2018619210.1186/s40168‑018‑0483‑729789015
    [Google Scholar]
  56. ElrakaibyM. DutilhB. E. RizkallahM. R. BoleijA. ColeJ. N. AzizR. K. Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics.OMICS.201418740241410.1089/omi.2014.001824785449
    [Google Scholar]
  57. EmadiA. JonesR. J. BrodskyR. A. Cyclophosphamide and cancer: Golden anniversary.Nat. Rev. Clin. Oncol.200961163864710.1038/nrclinonc.2009.14619786984
    [Google Scholar]
  58. YangJ. LiuK. QuJ. WangX. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice.Eur. J. Pharmacol.20137141-312012410.1016/j.ejphar.2013.06.00623791611
    [Google Scholar]
  59. SongjangW. NensatC. NernpermpisoothN. SeenakP. PankhongP. JumroonN. KumphuneS. JiraviriyakulA. Tumor-promoting activity and proteomic profiling of cisplatin/oxaliplatin-derived DAMPs in cholangiocarcinoma cells.Int. J. Mol. Sci.202223181054010.3390/ijms23181054036142453
    [Google Scholar]
  60. RobertiM.P. YonekuraS. DuongC.P.M. PicardM. FerrereG. Tidjani AlouM. RauberC. IebbaV. LehmannC.H.K. AmonL. DudziakD. DerosaL. RoutyB. FlamentC. RichardC. DaillèreR. FluckigerA. Van SeuningenI. ChamaillardM. VincentA. KourulaS. OpolonP. LyP. PizzatoE. BecharefS. PailletJ. KleinC. MarliotF. PietrantonioF. BenoistS. ScoazecJ.Y. DartiguesP. HollebecqueA. MalkaD. PagèsF. GalonJ. Gomperts BonecaI. LepageP. RyffelB. RaoultD. EggermontA. Vanden BergheT. GhiringhelliF. VandenabeeleP. KroemerG. ZitvogelL. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer.Nat. Med.202026691993110.1038/s41591‑020‑0882‑832451498
    [Google Scholar]
  61. CuriniL. AmedeiA. Cardiovascular diseases and pharmacomicrobiomics: A perspective on possible treatment relevance.Biomedicines.2021910133810.3390/biomedicines910133834680455
    [Google Scholar]
  62. WuS. ChenX. JinD.Y. StaffordD.W. PedersenL.G. TieJ.K. Warfarin and vitamin K epoxide reductase: A molecular accounting for observed inhibition.Blood2018132664765710.1182/blood‑2018‑01‑83090129743176
    [Google Scholar]
  63. PatockaJ. NepovimovaE. WuW. KucaK. Digoxin: Pharmacology and toxicology: A review.Environ. Toxicol. Pharmacol.20207910340010.1016/j.etap.2020.10340032464466
    [Google Scholar]
  64. WangB.L. PanD.Q. ZhouK.L. LouY.Y. ShiJ.H. Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA).Spectrochim. Acta A Mol. Biomol. Spectrosc.2019212152410.1016/j.saa.2018.12.04030594849
    [Google Scholar]
  65. TangW.H.W. WangZ. LiX.S. FanY. LiD.S. WuY. HazenS.L. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus.Clin. Chem.201763129730610.1373/clinchem.2016.26364027864387
    [Google Scholar]
  66. SunL. XieC. WangG. WuY. WuQ. WangX. LiuJ. DengY. XiaJ. ChenB. ZhangS. YunC. LianG. ZhangX. ZhangH. BissonW.H. ShiJ. GaoX. GeP. LiuC. KrauszK.W. NicholsR.G. CaiJ. RimalB. PattersonA.D. WangX. GonzalezF.J. JiangC. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.Nat. Med.201824121919192910.1038/s41591‑018‑0222‑430397356
    [Google Scholar]
  67. NilssonA. DanielssonA. LöfbergR. BennoP. BergmanL. FausaO. FlorholmenJ. KarvonenA.L. KildeboS. KollbergB. Olsalazine versus sulphasalazine for relapse prevention in ulcerative colitis: A multicenter study.Am. J. Gastroenterol.199590338138710.1111/j.1572‑0241.1995.tb08231.x7872274
    [Google Scholar]
  68. KhanA.K.A. GuthrieG. JohnstonH.H. TrueloveS.C. WilliamsonD.H. Tissue and bacterial splitting of sulphasalazine.Clin. Sci. (Lond.)198364334935410.1042/cs06403496129936
    [Google Scholar]
  69. JacksonM.A. GoodrichJ.K. MaxanM.E. FreedbergD.E. AbramsJ.A. PooleA.C. SutterJ.L. WelterD. LeyR.E. BellJ.T. SpectorT.D. StevesC.J. Proton pump inhibitors alter the composition of the gut microbiota.Gut201665574975610.1136/gutjnl‑2015‑31086126719299
    [Google Scholar]
  70. van KesselS.P. FryeA.K. El-GendyA.O. CastejonM. KeshavarzianA. van DijkG. El AidyS. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease.Nat. Commun.201910131010.1038/s41467‑019‑08294‑y30659181
    [Google Scholar]
  71. MaierL. PruteanuM. KuhnM. ZellerG. TelzerowA. AndersonE.E. BrochadoA.R. FernandezK.C. DoseH. MoriH. PatilK.R. BorkP. TypasA. Extensive impact of non-antibiotic drugs on human gut bacteria.Nature2018555769862362810.1038/nature2597929555994
    [Google Scholar]
  72. MusilV. BlankovaA. BacaV. A plea for an extension of the anatomical nomenclature: The locomotor system.Bosn. J. Basic. Med. Sci.201818211712510.17305/bjbms.2017.227629144891
    [Google Scholar]
  73. RomãoV. C. LimaA. BernardesM. CanhãoH. FonsecaJ. E. Three decades of low-dose methotrexate in rheumatoid arthritis: Can we predict toxicity?Immunol. Res.2014602-328931010.1007/s12026‑014‑8564‑625391609
    [Google Scholar]
  74. ClemensJ. Q. Infection and inflammation of the genitourinary tract.J. Urol.2024211348810.1097/JU.000000000000381939514539
    [Google Scholar]
  75. FröhlichE. E. FröhlichE. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota.Int. J. Mol. Sci.201617450910.3390/ijms1704050927058534
    [Google Scholar]
  76. ZhaoQ. ChenY. HuangW. ZhouH. ZhangW. Drug-microbiota interactions: An emerging priority for precision medicine.Sig. Transduct. Targ. Ther.20238138610.1038/s41392‑023‑01619‑w37806986
    [Google Scholar]
  77. YeZ. LiangL. LuH. ShenY. ZhouW. LiY. Nanotechnology-employed bacteria-based delivery strategy for enhanced anticancer therapy.Int. J. Nanomedi.2021168069808610.2147/IJN.S32985534934313
    [Google Scholar]
  78. NikolovaM. P. ChavaliM. S. Metal oxide nanoparticles as biomedical materials.Biomimetics.2020522710.3390/biomimetics502002732521669
    [Google Scholar]
  79. HouW. YangB. ZhuH. Nanoparticle-based therapeutic strategies for enhanced pancreatic ductal adenocarcinoma immunotherapy.Pharmaceutics.20221410203310.3390/pharmaceutics1410203336297467
    [Google Scholar]
  80. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  81. TarannumM. Vivero-EscotoJ.L. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment.Adv. Drug Deliv. Rev.202218711435710.1016/j.addr.2022.11435735605679
    [Google Scholar]
  82. BelizárioJ. Garay-MalpartidaM. FaintuchJ. Lung microbiome and origins of the respiratory diseases.Curr. Res. Immunol.2023410006510.1016/j.crimmu.2023.10006537456520
    [Google Scholar]
  83. ChotirmallS.H. BogaertD. ChalmersJ.D. CoxM.J. HansbroP.M. HuangY.J. MolyneauxP.L. O’DwyerD.N. PragmanA.A. RogersG.B. SegalL.N. DicksonR.P. Therapeutic targeting of the respiratory microbiome.Am. J. Respir. Crit. Care Med.2022206553554410.1164/rccm.202112‑2704PP35549655
    [Google Scholar]
  84. LiuY. WangJ. WuC. Microbiota and tuberculosis: A potential role of probiotics, and postbiotics.Front. Nutr.2021862625410.3389/fnut.2021.62625434026804
    [Google Scholar]
  85. LemonK.P. ArmitageG.C. RelmanD.A. FischbachM.A. Microbiota-targeted therapies: An ecological perspective.Sci. Transl. Med.20124137137rv510.1126/scitranslmed.300418322674555
    [Google Scholar]
  86. YadavM. ChauhanNS Microbiome therapeutics: Exploring the present scenario and challenges.Gastroenterol. Rep.202110goab04610.1093/gastro/goab04635382166
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128354250250326045943
Loading
/content/journals/cpd/10.2174/0113816128354250250326045943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test