Skip to content
2000
Volume 31, Issue 18
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Alzheimer's disease (AD) is a debilitating condition that significantly affects the elderly. Early diagnosis is not only critical for improving patient outcomes but also directly influences the success of emerging therapeutic interventions. A therapeutic strategy targeting only one pathogenic mechanism is unlikely to be very effective, as there is increasing evidence that AD does not have a single pathogenic cause. Therefore, combining medications or developing therapies that address multiple pathways may be beneficial. Most clinical trials can be classified under added therapy rather than combination therapy. Effective treatment of AD likely requires targeting multiple mechanisms, such as amyloid-beta (Aβ) and tau pathology. However, many medications face challenges, including poor solubility, low permeability, and the inability to cross the blood-brain barrier (BBB). This is where nanocarriers come into play, as they can be loaded with these medications to facilitate targeted drug delivery. This approach enhances the pharmacokinetic profile of drugs in both the blood and the brain. Therefore, this paper provides a concise overview of the use of various nanocarriers loaded with drug combinations for treating AD.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128348877241202053633
2025-01-15
2025-09-03
Loading full text...

Full text loading...

References

  1. SiddiquiA. AbidinS.A.Z. ShahZ.A. OthmanI. KumariY. Behavioural, genomics and proteomic approach to examine Alzheimer’s disease in Zebrafish.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202327110963610.1016/j.cbpc.2023.10963637100105
    [Google Scholar]
  2. BreijyehZ. KaramanR. Muñoz-TorreroD. DembinskiR. Comprehensive review on Alzheimer's disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789
    [Google Scholar]
  3. ZhangX.X. TianY. WangZ.T. MaY.H. TanL. YuJ.T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention.J. Prev. Alzheimers Dis.20218331332110.14283/JPAD.2021.15/FIGURES/234101789
    [Google Scholar]
  4. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.17355432941929
    [Google Scholar]
  5. YiannopoulouK.G. AnastasiouA.I. ZachariouV. PelidouS.H. Reasons for failed trials of disease-modifying treatments for Alzheimer's disease and their contribution in recent research.Biomedicines2019749710.3390/biomedicines704009731835422
    [Google Scholar]
  6. CummingsJ.L. TongG. BallardC. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options.J. Alzheimers Dis.201967377979410.3233/JAD‑18076630689575
    [Google Scholar]
  7. GuoJ. WangZ. LiuR. HuangY. ZhangN. ZhangR. Memantine, donepezil, or combination therapy-What is the best therapy for Alzheimer’s disease? A network meta-analysis.Brain Behav.20201011e0183110.1002/brb3.183132914577
    [Google Scholar]
  8. PalleriaC. Di PaoloA. GiofrèC. CagliotiC. LeuzziG. SiniscalchiA. De SarroG. GallelliL. Pharmacokinetic drug- drug interaction and their implication in clinical management.J Res Med Sci2013187601610
    [Google Scholar]
  9. HaripriyaaM. SuthindhiranK. Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery.Fut J Pharm Sci20239112610.1186/s43094‑023‑00569‑y
    [Google Scholar]
  10. RotmanM. WellingM.M. BunschotenA. de BackerM.E. RipJ. NabuursR.J.A. GaillardP.J. van BuchemM.A. van der MaarelS.M. van der WeerdL. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease.J. Control. Release2015203405010.1016/j.jconrel.2015.02.01225668771
    [Google Scholar]
  11. GongC.X. IqbalK. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer's disease.Curr. Med. Chem.200815232321232810.2174/09298670878590911118855662
    [Google Scholar]
  12. PaulP.S. PatelT. ChoJ.Y. YarahmadyA. KhaliliA. SemenchenkoV. WilleH. KulkaM. MokS.A. KarS. Native PLGA nanoparticles attenuate Aβ-seed induced tau aggregation under in vitro conditions: Potential implication in Alzheimer's disease pathology.Sci Rep202414114410.1038/s41598‑023‑50465‑x
    [Google Scholar]
  13. SmithJ.A. DasA. RayS.K. BanikN.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases.Brain Res. Bull.2012871102010.1016/j.brainresbull.2011.10.00422024597
    [Google Scholar]
  14. SalehiB. CalinaD. DoceaA. KoiralaN. AryalS. LombardoD. PasquaL. TaheriY. Marina Salgado CastilloC. MartorellM. MartinsN. IritiM. SuleriaH. Sharifi-RadJ. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases.J. Clin. Med.20209243010.3390/jcm902043032033365
    [Google Scholar]
  15. LepetaK. LourencoM.V. SchweitzerB.C. Martino AdamiP.V. BanerjeeP. Catuara-SolarzS. de La Fuente RevengaM. GuillemA.M. HaidarM. IjomoneO.M. NadorpB. QiL. PereraN.D. RefsgaardL.K. ReidK.M. SabbarM. SahooA. SchaeferN. SheeanR.K. SuskaA. VermaR. VicidominiC. WrightD. ZhangX.D. SeidenbecherC. Synaptopathies: Synaptic dysfunction in neurological disorders – A review from students to students.J. Neurochem.2016138678580510.1111/jnc.1371327333343
    [Google Scholar]
  16. SanadS.M. FaroukR. NassarS.E. AlshahraniM.Y. SulimanM. Ezzat AhmedA. Eid ElesawiI. The neuroprotective effect of quercetin nanoparticles in the therapy of neuronal damage stimulated by acrolein.Saudi J. Biol. Sci.2023301110379210.1016/j.sjbs.2023.10379237711970
    [Google Scholar]
  17. HansenR.A. GartlehnerG. WebbA.P. MorganL.C. MooreC.G. JonasD.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: A systematic review and meta-analysis.Clin Interv Aging200832211225
    [Google Scholar]
  18. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X1131103000624179466
    [Google Scholar]
  19. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑624944370
    [Google Scholar]
  20. LangaK.M. LevineD.A. The diagnosis and management of mild cognitive impairment: A clinical review.JAMA2014312232551256110.1001/jama.2014.1380625514304
    [Google Scholar]
  21. HoffmanL. BloemerJ. Side effects of drugs used in the treatment of Alzheimer’s disease.Side Eff. Drugs Annu.202143717710.1016/bs.seda.2021.09.012
    [Google Scholar]
  22. BirksJ. Grimley EvansJ. IakovidouV. TsolakiM. HoltF.E. Rivastigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.20092CD00119110.1002/14651858.CD001191.pub219370562
    [Google Scholar]
  23. AtackJ.R. PerryE.K. BonhamJ.R. CandyJ.M. PerryR.H. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system.J. Neurochem.198647126327710.1111/j.1471‑4159.1986.tb02858.x3711902
    [Google Scholar]
  24. LoyC. SchneiderL. Galantamine for Alzheimer’s disease.Cochrane Database Syst. Rev.2004CD0017474CD00174710.1002/14651858.CD001747.pub215495017
    [Google Scholar]
  25. VaradharajanA. DavisA.D. GhoshA. JagtapT. XavierA. MenonA.J. RoyD. GandhiS. GregorT. Guidelines for pharmacotherapy in Alzheimer’s disease – A primer on FDA-approved drugs.J. Neurosci. Rural Pract.202314456657310.25259/JNRP_356_202338059250
    [Google Scholar]
  26. CacabelosR. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics.Neuropsychiatr. Dis. Treat.20073330333319300564
    [Google Scholar]
  27. OlivaresD. DeshpandeV.K. ShiY. LahiriD.K. GreigN.H. RogersJ.T. HuangX. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease.Curr. Alzheimer Res.20129674675810.2174/15672051280132256421875407
    [Google Scholar]
  28. CarvalhoK.M. WinterE. Souza AntunesA.M. Analysis of technological developments in the treatment of Alzheimer’s disease through patent documents.Intell. Inf. Manag.20157526828110.4236/iim.2015.75022
    [Google Scholar]
  29. MatthewsD.C. MaoX. DowdK. TsakanikasD. JiangC.S. MeuserC. AndrewsR.D. LukicA.S. LeeJ. HampilosN. ShafiianN. SanoM. David MozleyP. FillitH. McEwenB.S. ShunguD.C. PereiraA.C. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease.Brain2021144123742375510.1093/brain/awab22234145880
    [Google Scholar]
  30. BriggsR. KennellyS.P. O’NeillD. Drug treatments in Alzheimer’s disease.Clin. Med. (Lond.)201616324725310.7861/clinmedicine.16‑3‑24727251914
    [Google Scholar]
  31. AlomarM.J. Factors affecting the development of adverse drug reactions (Review article).Saudi Pharm. J.2014222839410.1016/j.jsps.2013.02.00324648818
    [Google Scholar]
  32. KawalecP. HolkoP. GawinM. PilcA. Effectiveness of fixed- dose combination therapy in hypertension: Systematic review and meta-analysis.Arch. Med. Sci.20181451125113610.5114/aoms.2018.7756130154897
    [Google Scholar]
  33. SunW. SandersonP.E. ZhengW. Drug combination therapy increases successful drug repositioning.Drug Discov. Today20162171189119510.1016/j.drudis.2016.05.01527240777
    [Google Scholar]
  34. QamarZ. SartajA. IqubalM.K. QizilbashF.F. SabirS. AliJ. AliA. BabootaS. Combination drug loaded lipid-based nanocarriers as treatment entity for battling glioblastoma multiforme.J. Drug Deliv. Sci. Technol.20238710480010.1016/j.jddst.2023.104800
    [Google Scholar]
  35. ItoK. TatebeT. SuzukiK. HirayamaT. HayakawaM. KuboH. TomitaT. MakinoM. Memantine reduces the production of amyloid-β peptides through modulation of amyloid precursor protein trafficking.Eur. J. Pharmacol.2017798162510.1016/j.ejphar.2017.02.00128167259
    [Google Scholar]
  36. WilkinsC.A. HammanH. HammanJ.H. SteenekampJ.H. Fixed- dose combination formulations in solid oral drug therapy: Advantages, limitations, and design features.Pharmaceutics202416217810.3390/pharmaceutics1602017838399239
    [Google Scholar]
  37. ShahR.B. TawakkulM.A. KhanM.A. Comparative evaluation of flow for pharmaceutical powders and granules.AAPS PharmSciTech20089125025810.1208/s12249‑008‑9046‑818446489
    [Google Scholar]
  38. JanczuraM. SipS. Cielecka-PiontekJ. The development of innovative dosage forms of the fixed-dose combination of active pharmaceutical ingredients.Pharmaceutics202214483410.3390/pharmaceutics14040834
    [Google Scholar]
  39. HendrixJ.A. BatemanR.J. BrashearH.R. DugganC. CarrilloM.C. BainL.J. DeMattosR. KatzR.G. OstrowitzkiS. SiemersE. SperlingR. VitoloO.V. Challenges, solutions, and recommendations for Alzheimer’s disease combination therapy.Alzheimers Dement.201612562363010.1016/j.jalz.2016.02.00727017906
    [Google Scholar]
  40. TeleanuR.I. PredaM.D. NiculescuA.G. VladâcencoO. RaduC.I. GrumezescuA.M. TeleanuD.M. Current strategies to enhance delivery of drugs across the blood–brain barrier.Pharmaceutics202214598710.3390/pharmaceutics1405098735631573
    [Google Scholar]
  41. VinarovZ. AbdallahM. AgundezJ.A.G. AllegaertK. BasitA.W. BraeckmansM. CeulemansJ. CorsettiM. GriffinB.T. GrimmM. KeszthelyiD. KoziolekM. MadlaC.M. MatthysC. McCoubreyL.E. MitraA. ReppasC. StappaertsJ. SteenackersN. TrevaskisN.L. VanuytselT. VertzoniM. WeitschiesW. WilsonC. AugustijnsP. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review.Eur. J. Pharm. Sci.202116210581210.1016/j.ejps.2021.10581233753215
    [Google Scholar]
  42. AcharA. MyersR. GhoshC. Drug delivery challenges in brain disorders across the blood–brain barrier: Novel methods and future considerations for improved therapy.Biomedicines2021912183410.3390/biomedicines912183434944650
    [Google Scholar]
  43. MittalK.R. PharasiN. SarnaB. SinghM. RachanaS. HaiderS. SinghS.K. DuaK. JhaS.K. DeyA. OjhaS. ManiS. JhaN.K. Nanotechnology-based drug delivery for the treatment of CNS disorders.Transl. Neurosci.202213152754610.1515/tnsci‑2022‑025836741545
    [Google Scholar]
  44. TaliyanR. KakotyV. SarathlalK.C. KharavtekarS.S. KarennanavarC.R. ChoudharyY.K. SinghviG. RiadiY. DubeyS.K. KesharwaniP. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease.J. Control. Release202234352855010.1016/j.jconrel.2022.01.04435114208
    [Google Scholar]
  45. ZhangY. QuH. XueX. Blood–brain barrier penetrating liposomes with synergistic chemotherapy for glioblastoma treatment.Biomater. Sci.202210242343410.1039/D1BM01506K34873606
    [Google Scholar]
  46. LuH. ZhangS. WangJ. ChenQ. A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems.Front. Nutr.2021878383110.3389/fnut.2021.78383134926557
    [Google Scholar]
  47. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S28944333628022
    [Google Scholar]
  48. YuB. TaiH.C. XueW. LeeL.J. LeeR.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer.Mol. Membr. Biol.201027728629810.3109/09687688.2010.52120021028937
    [Google Scholar]
  49. HershD.S. WadajkarA.S. RobertsN. PerezJ.G. ConnollyN.P. FrenkelV. WinklesJ.A. WoodworthG.F. KimA.J. Evolving drug delivery strategies to overcome the blood brain barrier.Curr. Pharm. Des.20162291177119310.2174/138161282266615122115073326685681
    [Google Scholar]
  50. WaheedI. AliA. TabassumH. KhatoonN. LaiW.F. ZhouX. Lipid-based nanoparticles as drug delivery carriers for cancer therapy.Front. Oncol.202414129609110.3389/fonc.2024.129609138660132
    [Google Scholar]
  51. HsuJ.F. ChuS.M. LiaoC.C. WangC.J. WangY.S. LaiM.Y. WangH.C. HuangH.R. TsaiM.H. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update.Cancers (Basel)202113219510.3390/cancers1302019533430494
    [Google Scholar]
  52. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  53. SzablewskiL. Brain glucose transporters: Role in pathogenesis and potential targets for the treatment of Alzheimer’s disease.Int. J. Mol. Sci.20212215814210.3390/ijms2215814234360906
    [Google Scholar]
  54. GravánP. Aguilera-GarridoA. MarchalJ.A. Navarro-MarchalS.A. Galisteo-GonzálezF. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment.Adv. Colloid Interface Sci.202331410287110.1016/j.cis.2023.10287136958181
    [Google Scholar]
  55. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  56. JuhairiyahF. de LangeE.C.M. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential.AAPS J.202123611410.1208/s12248‑021‑00648‑z34713363
    [Google Scholar]
  57. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  58. YanD. QuX. ChenM. WangJ. LiX. ZhangZ. LiuY. KongL. YuY. JuR. LiX. Functionalized curcumin/ginsenoside Rb1 dual-loaded liposomes: Targeting the blood-brain barrier and improving pathological features associated in APP/PS-1 mice.J. Drug Deliv. Sci. Technol.20238610463310.1016/j.jddst.2023.104633
    [Google Scholar]
  59. KuoY.C. NgI.W. RajeshR. Glutathione- and apolipoprotein E- grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease.Mater. Sci. Eng. C202112711223310.1016/j.msec.2021.11223334225874
    [Google Scholar]
  60. GladeM.J. SmithK. Phosphatidylserine and the human brain.Nutrition201531678178610.1016/j.nut.2014.10.01425933483
    [Google Scholar]
  61. SaffariP.M. AlijanpourS. TakzareeN. SahebgharaniM. Etemad-MoghadamS. NoorbakhshF. PartoazarA. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model.Life Sci.202025511786110.1016/j.lfs.2020.11786132473247
    [Google Scholar]
  62. KuoY.C. LinC.Y. LiJ.S. LouY.I. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment.Int. J. Nanomedicine2017121757177410.2147/IJN.S12839628280340
    [Google Scholar]
  63. VasilevaL. GaynanovaG. ValeevaF. BelyaevG. ZuevaI. BushmelevaK. SibgatullinaG. SamigullinD. VyshtakalyukA. PetrovK. ZakharovaL. SinyashinO. Mitochondria-targeted delivery strategy of dual-loaded liposomes for Alzheimer’s disease therapy.Int. J. Mol. Sci.202324131049410.3390/ijms24131049437445673
    [Google Scholar]
  64. NiraleP. PaulA. YadavK.S. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and prion’s.Life Sci.202024511739410.1016/j.lfs.2020.11739432017870
    [Google Scholar]
  65. GuptaA. EralH.B. HattonT.A. DoyleP.S. Nanoemulsions: Formation, properties and applications.Soft Matter201612112826284110.1039/C5SM02958A26924445
    [Google Scholar]
  66. RoyH. SrungarapatiS. GadeN.J. GummadiA. Marry KarunasreeB.K. DakkumallaM. MaddiboyinaB. Citicoline loaded nanoemulsion enriched with D-alpha-Tocopherol acetate and protein: Formulation and in-silico study.J. Drug Deliv. Sci. Technol.20238210434010.1016/j.jddst.2023.104340
    [Google Scholar]
  67. ShenX. CuiZ. WeiY. HuoY. YuD. ZhangX. MaoS. Exploring the potential to enhance drug distribution in the brain subregion via intranasal delivery of nanoemulsion in combination with borneol as a guider.Asian J. Pharm. Sci.202318610077810.1016/j.ajps.2023.10077838089837
    [Google Scholar]
  68. KottaS. Mubarak AldawsariH. Badr-EldinS.M. AlhakamyN.A. MdS. Coconut oil-based resveratrol nanoemulsion: Optimization using response surface methodology, stability assessment and pharmacokinetic evaluation.Food Chem.202135712972110.1016/j.foodchem.2021.12972133866243
    [Google Scholar]
  69. ZhangL. HouS. MovahediF. LiZ. LiL. HuJ. JiaY. HuangY. ZhuJ. SunX. ZengL. LiuR. XuZ.P. Amyloid-β/Tau burden and neuroinflammation dual-targeted nanomedicines synergistically restore memory and recognition of Alzheimer’s disease mice.Nano Today20234910178810.1016/j.nantod.2023.101788
    [Google Scholar]
  70. JacobS. NairA.B. ShahJ. GuptaS. BodduS.H.S. SreeharshaN. JosephA. ShinuP. MorsyM.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy-An overview on recent advances.Pharmaceutics202214353310.3390/pharmaceutics1403053335335909
    [Google Scholar]
  71. SatapathyM.K. YenT.L. JanJ.S. TangR.D. WangJ.Y. TaliyanR. YangC.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB.Pharmaceutics2021138118310.3390/pharmaceutics1308118334452143
    [Google Scholar]
  72. IqbalM.A. MdS. SahniJ.K. BabootaS. DangS. AliJ. Nanostructured lipid carriers system: Recent advances in drug delivery.J Drug Target2012201081383010.3109/1061186X.2012.716845
    [Google Scholar]
  73. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics2023156159310.3390/pharmaceutics15061593
    [Google Scholar]
  74. NaserS.S. SinghD. PreetamS. KishoreS. KumarL. NandiA. SimnaniF.Z. ChoudhuryA. SinhaA. MishraY.K. SuarM. PandaP.K. MalikS. VermaS.K. Posterity of nanoscience as lipid nanosystems for Alzheimer’s disease regression.Mater. Today Bio20232110070110.1016/j.mtbio.2023.10070137415846
    [Google Scholar]
  75. ShehataM.K. IsmailA.A. KamelM.A. Combined donepezil with astaxanthin via nanostructured lipid carriers effective delivery to brain for Alzheimer’s disease in rat model.Int. J. Nanomedicine2023184193422710.2147/IJN.S41792837534058
    [Google Scholar]
  76. JainD. HasanN. ZafarS. ThakurJ. HaiderK. ParvezS. AhmadF.J. Transferrin functionalized nanostructured lipid carriers for targeting rivastigmine and resveratrol to Alzheimer’s disease: Synthesis, in vitro characterization and brain uptake analysis.J. Drug Deliv. Sci. Technol.20238610455510.1016/j.jddst.2023.104555
    [Google Scholar]
  77. AliM.H. AlamO. AliA. AliM.U. ParvezS. AldosariE. BabootaS. AliJ. Donepezil and embelin loaded nanostructured lipid carriers for direct brain delivery as an intervention for Alzheimer’s disease: Formulation design, optimization and evaluation.J Clust Sci202435102144
    [Google Scholar]
  78. KuoY.C. LouY.I. RajeshR. ChenC.L. Multiple-component dual-phase solid lipid nanoparticles with conjugated transferrin for formulating antioxidants and nerve growth factor against neuronal apoptosis.J. Taiwan Inst. Chem. Eng.202011014015210.1016/j.jtice.2020.02.017
    [Google Scholar]
  79. ElmowafyE.M. TiboniM. SolimanM.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles.J. Pharm. Investig20194934734710.1007/s40005‑019‑00439‑x
    [Google Scholar]
  80. OpertiM.C. BernhardtA. GrimmS. EngelA. FigdorC.G. TagitO. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up.Int. J. Pharm.202160512080710.1016/j.ijpharm.2021.12080734144133
    [Google Scholar]
  81. RochaC.V. GonçalvesV. da SilvaM.C. Bañobre-LópezM. GalloJ. PLGA-based composites for various biomedical applications.Int. J. Mol. Sci.2022234203410.3390/ijms2304203435216149
    [Google Scholar]
  82. ZorkinaY. AbramovaO. UshakovaV. MorozovaA. ZubkovE. ValikhovM. MelnikovP. MajougaA. ChekhoninV. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations.Molecules20202522529410.3390/molecules25225294
    [Google Scholar]
  83. LvL. YangF. LiH. YuanJ. Brain-targeted co-delivery of β-amyloid converting enzyme 1 shRNA and epigallocatechin-3-gallate by multifunctional nanocarriers for Alzheimer’s disease treatment.IUBMB Life20207281819182910.1002/iub.233032668504
    [Google Scholar]
  84. SarathlalK.C.S. KakotyV. KrishnaK.V. DubeyS.K. ChitkaraD. TaliyanR. Neuroprotective efficacy of co-encapsulated rosiglitazone and vorinostat nanoparticle on streptozotocin induced mice model of Alzheimer's disease.ACS Chem Neurosci202112915281541
    [Google Scholar]
  85. CanoA. EttchetoM. ChangJ.H. BarrosoE. EspinaM. KühneB.A. BarenysM. AuladellC. FolchJ. SoutoE.B. CaminsA. TurowskiP. GarcíaM.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.01030876953
    [Google Scholar]
  86. ZhangX. ShiN. ChenM. LiuM. JuR. LiuY. KongL. YuY. LiX. Angiopep-2 modified dual drug-loaded liposomes with brain targeting functionality mitigate Alzheimer’s disease-related symptoms in APP/PS-1 mice.J. Drug Target.202331663464510.1080/1061186X.2023.221640537203195
    [Google Scholar]
  87. DaiF. LiX. LvK. WangJ. ZhaoY. Combined core stability and degradability of nanomedicine via amorphous PDLLA-dextran bottlebrush copolymer for Alzheimer’s disease combination treatment.ACS Appl. Mater. Interfaces20231522263852639710.1021/acsami.3c0317437227128
    [Google Scholar]
  88. Subhash HingeN. KathuriaH. Monohar PandeyM. Rivastigmine-DHA ion-pair complex improved loading in hybrid nanoparticles for better amyloid inhibition and nose-to-brain targeting in Alzheimer’s.Eur. J. Pharm. Biopharm.202319013114910.1016/j.ejpb.2023.06.00737330117
    [Google Scholar]
  89. TopalF. ErtasB. GulerE. GurbuzF. OzcanG.S. AydemirO. BocekciV.G. DuruksuG. Sahin CamC. YazirY. GunduzO. CamM.E. A novel multi-target strategy for Alzheimer’s disease treatment via sublingual route: Donepezil/memantine/curcumin-loaded nanofibers.Biomater. Adv.202213821287010.1016/j.bioadv.2022.21287035913251
    [Google Scholar]
  90. VeysanogluS. ErtasB. GulerE. TopalF. OzcanG.S. DuruksuG. EceB. CamC.S. AydemirO. CamM.E. In vitro and in vivo evaluation of multi-target-directed Rivastigmine/Memantine/Gingko biloba-loaded nanofibers against Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20238610469110.1016/j.jddst.2023.104691
    [Google Scholar]
  91. KaboliZ. HosseiniM.J. SadighianS. RostamizadehK. HamidiM. ManjiliH.K. Valine conjugated polymeric nanocarriers for targeted co-delivery of rivastigmine and quercetin in rat model of Alzheimer's disease.Int. J. Pharm.202364512341810.1016/j.ijpharm.2023.12341837716484
    [Google Scholar]
  92. PathakK. MishraS.K. PorwalA. BahadurS. Nanocarriers for Alzheimer’s disease: Research and patent update.J Appl Pharm Sci202111312110.7324/JAPS.2021.110301
    [Google Scholar]
  93. XiongN. ZhaoY. DongX. ZhengJ. SunY. Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of Amyloid β-Protein aggregation and cytotoxicity.Small20171313160166610.1002/smll.20160166628112856
    [Google Scholar]
  94. LuthmanJohan. Methods of treatment and prevention of Alzheimer's disease.Patent WO2020023530A22020
  95. M. GelmontDavid Treatment of Alzheimer's disease subpopulations with pooled immunoglobulin G.Patent US20140328856A12014
  96. CohenDaniel Therapeutic approaches for treating Alzheimer's disease.Patent US20140357648A12014
  97. Chunglit CHOITony Preparation of drug for treating Alzheimer's disease.Patent EP4035669A12022
  98. YuanpengHuang A kind of combination medicine for treating Alzheimer's disease.Patent CN109200158A2019
  99. TianyuSun Combination for treating Alzheimer's disease and use thereof.Patent WO2022007578A12022
  100. LichengZhu A kind of pharmaceutical formulation for treating degenerative brain disorder.Patent CN108721343A2018
  101. WeiqingHe It is a kind of for preventing and/or treating the drug, combination product and its application of Alzheimer's disease.Patent CN110051680A2019
  102. HuaiyuGu Usage of FWW tripeptide in preparation of drug for treating Alzheimer's disease.Patent CN104248750A2014
  103. ZhouMingdong Use of vitamin composition in preparing drug for preventing, treating, or delaying Alzheimer's disease.Patent US11464797B22022
  104. HuaiyuGu Application of RRY tripeptide in preparation of drug for treating Alzheimer's disease.Patent CN104324359A2015
  105. Seok-chanLee Combination therapy of donepezil and tadalafil for the treatment of Alzheimer's disease or cognitive impairment.Patent KR102393649B12022
  106. ZouChendong Cannabinoid composition and application thereof in preparation of drug for treating neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease.Patent EP4205732A12023
  107. O.K. LIVictor Deepdrug: An expert-led directed graph neural networking drug-repurposing framework for identification of a lead combination of drugs protecting against Alzheimer's disease and related disorders.Patent US20230098833A12023
  108. PengY. JinH. XueY. ChenQ. YaoS. DuM. LiuS. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks.Front. Aging Neurosci.202315120657210.3389/fnagi.2023.120657237600514
    [Google Scholar]
  109. XiaoD. ZhangC. Current therapeutics for Alzheimer’s disease and clinical trials.Explor Neurosci.2024325527110.37349/en.2024.00048
    [Google Scholar]
  110. YoonS.J. ChoiS.H. NaH.R. ParkK.W. KimE.J. HanH.J. LeeJ.H. ShimY.S. NaD.L. Effects on agitation with rivastigmine patch monotherapy and combination therapy with memantine in mild to moderate Alzheimer’s disease: A multicenter 24-week prospective randomized open-label study (the Korean EXelon Patch and combination with mEmantine comparative trial study).Geriatr. Gerontol. Int.201717349449910.1111/ggi.1275427111084
    [Google Scholar]
  111. Post-marketing surveillance of donepezil hydrochloride investigation of the safety and effectiveness of combination therapy of Donepezil Hydrochloride and Memantine Hydrochloride in patients with Alzheimer's disease.Patent NCT021622512018
  112. A randomized, clinical trial of vitamin E and memantine in Alzheimer's disease (TEAM-AD).Patent NCT002357162014
  113. Risk reduction for Alzheimer's disease (rrAD).Patent NCT029136642022
  114. SUVN-502 with donepezil and memantine for the treatment of moderate Alzheimer's disease-phase 2a study.Patent NCT025803052023
  115. Prevention of Alzheimer's disease by vitamin E and Selenium (PREADVISE).Patent NCT000403782018
  116. Memantine plus Es-citalopram in elderly depressed patients with cognitive impairment.Patent NCT018768232014
  117. Low-dose opiate therapy for discomfort in dementia (L-DOT) (LDOT).Patent NCT003856842015
  118. Roflumilast and donepezil to reverse scopolamine induced cognitive deficits in healthy adults.Patent NCT020513352017
  119. Randomized I/​II phase study of ALZT-OP1 combination therapy in Alzheimer's disease and normal healthy volunteers.Patent NCT045706442022
/content/journals/cpd/10.2174/0113816128348877241202053633
Loading
/content/journals/cpd/10.2174/0113816128348877241202053633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test