Skip to content
2000
Volume 31, Issue 18
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Exosomes are small extracellular vesicles secreted by various cell types, playing a crucial role in intercellular communication by carrying proteins, lipids, and nucleic acids, thus holding significant potential in diagnostics and therapeutics. Accurate labeling of exosomes is vital for studying their biogenesis, trafficking, and functional properties, enabling precise tracking and manipulation. This review examines current labeling techniques, including metabolic glycan labeling, chemical tagging, membrane fluorescent dyes, bio-conjugation, non-covalent labeling, and cell-engineering approaches. Each method is analyzed for its efficiency, specificity, and practicality, with attention to potential artifacts and challenges. Advancements in these techniques are essential for improving our understanding of exosome biology and developing exosome-based diagnostic and therapeutic strategies, providing researchers with valuable insights into state-of-the-art techniques and their applications in exosome research.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338023241210140702
2025-01-21
2025-10-26
Loading full text...

Full text loading...

References

  1. ThéryC. ZitvogelL. AmigorenaS. Exosomes: Composition, biogenesis and function.Nat. Rev. Immunol.20022856957910.1038/nri85512154376
    [Google Scholar]
  2. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  3. RaposoG. StoorvogelW. Extracellular vesicles: Exosomes, microvesicles, and friends.J. Cell Biol.2013200437338310.1083/jcb.20121113823420871
    [Google Scholar]
  4. RobbinsP.D. MorelliA.E. Regulation of immune responses by extracellular vesicles.Nat. Rev. Immunol.201414319520810.1038/nri362224566916
    [Google Scholar]
  5. PeinadoH. LavotshkinS. LydenD. The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts.Semin. Cancer Biol.201121213914610.1016/j.semcancer.2011.01.00221251983
    [Google Scholar]
  6. TkachM. ThéryC. Communication by extracellular vesicles: Where we are and where we need to go.Cell201616461226123210.1016/j.cell.2016.01.04326967288
    [Google Scholar]
  7. AvgoulasD.I. TasioulisK.S. PapiR.M. PantazakiA.A. Therapeutic and diagnostic potential of exosomes as drug delivery systems in brain cancer.Pharmaceutics2023155143910.3390/pharmaceutics1505143937242681
    [Google Scholar]
  8. LiuW. BaiX. ZhangA. HuangJ. XuS. ZhangJ. Role of exosomes in central nervous system diseases.Front. Mol. Neurosci.20191224010.3389/fnmol.2019.0024031636538
    [Google Scholar]
  9. KimY.K. RNA therapy: Rich history, various applications and unlimited future prospects.Exp. Mol. Med.202254445546510.1038/s12276‑022‑00757‑535440755
    [Google Scholar]
  10. AmiriA. BagherifarR. Ansari DezfouliE. KiaieS.H. JafariR. RamezaniR. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications.J. Transl. Med.202220112510.1186/s12967‑022‑03325‑735287692
    [Google Scholar]
  11. SenS XavierJ KumarN AhmadMZ RanjanOP Exosomes as natural nanocarrier-based drug delivery system: Recent insights and future perspectives.3 Biotech.2023133101
    [Google Scholar]
  12. CanoA. Muñoz-MoralesÁ. Sánchez-LópezE. EttchetoM. SoutoE.B. CaminsA. BoadaM. RuízA. Exosomes-based nanomedicine for neurodegenerative diseases: Current insights and future challenges.Pharmaceutics202315129810.3390/pharmaceutics1501029836678926
    [Google Scholar]
  13. FarahzadiR. FathiE. ValipourB. GhaffaryS. Stem cells-derived exosomes as cardiac regenerative agents.Int. J. Cardiol. Heart Vasc.20245210139910.1016/j.ijcha.2024.10139938584674
    [Google Scholar]
  14. KohH.B. KimH.J. KangS.W. YooT.H. Exosome-based drug delivery: Translation from bench to clinic.Pharmaceutics2023158204210.3390/pharmaceutics1508204237631256
    [Google Scholar]
  15. WangZ. WangQ. QinF. ChenJ. Exosomes: A promising avenue for cancer diagnosis beyond treatment.Front. Cell Dev. Biol.202412134470510.3389/fcell.2024.134470538419843
    [Google Scholar]
  16. LeeT.S. KimY. ZhangW. SongI.H. TungC.H. Facile metabolic glycan labeling strategy for exosome tracking.Biochim. Biophys. Acta, Gen. Subj.2018186251091110010.1016/j.bbagen.2018.02.00129410228
    [Google Scholar]
  17. WangW. SunH. DuanH. ShengG. TianN. LiuD. SunZ. Isolation and usage of exosomes in central nervous system diseases.CNS Neurosci. Ther.2024303e1467710.1111/cns.1467738497529
    [Google Scholar]
  18. LiuQ. HuangJ. XiaJ. LiangY. LiG. Tracking tools of extracellular vesicles for biomedical research.Front. Bioeng. Biotechnol.20221094371210.3389/fbioe.2022.94371236466335
    [Google Scholar]
  19. CaoJ. LvG. WeiF. Engineering exosomes to reshape the immune microenvironment in breast cancer: Molecular insights and therapeutic opportunities.Clin. Transl. Med.2024144e164510.1002/ctm2.164538572668
    [Google Scholar]
  20. BaoC. XiangH. ChenQ. ZhaoY. GaoQ. HuangF. MaoL. A review of labeling approaches used in small extracellular vesicles tracing and imaging.Int. J. Nanomedicine2023184567458810.2147/IJN.S41613137588627
    [Google Scholar]
  21. KowalJ. ArrasG. ColomboM. JouveM. MorathJ.P. Primdal-BengtsonB. DingliF. LoewD. TkachM. ThéryC. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.Proc. Natl. Acad. Sci. USA20161138E968E97710.1073/pnas.152123011326858453
    [Google Scholar]
  22. SmythT.J. RedzicJ.S. GranerM.W. AnchordoquyT.J. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro.Biochim. Biophys. Acta Biomembr.20141838112954296510.1016/j.bbamem.2014.07.02625102470
    [Google Scholar]
  23. VaderP. BreakefieldX.O. WoodM.J.A. Extracellular vesicles: Emerging targets for cancer therapy.Trends Mol. Med.201420738539310.1016/j.molmed.2014.03.00224703619
    [Google Scholar]
  24. Yáñez-MóM. SiljanderP.R.M. AndreuZ. Bedina ZavecA. BorràsF.E. BuzasE.I. BuzasK. CasalE. CappelloF. CarvalhoJ. ColásE. Cordeiro-da SilvaA. FaisS. Falcon-PerezJ.M. GhobrialI.M. GiebelB. GimonaM. GranerM. GurselI. GurselM. HeegaardN.H.H. HendrixA. KierulfP. KokubunK. KosanovicM. Kralj-IglicV. Krämer-AlbersE.M. LaitinenS. LässerC. LenerT. LigetiE. LinēA. LippsG. LlorenteA. LötvallJ. Manček-KeberM. MarcillaA. MittelbrunnM. NazarenkoI. Nolte-’t HoenE.N.M. NymanT.A. O’DriscollL. OlivanM. OliveiraC. PállingerÉ. del PortilloH.A. ReventósJ. RigauM. RohdeE. SammarM. Sánchez-MadridF. SantarémN. SchallmoserK. Stampe OstenfeldM. StoorvogelW. StukeljR. Van der GreinS.G. Helena VasconcelosM. WaubenM.H.M. De WeverO. Biological properties of extracellular vesicles and their physiological functions.J. Extracell. Vesicles2015412706610.3402/jev.v4.2706625979354
    [Google Scholar]
  25. KuoW.P. TiggesJ.C. ToxavidisV. GhiranI. Red blood cells: A source of extracellular vesicles.Methods Mol. Biol.20171660152210.1007/978‑1‑4939‑7253‑1_228828644
    [Google Scholar]
  26. PresolskiS.I. HongV.P. FinnM.G. Copper-catalyzed azide–alkyne click chemistry for bioconjugation.Curr. Protoc. Chem. Biol.20113415316210.1002/9780470559277.ch11014822844652
    [Google Scholar]
  27. LaiR.C. YeoR.W.Y. TanK.H. LimS.K. Exosomes for drug delivery - A novel application for the mesenchymal stem cell.Biotechnol. Adv.201331554355110.1016/j.biotechadv.2012.08.00822959595
    [Google Scholar]
  28. KojimaR. BojarD. RizziG. HamriG.C.E. El-BabaM.D. SaxenaP. AusländerS. TanK.R. FusseneggerM. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment.Nat. Commun.201891130510.1038/s41467‑018‑03733‑829610454
    [Google Scholar]
  29. MagnelliP.E. BielikA.M. GuthrieE.P. Identification and characterization of protein glycosylation using specific endo and exoglycosidases.J. Vis. Exp.201158e374922230788
    [Google Scholar]
  30. MoremenK.W. HaltiwangerR.S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans.Nat. Chem. Biol.201915985386410.1038/s41589‑019‑0350‑231427814
    [Google Scholar]
  31. LinS. ZhouS. YuanT. The “sugar-coated bullets” of cancer: Tumor-derived exosome surface glycosylation from basic knowledge to applications.Clin. Transl. Med.2020106e20410.1002/ctm2.20433135347
    [Google Scholar]
  32. ZhuY. WuJ. ChenX. Metabolic labeling and imaging of N-linked glycans in Arabidopsis thaliana.Angew. Chem. Int. Ed.201655329301930510.1002/anie.20160303227346875
    [Google Scholar]
  33. HongV. PresolskiS.I. MaC. FinnM.G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation.Angew. Chem. Int. Ed.200948529879988310.1002/anie.20090508719943299
    [Google Scholar]
  34. SlettenE.M. BertozziC.R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality.Angew. Chem. Int. Ed.200948386974699810.1002/anie.20090094219714693
    [Google Scholar]
  35. LaughlinS.T. BertozziC.R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation.Nat. Protoc.20072112930294410.1038/nprot.2007.42218007630
    [Google Scholar]
  36. WangH. WangR. CaiK. HeH. LiuY. YenJ. WangZ. XuM. SunY. ZhouX. YinQ. TangL. DobruckiI.T. DobruckiL.W. ChaneyE.J. BoppartS.A. FanT.M. LezmiS. ChenX. YinL. ChengJ. Selective in vivo metabolic cell-labeling-mediated cancer targeting.Nat. Chem. Biol.201713441542410.1038/nchembio.229728192414
    [Google Scholar]
  37. ChuhK.N. ZaroB.W. PillerF. PillerV. PrattM.R. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification.J. Am. Chem. Soc.201413635122831229510.1021/ja504063c25153642
    [Google Scholar]
  38. DebetsM.F. van der DoelenC.W.J. RutjesF.P.J.T. van DelftF.L. Azide: A unique dipole for metal-free bioorthogonal ligations.ChemBioChem20101191168118410.1002/cbic.20100006420455238
    [Google Scholar]
  39. HangH.C. YuC. KatoD.L. BertozziC.R. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation.Proc. Natl. Acad. Sci. USA200310025148461485110.1073/pnas.233520110014657396
    [Google Scholar]
  40. RillahanC.D. AntonopoulosA. LefortC.T. SononR. AzadiP. LeyK. DellA. HaslamS.M. PaulsonJ.C. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome.Nat. Chem. Biol.20128766166810.1038/nchembio.99922683610
    [Google Scholar]
  41. ZhengT. JiangH. GrosM. Soriano del AmoD. SundaramS. LauvauG. MarlowF. LiuY. StanleyP. WuP. Tracking N-acetyllactosamine on cell-surface glycans in vivo.Angew. Chem. Int. Ed.201150184113411810.1002/anie.20110026521472942
    [Google Scholar]
  42. HanS. CollinsB.E. BengtsonP. PaulsonJ.C. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking.Nat. Chem. Biol.200512939710.1038/nchembio71316408005
    [Google Scholar]
  43. DingX. WangH. ChenC. LiH. TianY. LiQ. WuC. DingL. YangX. ChengM. Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%.Chem. Eng. J.202141012832810.1016/j.cej.2020.128328
    [Google Scholar]
  44. KangS. ZhuL. WangW. LuY. YouZ. ZhangC. XuY. YangC. SongY. Amplified visualization and function exploration of exosomal protein-specific glycosylation using hybridization chain reaction from non-functional epitope.Sci. China Chem.20226561204121110.1007/s11426‑022‑1240‑5
    [Google Scholar]
  45. ChangP.V. PrescherJ.A. SlettenE.M. BaskinJ.M. MillerI.A. AgardN.J. LoA. BertozziC.R. Copper-free click chemistry in living animals.Proc. Natl. Acad. Sci. USA201010751821182610.1073/pnas.091111610720080615
    [Google Scholar]
  46. ZhuL. XuY. WeiX. LinH. HuangM. LinB. SongY. YangC. Coupling aptamer-based protein tagging with metabolic glycan labeling for in situ visualization and biological function study of exosomal protein-specific glycosylation.Angew. Chem. Int. Ed.20216033181111811510.1002/anie.20210369634043264
    [Google Scholar]
  47. Lopez AguilarA. BriardJ.G. YangL. OvrynB. MacauleyM.S. WuP. Tools for studying glycans: Recent advances in chemoenzymatic glycan labeling.ACS Chem. Biol.201712361162110.1021/acschembio.6b0108928301937
    [Google Scholar]
  48. DirksenA. HackengT.M. DawsonP.E. Nucleophilic catalysis of oxime ligation.Angew. Chem. Int. Ed.200645457581758410.1002/anie.20060287717051631
    [Google Scholar]
  49. ZhangY. ParkK.Y. SuazoK.F. DistefanoM.D. Recent progress in enzymatic protein labelling techniques and their applications.Chem. Soc. Rev.201847249106913610.1039/C8CS00537K30259933
    [Google Scholar]
  50. KooijmansS.A.A. FliervoetL.A.L. van der MeelR. FensM.H.A.M. HeijnenH.F.G. van Bergen en HenegouwenP.M.P. VaderP. SchiffelersR.M. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time.J. Control. Release2016224778510.1016/j.jconrel.2016.01.00926773767
    [Google Scholar]
  51. PolsM.S. KlumpermanJ. Trafficking and function of the tetraspanin CD63.Exp. Cell Res.200931591584159210.1016/j.yexcr.2008.09.02018930046
    [Google Scholar]
  52. ShimomuraT. SeinoR. UmezakiK. ShimodaA. EzoeT. IshiyamaM. AkiyoshiK. New lipophilic fluorescent dyes for labeling extracellular vesicles: Characterization and monitoring of cellular uptake.Bioconjug. Chem.202132468068410.1021/acs.bioconjchem.1c0006833719402
    [Google Scholar]
  53. SantelicesJ. OuM. HuiW. EdelmannM. MaegawaG. Fluorescent labeling of small Extracellular Vesicles (EVs) isolated from conditioned media.Bio Protoc.20221212e444710.21769/BioProtoc.444735864901
    [Google Scholar]
  54. SidhomK. ObiP.O. SaleemA. A review of exosomal isolation methods: Is size exclusion chromatography the best option?Int. J. Mol. Sci.20202118646610.3390/ijms2118646632899828
    [Google Scholar]
  55. KimJ. ShinH. KimJ. KimJ. ParkJ. Isolation of high-purity extracellular vesicles by extracting proteins using aqueous two-phase system.PLoS One2015106e012976010.1371/journal.pone.012976026090684
    [Google Scholar]
  56. CoughlanC. BruceK.D. BurgyO. BoydT.D. MichelC.R. Garcia-PerezJ.E. AdameV. AntonP. BettcherB.M. ChialH.J. KönigshoffM. HsiehE.W.Y. GranerM. PotterH. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses.Curr. Protoc. Cell Biol.2020881e11010.1002/cpcb.11032633898
    [Google Scholar]
  57. BusattoS. VilanilamG. TicerT. LinW.L. DicksonD.W. ShapiroS. BergeseP. WolframJ. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid.Cells201871227310.3390/cells712027330558352
    [Google Scholar]
  58. EL AndaloussiS. MägerI. BreakefieldX.O. WoodM.J.A. Extracellular vesicles: Biology and emerging therapeutic opportunities.Nat. Rev. Drug Discov.201312534735710.1038/nrd397823584393
    [Google Scholar]
  59. GaoX. RanN. DongX. ZuoB. YangR. ZhouQ. MoultonH.M. SeowY. YinH. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy.Sci. Transl. Med.201810444eaat019510.1126/scitranslmed.aat019529875202
    [Google Scholar]
  60. HuotariJ. HeleniusA. Endosome maturation.EMBO J.201130173481350010.1038/emboj.2011.28621878991
    [Google Scholar]
  61. LaneR.E. KorbieD. AndersonW. VaidyanathanR. TrauM. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing.Sci. Rep.201551763910.1038/srep0763925559219
    [Google Scholar]
  62. WillmsE. JohanssonH.J. MägerI. LeeY. BlombergK.E.M. SadikM. AlaargA. SmithC.I.E. LehtiöJ. EL AndaloussiS. WoodM.J.A. VaderP. Cells release subpopulations of exosomes with distinct molecular and biological properties.Sci. Rep.2016612251910.1038/srep2251926931825
    [Google Scholar]
  63. ZhangP. DongB. ZengE. WangF. JiangY. LiD. LiuD. In vivo tracking of multiple tumor exosomes labeled by phospholipid-based bioorthogonal conjugation.Anal. Chem.20189019112731127910.1021/acs.analchem.8b0150630178994
    [Google Scholar]
  64. SuJ. ChenS. DouY. ZhaoZ. JiaX. DingX. SongS. Smartphone-based electrochemical biosensors for directly detecting serum-derived exosomes and monitoring their secretion.Anal. Chem.20229473235324410.1021/acs.analchem.1c0491035084842
    [Google Scholar]
  65. TangJ. SuT. HuangK. DinhP.U. WangZ. VandergriffA. HensleyM.T. CoresJ. AllenT. LiT. SproulE. MihalkoE. LoboL.J. RuterboriesL. LynchA. BrownA. CaranasosT.G. ShenD. StoufferG.A. GuZ. ZhangJ. ChengK. Targeted repair of heart injury by stem cells fused with platelet nanovesicles.Nat. Biomed. Eng.201821172610.1038/s41551‑017‑0182‑x29862136
    [Google Scholar]
  66. MortimerG.M. JackK.S. MusumeciA.W. MartinD.J. MinchinR.F. Stable non-covalent labeling of layered silicate nanoparticles for biological imaging.Mater. Sci. Eng. C20166167468010.1016/j.msec.2015.12.04726838896
    [Google Scholar]
  67. Benito-AlifonsoD. TremellS. SadlerJ.C. BerryM. GalanM.C. Imidazolium-tagged glycan probes for non-covalent labeling of live cells.Chem. Commun. (Camb.)201652274906490910.1039/C5CC10040B26974358
    [Google Scholar]
  68. PatonayG. SalonJ. SowellJ. StrekowskiL. Noncovalent labeling of biomolecules with red and near- infrared dyes.Molecules200493404910.3390/9030004018007410
    [Google Scholar]
  69. SadeghiS. TehraniF.R. TahmasebiS. ShafieeA. HashemiS.M. Exosome engineering in cell therapy and drug delivery.Inflammopharmacology202331114516910.1007/s10787‑022‑01115‑736609717
    [Google Scholar]
  70. WangM. AltinogluS. TakedaY.S. XuQ. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery.PLoS One20151011e014186010.1371/journal.pone.014186026529317
    [Google Scholar]
  71. LiX. CorbettA.L. TaatizadehE. TasnimN. LittleJ.P. GarnisC. DaugaardM. GunsE. HoorfarM. LiI.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy.APL Bioeng.20193101150310.1063/1.508712231069333
    [Google Scholar]
  72. MalekianF. ShamsianA. KodamS.P. UllahM. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective.J. Physiol.2023601224853487210.1113/JP28279935570717
    [Google Scholar]
  73. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  74. O’BrienK. BreyneK. UghettoS. LaurentL.C. BreakefieldX.O. RNA delivery by extracellular vesicles in mammalian cells and its applications.Nat. Rev. Mol. Cell Biol.2020211058560610.1038/s41580‑020‑0251‑y32457507
    [Google Scholar]
  75. HaneyM.J. ZhaoY. HarrisonE.B. MahajanV. AhmedS. HeZ. SureshP. HingtgenS.D. KlyachkoN.L. MosleyR.L. GendelmanH.E. KabanovA.V. BatrakovaE.V. Specific transfection of inflamed brain by macrophages: A new therapeutic strategy for neurodegenerative diseases.PLoS One201384e6185210.1371/journal.pone.006185223620794
    [Google Scholar]
  76. GaoX. YangL. PetrosJ.A. MarshallF.F. SimonsJ.W. NieS. In vivo molecular and cellular imaging with quantum dots.Curr. Opin. Biotechnol.2005161637210.1016/j.copbio.2004.11.00315722017
    [Google Scholar]
  77. HuL. WangJ. ZhouX. XiongZ. ZhaoJ. YuR. HuangF. ZhangH. ChenL. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.Sci. Rep.2016613299310.1038/srep3299327615560
    [Google Scholar]
  78. KobayashiH. PicardL.P. SchöneggeA.M. BouvierM. Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells.Nat. Protoc.20191441084110710.1038/s41596‑019‑0129‑730911173
    [Google Scholar]
  79. ZhouJ. RossiJ. Aptamers as targeted therapeutics: Current potential and challenges.Nat. Rev. Drug Discov.201716318120210.1038/nrd.2016.19927807347
    [Google Scholar]
  80. KimK. ParkY.G. HyunB.G. ChoiM. ParkJ.U. Recent advances in transparent electronics with stretchable forms.Adv. Mater.20193120180469010.1002/adma.20180469030556173
    [Google Scholar]
  81. VasievichE.A. HuangL. The suppressive tumor microenvironment: A challenge in cancer immunotherapy.Mol. Pharm.20118363564110.1021/mp100422821545153
    [Google Scholar]
  82. ZhaoC.X. LiuJ.N. LiB.Q. RenD. ChenX. YuJ. ZhangQ. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc–air batteries.Adv. Funct. Mater.20203036200361910.1002/adfm.202003619
    [Google Scholar]
  83. Navarro-YepesJ. BurnsM. AnandhanA. KhalimonchukO. del RazoL.M. Quintanilla-VegaB. PappaA. PanayiotidisM.I. FrancoR. Oxidative stress, redox signaling, and autophagy: Cell death versus survival.Antioxid. Redox Signal.2014211668510.1089/ars.2014.583724483238
    [Google Scholar]
  84. TianY. MaL. GongM. SuG. ZhuS. ZhangW. WangS. LiZ. ChenC. LiL. WuL. YanX. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry.ACS Nano201812167168010.1021/acsnano.7b0778229300458
    [Google Scholar]
  85. IgnatiadisM. SotiriouC. Luminal breast cancer: From biology to treatment.Nat. Rev. Clin. Oncol.201310949450610.1038/nrclinonc.2013.12423881035
    [Google Scholar]
  86. MorishitaM. TakahashiY. NishikawaM. TakakuraY. Pharmacokinetics of exosomes-An important factor for elucidating the biological roles of exosomes and for the development of exosome-based therapeutics.J. Pharm. Sci.201710692265226910.1016/j.xphs.2017.02.03028283433
    [Google Scholar]
  87. RiderMA. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles.Sci Rep.2016623978
    [Google Scholar]
  88. WiklanderO.P.B. NordinJ.Z. O’LoughlinA. GustafssonY. CorsoG. MägerI. VaderP. LeeY. SorkH. SeowY. HeldringN. Alvarez-ErvitiL. SmithC.I.E. Le BlancK. MacchiariniP. JungebluthP. WoodM.J.A. AndaloussiS.E.L. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting.J. Extracell. Vesicles2015412631610.3402/jev.v4.2631625899407
    [Google Scholar]
  89. ChoiH. ChoiY. YimH.Y. MirzaaghasiA. YooJ.K. ChoiC. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes.Tissue Eng. Regen. Med.202118449951110.1007/s13770‑021‑00361‑034260047
    [Google Scholar]
  90. LaiR.C. ArslanF. LeeM.M. SzeN.S.K. ChooA. ChenT.S. Salto-TellezM. TimmersL. LeeC.N. El OakleyR.M. PasterkampG. de KleijnD.P.V. LimS.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury.Stem Cell Res. (Amst.)20104321422210.1016/j.scr.2009.12.00320138817
    [Google Scholar]
  91. WangF. ZhouC. ‘Transparent mice’: Deep-tissue live imaging using food dyes.Commun. Biol.202471130710.1038/s42003‑024‑07012‑939394420
    [Google Scholar]
  92. YeoR.W.Y. LaiR.C. ZhangB. TanS.S. YinY. TehB.J. LimS.K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery.Adv. Drug Deliv. Rev.201365333634110.1016/j.addr.2012.07.00122780955
    [Google Scholar]
  93. ZhuL. SunH.T. WangS. HuangS.L. ZhengY. WangC.Q. HuB.Y. QinW. ZouT.T. FuY. ShenX.T. ZhuW.W. GengY. LuL. JiaH. QinL.X. DongQ.Z. Isolation and characterization of exosomes for cancer research.J. Hematol. Oncol.202013115210.1186/s13045‑020‑00987‑y33168028
    [Google Scholar]
  94. Mosquera-HerediaM.I. MoralesL.C. VidalO.M. BarcelóE. Silvera-RedondoC. VélezJ.I. Garavito-GalofreP. Exosomes: Potential disease biomarkers and new therapeutic targets.Biomedicines202198106110.3390/biomedicines908106134440265
    [Google Scholar]
  95. GaoJ. LiA. HuJ. FengL. LiuL. ShenZ. Recent developments in isolating methods for exosomes.Front. Bioeng. Biotechnol.202310110089210.3389/fbioe.2022.110089236714629
    [Google Scholar]
  96. WikandariR. Manikharda BaldermannS. NingrumA. TaherzadehM.J. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security.Bioengineered2021122113051133010.1080/21655979.2021.200366534779353
    [Google Scholar]
  97. DanilushkinaA.A. EmeneC.C. BarlevN.A. GomzikovaM.O. Strategies for engineering of extracellular vesicles.Int. J. Mol. Sci.202324171324710.3390/ijms24171324737686050
    [Google Scholar]
  98. ZouZ. LiH. XuG. HuY. ZhangW. TianK. Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases.Int. J. Nanomedicine2023184751477810.2147/IJN.S41742237635911
    [Google Scholar]
  99. ChitoiuL. DobraniciA. GherghiceanuM. DinescuS. CostacheM. Multi-omics data integration in extracellular vesicle biology—utopia or future reality?Int. J. Mol. Sci.20202122855010.3390/ijms2122855033202771
    [Google Scholar]
  100. LaiJ.J. ChauZ.L. ChenS.Y. HillJ.J. KorpanyK.V. LiangN.W. LinL.H. LinY.H. LiuJ.K. LiuY.C. LundeR. ShenW.T. Exosome processing and characterization approaches for research and technology development.Adv. Sci.2022915210322210.1002/advs.20210322235332686
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338023241210140702
Loading
/content/journals/cpd/10.2174/0113816128338023241210140702
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test