Skip to content
2000
Volume 31, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Psoriasis is a chronic disease that is common and incurable. In psoriasis, skin cells proliferate more quickly than normal cells, suggesting a possible immune system connection. The topical treatment of psoriasis is best when applied in combination with anti-inflammatory medications; however, the lack of an appropriate delivery method limits the drugs' ability to be delivered. Due to several problems, including adverse reactions and problems with penetration, the current oral and topical treatments for psoriasis fall short of meeting the need for an optimal drug delivery method. None of them, however, can completely treat the illness safely and effectively without jeopardizing patient adherence. ILC3 typically contains retinoic acid receptor-related orphan receptor gamma t (RORγt) in its nucleus. Its development occurs when stimulated by IL-23 and IL-7, leading to the production of IL-22 and IL-17. Both the innate and adaptive immune systems are implicated in the recent, substantial advancements in genetics and molecular biology that have improved our understanding of PsA pathogenesis. Evidence-based targeted therapy has been introduced as a result, mostly using drugs known as tumour necrosis factor inhibitors. Because of their high ethanol concentration, etheromethanes provide more effective and improved bioavailability compared to previous dosing formulations. The principles, preparation process, most recent developments, and applications of ethosomes, however, are not well described in a systematic study. Size, shape, drug content, zeta potential, and other characteristics are examples of ethosome characteristics. Esthosomes can be prepared using four distinct methods, including thin-film hydration, the cold method, the hot method, and the reverse-phase evaporation method. All the information presented in this article was gathered from diverse sources, such as PubMed, ScienceDirect, Google Scholar, and various online platforms, like WHO, Globacon, and others.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128352043250303073450
2025-03-26
2025-10-25
Loading full text...

Full text loading...

References

  1. ChandraA. AggarwalG. ManchandaS. NarulaA. Development of topical gel of methotrexate incorporated ethosomes and salicylic acid for the treatment of psoriasis.Pharm. Nanotechnol.20197536237410.2174/2211738507666190906123643 31490769
    [Google Scholar]
  2. GuoT. LuJ. FanY. TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis.Int. J. Pharm.202160412076210.1016/j.ijpharm.2021.120762 34082000
    [Google Scholar]
  3. AzfarR.S. GelfandJ.M. Psoriasis and metabolic disease: Epidemiology and pathophysiology.Curr. Opin. Rheumatol.200820441642210.1097/BOR.0b013e3283031c99 18525354
    [Google Scholar]
  4. DhabaleA. NagpureS. Types of psoriasis and their effects on the immune system.Cureus2022149e2953610.7759/cureus.29536 36312680
    [Google Scholar]
  5. ParisiR. SymmonsD.P.M. GriffithsC.E.M. AshcroftD.M. Global epidemiology of psoriasis: A systematic review of incidence and prevalence.J. Invest. Dermatol.2013133237738510.1038/jid.2012.339 23014338
    [Google Scholar]
  6. Pleguezuelos-VillaM. Diez-SalesO. MancaM.L. Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis.Int. J. Pharm.202057311884410.1016/j.ijpharm.2019.118844 31751638
    [Google Scholar]
  7. DanielsenK. OlsenA.O. WilsgaardT. FurbergA.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort.Br. J. Dermatol.201316861303131010.1111/bjd.12230 23374051
    [Google Scholar]
  8. MichalekI.M. LoringB. JohnS.M. A systematic review of worldwide epidemiology of psoriasis.J. Eur. Acad. Dermatol. Venereol.201731220521210.1111/jdv.13854 27573025
    [Google Scholar]
  9. ParisiR IskandarIYK KontopantelisE National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study.BMJ2020369m159010.1136/bmj.m159032467098
    [Google Scholar]
  10. PetersB.P. WeissmanF.G. GillM.A. Pathophysiology and treatment of psoriasis.Am. J. Health Syst. Pharm.200057764565910.1093/ajhp/57.7.645 10768819
    [Google Scholar]
  11. SampognaF. GisondiP. MelchiC.F. AmerioP. GirolomoniG. AbeniD. Prevalence of symptoms experienced by patients with different clinical types of psoriasis.Br. J. Dermatol.2004151359459910.1111/j.1365‑2133.2004.06093.x 15377345
    [Google Scholar]
  12. NisaN. QaziM. Prevalence of metabolic syndrome in patients with psoriasis.Indian J. Dermatol. Venereol. Leprol.201076666266510.4103/0378‑6323.72462 21079309
    [Google Scholar]
  13. LiN. QinY. DaiD. Transdermal delivery of therapeutic compounds with nanotechnological approaches in psoriasis.Front. Bioeng. Biotechnol.2022980441510.3389/fbioe.2021.804415 35141215
    [Google Scholar]
  14. PradhanM. AlexanderA. SinghM.R. Understanding the prospective of nano-formulations towards the treatment of psoriasis.Biomed. Pharmacother.201810744746310.1016/j.biopha.2018.07.156 30103117
    [Google Scholar]
  15. SaleemS. IqubalM.K. GargS. AliJ. BabootaS. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis.Expert Opin. Drug Deliv.202017681783810.1080/17425247.2020.1758665 32315216
    [Google Scholar]
  16. SinghviG. HejmadyS. RapalliV.K. DubeyS.K. DubeyS. Nanocarriers for topical delivery in psoriasis.In: Del drugs; Shegokar R, Ed,; Elsevier20202759610.1016/B978‑0‑12‑817776‑1.00004‑3
    [Google Scholar]
  17. YamanakaK. YamamotoO. HondaT. Pathophysiology of psoriasis: A review.J. Dermatol.202148672273110.1111/1346‑8138.15913 33886133
    [Google Scholar]
  18. ChovatiyaR. SilverbergJ.I. Pathophysiology of atopic dermatitis and psoriasis: Implications for management in children.Children201961010810.3390/children6100108 31590274
    [Google Scholar]
  19. SinghR.K. LeeK.M. UcmakD. Erythrodermic psoriasis: Pathophysiology and current treatment perspectives.Psoriasis (Auckl.)201669310410.2147/PTT.S101232 28856115
    [Google Scholar]
  20. RendonA. SchäkelK. Psoriasis pathogenesis and treatment.Int. J. Mol. Sci.2019206147510.3390/ijms20061475 30909615
    [Google Scholar]
  21. WinchellS.A. WattsR.A. Relaxation therapies in the treatment of psoriasis and possible pathophysiologic mechanisms.J. Am. Acad. Dermatol.198818110110410.1016/S0190‑9622(88)70015‑8 3279078
    [Google Scholar]
  22. ZhuJ-F. KaminskiM.J. PulitzerD.R. HuJ. ThomasH.F. Psoriasis: Pathophysiology and oral manifestations.Oral Dis.19962213514410.1111/j.1601‑0825.1996.tb00214.x 8957926
    [Google Scholar]
  23. VealeD. Psoriatic arthritis: Recent progress in pathophysiology and drug development.Arthritis Res. Ther.201315622410.1186/ar4414 24611179
    [Google Scholar]
  24. TampaM. SarbuM.I. MitranM.I. MitranC.I. MateiC. GeorgescuS.R. The pathophysiological mechanisms and the quest for biomarkers in psoriasis, a stress-related skin disease.Dis. Markers20182018582368410.1155/2018/5823684 29619128
    [Google Scholar]
  25. JyothiS.L. KrishnaK.L. ShirinA.V.K. SankarR. PramodK. GangadharappaH.V. Drug delivery systems for the treatment of psoriasis: Current status and prospects.J. Drug Deliv. Sci. Technol.20216210236410.1016/j.jddst.2021.102364
    [Google Scholar]
  26. MacDonaldA. BurdenA.D. Psoriasis: Advances in pathophysiology and management.Postgrad. Med. J.20078398569069710.1136/pgmj.2007.061473 17989268
    [Google Scholar]
  27. BenjegerdesK.E. HydeK. KivelevitchD. MansouriB. Pustular psoriasis: Pathophysiology and current treatment perspectives.Psoriasis (Auckl.)2016613114410.2147/PTT.S98954 29387600
    [Google Scholar]
  28. GottliebA.B. ChamianF. MasudS. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques.J. Immunol.200517542721272910.4049/jimmunol.175.4.2721 16081850
    [Google Scholar]
  29. MrowietzU. ZhuK. ChristophersE. Treatment of severe psoriasis with anti-CD25 monoclonal antibodies.Arch. Dermatol.2000136567567610.1001/archderm.136.5.675 10815871
    [Google Scholar]
  30. HawkesJ.E. GonzalezJ.A. KruegerJ.G. Autoimmunity in psoriasis: Evidence for specific autoantigens.Curr. Dermatol. Rep.20176210411210.1007/s13671‑017‑0177‑6
    [Google Scholar]
  31. SinghR. KoppuS. PercheP.O. FeldmanS.R. The cytokine mediated molecular pathophysiology of psoriasis and its clinical implications.Int. J. Mol. Sci.202122231279310.3390/ijms222312793 34884596
    [Google Scholar]
  32. KruegerJ.G. BowcockA. Psoriasis pathophysiology: Current concepts of pathogenesis.Ann. Rheum. Dis.200564Suppl. 2ii30ii36 15708932
    [Google Scholar]
  33. RáczE. PrensE.P. Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy.Expert Rev. Mol. Med.200911e3810.1017/S146239940900129X 20003607
    [Google Scholar]
  34. GaspariA.A. Innate and adaptive immunity and the pathophysiology of psoriasis.J. Am. Acad. Dermatol.2006543S67S8010.1016/j.jaad.2005.10.057 16488332
    [Google Scholar]
  35. AlharbiT. AlzahraniA. HakamiA. Psoriasis pathophysiology and impact on life.Int. J. Community Med. Public Health2018593663366710.18203/2394‑6040.ijcmph20183383
    [Google Scholar]
  36. AlhammadI.M. AseriA.M. AlqahtaniS.A.M. A review on updates in management and treatment of psoriasis.Arch. Pharm. Pract.2021121747810.51847/g6sNNo5abA
    [Google Scholar]
  37. ChessaC. BodetC. JousselinC. WehbeM. LévêqueN. GarciaM. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes.Front. Microbiol.202011115510.3389/fmicb.2020.01155 32582097
    [Google Scholar]
  38. ZeichnerJ.A. ArmstrongA. The role of IL-17 in the pathogenesis and treatment of psoriasis.J. Clin. Aesthet. Dermatol.201696Suppl. 1S3S6 28439340
    [Google Scholar]
  39. GordonK.B. McCormickT.S. Evolution of biologic therapies for the treatment of psoriasis.Skinmed20032528629410.1111/j.1540‑9740.2003.01869.x 14673261
    [Google Scholar]
  40. YoungH. The pathophysiology of psoriasis.Dermatol. Nurs.2016153Suppl.6
    [Google Scholar]
  41. CampanatiA. MaraniA. MartinaE. DiotalleviF. RadiG. OffidaniA. Psoriasis as an immune-mediated and inflammatory systemic disease: From pathophysiology to novel therapeutic approaches.Biomedicines2021911151110.3390/biomedicines9111511 34829740
    [Google Scholar]
  42. DeclercqD.S. PouliotR. Promising new treatments for psoriasis.Sci World J2013201398041910.1155/2013/980419 23935446
    [Google Scholar]
  43. MartiniS. PozziG. CarubbiC. PKCε promotes human Th17 differentiation: Implications in the pathophysiology of psoriasis.Eur. J. Immunol.201848464465410.1002/eji.201747102 29280140
    [Google Scholar]
  44. LytvynY. SachdevaM. MuftiA. YeungJ. Dermatology: How to manage psoriasis and recognize differences in pathophysiology and presentation in patients with skin of colour.Drugs Context20221111210.7573/dic.2021‑9‑3 35720056
    [Google Scholar]
  45. YamazakiT. YangX.O. ChungY. CCR6 regulates the migration of inflammatory and regulatory T cells.J. Immunol.2008181128391840110.4049/jimmunol.181.12.8391 19050256
    [Google Scholar]
  46. LeeC.H. HwangS.T.Y. Pathophysiology of chemokines and chemokine receptors in dermatological science: A focus on psoriasis and cutaneous T-cell lymphoma.Dermat Sinica201230412813510.1016/j.dsi.2012.08.004
    [Google Scholar]
  47. SureshK. SinghP. SarafS. Novel topical drug carriers as a tool for treatment of psoriasis: Progress and advances.Afr. J. Pharm. Pharmacol.20137513814710.5897/AJPPX12.001
    [Google Scholar]
  48. SinghS. SharmaN. BehlT. Promising strategies of colloidal drug delivery-based approaches in psoriasis management.Pharmaceutics20211311197810.3390/pharmaceutics13111978 34834393
    [Google Scholar]
  49. TambeV.S. NautiyalA. WairkarS. Topical lipid nanocarriers for management of psoriasis-an overview.J. Drug Deliv. Sci. Technol.20216410267110.1016/j.jddst.2021.102671
    [Google Scholar]
  50. AntimisiarisS.G. MaraziotiA. KannavouM. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.019 33539852
    [Google Scholar]
  51. RahimpourY. HamishehkarH. Liposomes in cosmeceutics.Expert Opin. Drug Deliv.20129444345510.1517/17425247.2012.666968 22413847
    [Google Scholar]
  52. MezeiM. Liposomes and the skin.In: Routledge: Liposomes in drug delivery.201712513510.1201/9780203748824‑9
    [Google Scholar]
  53. Czajkowska-KośnikA. SzekalskaM. WinnickaK. Nanostructured lipid carriers: A potential use for skin drug delivery systems.Pharmacol. Rep.201971115616610.1016/j.pharep.2018.10.008 30550996
    [Google Scholar]
  54. WaghuleT. RapalliV.K. GorantlaS. Nanostructured lipid carriers as potential drug delivery systems for skin disorders.Curr. Pharm. Des.202026364569457910.2174/1381612826666200614175236 32534562
    [Google Scholar]
  55. MahaleN.B. ThakkarP.D. MaliR.G. WalunjD.R. ChaudhariS.R. Niosomes: Novel sustained release nonionic stable vesicular systems — An overview.Adv. Colloid Interface Sci.2012183-184465410.1016/j.cis.2012.08.002 22947187
    [Google Scholar]
  56. GrandeF. RagnoG. MuzzalupoR. Gel formulation of nabumetone and a newly synthesized analog: Microemulsion as a photoprotective topical delivery system.Pharmaceutics202012542310.3390/pharmaceutics12050423 32380748
    [Google Scholar]
  57. AkhtarN. AkhtarN. Development of stable tocopherol succinate‐loaded ethosomes to enhance transdermal permeation: In vitro and in vivo characterizations.J. Cosmet. Dermatol.202221104942495510.1111/jocd.14907 35274433
    [Google Scholar]
  58. BellefroidC. LechanteurA. EvrardB. MottetD. Debacq-ChainiauxF. PielG. In vitro skin penetration enhancement techniques: A combined approach of ethosomes and microneedles.Int. J. Pharm.201957211879310.1016/j.ijpharm.2019.118793 31715350
    [Google Scholar]
  59. VanićŽ. Phospholipid vesicles for enhanced drug delivery in dermatology.J Drug Discov Develop Deliv20152119
    [Google Scholar]
  60. ApolinárioA.C. HauschkeL. NunesJ.R. LopesL.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’?Prog. Lipid Res.20218210109610.1016/j.plipres.2021.101096 33831455
    [Google Scholar]
  61. Balen vGP, Martinet CM, Caron G, et al. Liposome/water lipophilicity: Methods, information content, and pharmaceutical applications.Med Res Rev200424329932410.1002/med.1006314994366
    [Google Scholar]
  62. PradhanM. SinghD. SinghM.R. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches.J. Control. Release2013170338039510.1016/j.jconrel.2013.05.020 23770117
    [Google Scholar]
  63. BodnárK. FehérP. UjhelyiZ. BácskayI. JózsaL. Recent approaches for the topical treatment of psoriasis using nanoparticles.Pharmaceutics202416444910.3390/pharmaceutics16040449 38675110
    [Google Scholar]
  64. NordinM.U.U. AhmadN. SalimN. YusofM.N.S. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects.RSC Advances20211146290802910110.1039/D1RA06087B 35478537
    [Google Scholar]
  65. DubeyS. SharmaR. ModyN. VyasS.P. Novel carriers and approaches: Insight for psoriasis management.In: Nanostructures for novel therapy. Ficai D, Grumezescu AM, EdsNew YorkElsevier201765768410.1016/B978‑0‑323‑46142‑9.00024‑4
    [Google Scholar]
  66. NeamtuI. RusuA.G. DiaconuA. NitaL.E. ChiriacA.P. Basic concepts and recent advances in nanogels as carriers for medical applications.Drug Deliv.201724153955710.1080/10717544.2016.1276232 28181831
    [Google Scholar]
  67. YamauchiN. SueY. NagaiT. Aqueous-phase synthesis of cationic hydrogel nanoparticles with antibacterial properties.Colloids Surf. A Physicochem. Eng. Asp.202570513573710.1016/j.colsurfa.2024.135737
    [Google Scholar]
  68. KeskinD. ZuG. ForsonA.M. TrompL. SjollemaJ. Rijn vP. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings.Bioact. Mater.20216103634365710.1016/j.bioactmat.2021.03.004 33898869
    [Google Scholar]
  69. NirmalG. LiaoC-C. LinZ-C. Topically applied pH-responsive nanogels for alkyl radical-based therapy against psoriasiform hyperplasia.Drug Deliv.2023301224516910.1080/10717544.2023.2245169 37585684
    [Google Scholar]
  70. PanonnummalR. SabithaM. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model.Int. J. Biol. Macromol.201811024525810.1016/j.ijbiomac.2017.10.112 29054520
    [Google Scholar]
  71. WangY. FuS. LuY. Chitosan/hyaluronan nanogels co-delivering methotrexate and 5-aminolevulinic acid: A combined chemo-photodynamic therapy for psoriasis.Carbohydr. Polym.202227711881910.1016/j.carbpol.2021.118819 34893236
    [Google Scholar]
  72. GargT. RathG. GoyalA.K. Nanotechnological approaches for the effective management of psoriasis.Artif. Cells Nanomed. Biotechnol.20164461374138210.3109/21691401.2015.1037885 25919064
    [Google Scholar]
  73. ParnamiN. GargT. RathG. GoyalA.K. Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy.Artif. Cells Nanomed. Biotechnol.201442640641210.3109/21691401.2013.837474 24079701
    [Google Scholar]
  74. GujarathiN.A. PatilT.S. RaneB.R. BabuA. KeservaniR.K. Micro and nano-systems in transdermal drug delivery. Topical and Transdermal Drug Delivery Systems.Apple Academic Press2023417810.1201/9781003284017
    [Google Scholar]
  75. GuptaA. AggarwalG. SinglaS. AroraR. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation.Sci. Pharm.20128041061108010.3797/scipharm.1208‑02 23264950
    [Google Scholar]
  76. DhakarR.C. Transfersomes-a novel vesicular carrier for enhanced transdermal delivery of stavudine: Development, characterization and performance evaluation.202117Available from [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3774637]10.2139/ssrn.3774637
    [Google Scholar]
  77. PirvuC.D. HlevcaC. OrtanA. PrisadaR. Elastic vesicles as drugs carriers through the skin.Farmacia2010582128135
    [Google Scholar]
  78. MadhavS. GuptaD. A review on microemulsion based system.Int. J. Pharm. Sci. Res.2011281888
    [Google Scholar]
  79. OlssonU. LindmanB. Uni-and bicontinuous microemulsions. In: The Structure, Dynamics and Equilibrium Properties of Colloidal Systems NATO ASI Series. Bloor DM, Wyn-Jones E, Eds.ChamSpringer, Dordrecht199023324210.1007/978‑94‑011‑3746‑1_16
    [Google Scholar]
  80. NarangA. DelmarreD. GaoD. Stable drug encapsulation in micelles and microemulsions.Int. J. Pharm.20073451-292510.1016/j.ijpharm.2007.08.057 17945446
    [Google Scholar]
  81. RadhaG.V. RaniT.S. SarvaniB. A review on proniosomal drug delivery system for targeted drug action.J. Basic Clin. Pharm.201342424810.4103/0976‑0105.113609 24808669
    [Google Scholar]
  82. MbahC.C. BuildersP.F. AttamaA.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus.Expert Opin. Drug Deliv.2014111455910.1517/17425247.2013.860130 24294974
    [Google Scholar]
  83. SakdisetP. AmnuaikitT. PichayakornW. PinsuwanS. Formulation development of ethosomes containing indomethacin for transdermal delivery.J. Drug Deliv. Sci. Technol.20195276076810.1016/j.jddst.2019.05.048
    [Google Scholar]
  84. GargV. SinghH. BimbrawhS. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.2017145613633 27199229
    [Google Scholar]
  85. AnithaP. RamkanthS. AlaguoundaramM. Ethosomes-A noninvasive vesicular carrier for transdermal drug delivery.Int J Rev Life Sci201186318326
    [Google Scholar]
  86. RazaviH. JanfazaS. Ethosome: A nanocarrier for transdermal drug delivery.Arch Adv Biosci2015623843
    [Google Scholar]
  87. KumarN. DubeyA. MishraA. TiwariP. Ethosomes: A novel approach in transdermal drug delivery system.Inter J Pharm Life Sci202011565986608
    [Google Scholar]
  88. RogeAB Sakhare Rs, Bakal RL, et al. Ethosomes: Novel approach in transdermal drug delivery system.Res. J. Pharm. Dos. Forms Technol.2010212327
    [Google Scholar]
  89. ZhangY.T. FengN-P. ShenL-N. ZhaoJ-H. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis.Int. J. Nanomedicine2014966967810.2147/IJN.S57314 24489470
    [Google Scholar]
  90. NikhatA. HasanN. IqbalZ. KesharwaniP. TalegaonkarS. Enhanced transdermal delivery of lutein via nanoethosomal gel: Formulation optimization, in-vitro evaluation, and in-vivo assessment.J. Drug Deliv. Sci. Technol.20227310344710.1016/j.jddst.2022.103447
    [Google Scholar]
  91. GargB.J. GargN.K. BegS. SinghB. KatareO.P. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment.J. Drug Target.201624323324610.3109/1061186X.2015.1070855 26267289
    [Google Scholar]
  92. Mascarenhas-MeloF. CarvalhoA. GonçalvesM.B.S. Paiva-SantosA.C. VeigaF. Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicology.Eur. J. Pharm. Biopharm.20221769510710.1016/j.ejpb.2022.05.012 35605927
    [Google Scholar]
  93. JadhavP.U. GujareS.G. ShendeM.A. Ethosomes: A novel tool for vesicular drug delivery.Asian J Phar Res2024141455210.52711/2231‑5691.2024.00007
    [Google Scholar]
  94. SatyamG. ShivaniS. GarimaG. Ethosomes: A novel tool for drug delivery through the skin.J. Pharm. Res.201034688691
    [Google Scholar]
  95. ChauhanN. VasavaP. KhanS.L. Ethosomes: A novel drug carrier.Ann. Med. Surg.20228210459510.1016/j.amsu.2022.104595 36124209
    [Google Scholar]
  96. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.72415 22247858
    [Google Scholar]
  97. JosephT.M. LukeP.M. Transferosomes: Novel delivery system for increasing Theskin permeation of drugs.Int J Med Phar Sci2020100211010.31782/IJMPS.2020.10202
    [Google Scholar]
  98. MistryA. RavikumarP. Development and evaluation of azelaic acid based ethosomes for topical delivery for the treatment of acne.Indian J Phar Edu Res2016503sS232S24310.5530/ijper.50.3.34
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128352043250303073450
Loading
/content/journals/cpd/10.2174/0113816128352043250303073450
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): inflammation; Nanocarrier; NLCs; psoriasis; transdermal; vesicles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test