Skip to content
2000
Volume 31, Issue 18
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The emergence of SARS-CoV-2 and the COVID-19 pandemic highlighted the urgent need for novel antiviral therapies. The main protease (Mpro) of SARS-CoV-2 is a key enzyme in viral replication and a promising therapeutic target.

Methods

This study employed virtual screening approaches to identify potential Mpro inhibitors, leveraging both structure- and ligand-based methods.

Results

Two optimum pharmacophore models were built from hundreds of crystallographic structures of Mpro, validated through ROC curve analysis and Dynophores dynamic simulations. These models captured ≈ 60K hits from six diverse compound libraries made of more than 3 million compounds. Additionally, a ligand-based similarity search using ROCS software identified 1024 potential hits based on shape and atom-based comparisons with co-crystallized ligands. Subsequent molecular docking and filtering based on physicochemical properties and structural diversity yielded 16 and 6 hits from structure- and ligand-based screening, respectively. Molecular dynamics simulations were conducted on the top-scoring hits to assess their binding stability within the Mpro active site. SCR00943 demonstrated stable binding, interacting favorably with key residues, including the catalytic dyad, resulting in a binding affinity of -61.2 kcal/mol.

Conclusion

This virtual screening campaign identified promising Mpro inhibitors, showcasing the potential of computational approaches to accelerate drug discovery efforts against COVID-19.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128358219241210101947
2025-01-02
2025-09-03
Loading full text...

Full text loading...

References

  1. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑931986257
    [Google Scholar]
  2. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑332015508
    [Google Scholar]
  3. KhanfarM.A. SalehM.I. SARS-COV-2 main protease inhibitors from natural product repository as therapeutic candidates for the treatment of coronaviridae infections.Curr. Med. Chem.2023311610.2174/010929867327167423110905270938013440
    [Google Scholar]
  4. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.2568131967327
    [Google Scholar]
  5. WangY. GrunewaldM. PerlmanS. Coronaviruses: An updated overview of their replication and pathogenesis.Methods Mol. Biol.2020220312910.1007/978‑1‑0716‑0900‑2_132833200
    [Google Scholar]
  6. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of mpro from SARS-COV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  7. UllrichS. NitscheC. The SARS-COV-2 main protease as drug target.Bioorg. Med. Chem. Lett.2020301712737710.1016/j.bmcl.2020.12737732738988
    [Google Scholar]
  8. HammondJ. Leister-TebbeH. GardnerA. AbreuP. BaoW. WisemandleW. BanieckiM. HendrickV.M. DamleB. Simón-CamposA. PypstraR. RusnakJ.M. EPIC-HR Investigators Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19.N. Engl. J. Med.2022386151397140810.1056/NEJMoa211854235172054
    [Google Scholar]
  9. RobinsonP. ToussiS.S. AggarwalS. BergmanA. ZhuT. HackmanF. SathishJ.G. UpdykeL. LoudonP. KrishnaG. ClevenberghP. Hernandez-MoraM.G. Cisneros HerrerosJ.M. AlbertsonT.E. DouganM. ThackerA. BanieckiM.L. SoaresH. WhitlockM. NucciG. MenonS. AndersonA.S. BinksM. Safety, tolerability, and pharmacokinetics of single and multiple ascending intravenous infusions of pf-07304814 (lufotrelvir) in participants hospitalized with COVID-19.Open Forum Infect. Dis.2023108ofad35510.1093/ofid/ofad35537559753
    [Google Scholar]
  10. AllertonC.M.N. ArcariJ.T. AschenbrennerL.M. AveryM. BechleB.M. BehzadiM.A. BorasB. BuzonL.M. CardinR.D. CatlinN.R. CarloA.A. CoffmanK.J. DantonioA. DiL. EngH. FarleyK.A. FerreR.A. GernhardtS.S. GibsonS.A. GreasleyS.E. GreenfieldS.R. HurstB.L. KalgutkarA.S. KimotoE. LanyonL.F. LovettG.H. LianY. LiuW. Martínez AlsinaL.A. NoellS. ObachR.S. OwenD.R. PatelN.C. RaiD.K. ReeseM.R. RothanH.A. SakataS. SammonsM.F. SathishJ.G. SharmaR. SteppanC.M. TuttleJ.B. VerhoestP.R. WeiL. YangQ. YurgelonisI. ZhuY. A second- generation oral SARS-COV-2 main protease inhibitor clinical candidate for the treatment of COVID-19.J. Med. Chem.20246716135501357110.1021/acs.jmedchem.3c0246938687966
    [Google Scholar]
  11. ZhangH. ZhouJ. ChenH. MaoJ. TangY. YanW. ZhangT. LiC. ChenS. LiG. ZhangG. DingY. LiuL. Phase I study, and dosing regimen selection for a pivotal COVID-19 trial of GST-HG171.Antimicrob. Agents Chemother.2024681e01115e0112310.1128/aac.01115‑2338099673
    [Google Scholar]
  12. YangX.M. YangY. YaoB.F. YeP.P. XuY. PengS.P. YangY.M. ShuP. LiP.J. LiS. HuH.L. LiQ. SongL.L. ChenK.G. ZhouH.Y. ZhangY.H. ZhaoF.R. TangB.H. ZhangW. ZhangX.F. FuS.M. HaoG.X. ZhengY. ShenJ.S. XuY.C. JiangX.R. ZhangL.K. TangR.H. ZhaoW. A first-in-human phase 1 study of simnotrelvir, a 3CL-like protease inhibitor for treatment of COVID-19, in healthy adult subjects.Eur. J. Pharm. Sci.202319110659810.1016/j.ejps.2023.10659837783378
    [Google Scholar]
  13. UnohY. UeharaS. NakaharaK. NoboriH. YamatsuY. YamamotoS. MaruyamaY. TaodaY. KasamatsuK. SutoT. KoukiK. NakahashiA. KawashimaS. SanakiT. TobaS. UemuraK. MizutareT. AndoS. SasakiM. OrbaY. SawaH. SatoA. SatoT. KatoT. TachibanaY. Discovery of s-217622, a noncovalent oral SARS-COV-2 3cl protease inhibitor clinical candidate for treating COVID-19.J. Med. Chem.20226596499651210.1021/acs.jmedchem.2c0011735352927
    [Google Scholar]
  14. YotsuyanagiH. OhmagariN. DoiY. YamatoM. BacN.H. ChaB.K. ImamuraT. SonoyamaT. IchihashiG. SanakiT. TsugeY. UeharaT. MukaeH. Efficacy and safety of 5-day oral ensitrelvir for patients with mild to moderate COVID-19.JAMA Netw. Open202472e235499110.1001/jamanetworkopen.2023.5499138335000
    [Google Scholar]
  15. HouN. ShuaiL. ZhangL. XieX. TangK. ZhuY. YuY. ZhangW. TanQ. ZhongG. WenZ. WangC. HeX. HuoH. GaoH. XuY. XueJ. PengC. ZouJ. SchindewolfC. MenacheryV. SuW. YuanY. ShenZ. ZhangR. YuanS. YuH. ShiP.Y. BuZ. HuangJ. HuQ. Development of highly potent noncovalent inhibitors of SARS-COV-2 3clpro.ACS Cent. Sci.20239221722710.1021/acscentsci.2c0135936844503
    [Google Scholar]
  16. MaoL. ShaabaniN. ZhangX. JinC. XuW. ArgentC. KushnarevaY. PowersC. StegmanK. LiuJ. XieH. XuC. BaoY. XuL. ZhangY. YangH. QianS. HuY. ShaoJ. ZhangC. LiT. LiY. LiuN. LinZ. WangS. WangC. ShenW. LinY. ShuD. ZhuZ. KotoiO. KerwinL. HanQ. ChumakovaL. TeijaroJ. RoyalM. BrunswickM. AllenR. JiH. LuH. XuX. Olgotrelvir, a dual inhibitor of SARS-COV-2 mpro and cathepsin l, as a standalone antiviral oral intervention candidate for COVID-19.Med (N. Y.)2024514261.e2310.1016/j.medj.2023.12.00438181791
    [Google Scholar]
  17. Sorrento announces phase 3 trial met primary endpoint and key secondary endpoint in mild or moderate COVID-19 adult patients treated with ovydso (Olgotrelvir), an oral Mpro inhibitor as a standalone treatment for COVID-19.2023 Available from: https://www.biospace.com/sorrento-announces-phase-3-trial-met-primary-endpoint-and-key-secondary-endpoint-in-mild-or-moderate-covid-19-adult-patients-treated-with-ovydso-olgotrelvir-an-oral-mpro-inhibitor-as-a-standalone-treatment-for-covid-19 (Accessed on: 29/08/2024).
  18. ZagórskaA. CzopekA. FrycM. JończykJ. Inhibitors of SARS- COV-2 main protease (mpro) as anti-coronavirus agents.Biomolecules202414779710.3390/biom1407079739062511
    [Google Scholar]
  19. KitamuraN. SaccoM.D. MaC. HuY. TownsendJ.A. MengX. ZhangF. ZhangX. BaM. SzetoT. KukuljacA. MartyM.T. SchultzD. CherryS. XiangY. ChenY. WangJ. Expedited approach toward the rational design of noncovalent SARS-COV-2 main protease inhibitors.J. Med. Chem.20226542848286510.1021/acs.jmedchem.1c0050933891389
    [Google Scholar]
  20. GhoshA.K. RaghavaiahJ. ShahabiD. YadavM. AnsonB.J. LendyE.K. HattoriS. Higashi-KuwataN. MitsuyaH. MesecarA.D. Indole chloropyridinyl ester-derived SARS-COV-2 3clpro inhibitors: Enzyme inhibition, antiviral efficacy, structure–activity relationship, and x-ray structural studies.J. Med. Chem.20216419147021471410.1021/acs.jmedchem.1c0121434528437
    [Google Scholar]
  21. Di SarnoV. LauroG. MusellaS. CiagliaT. VestutoV. SalaM. ScalaM.C. SmaldoneG. Di MatteoF. NoviS. TecceM.F. MoltedoO. BifulcoG. CampigliaP. Gomez-MonterreyI.M. SnoeckR. AndreiG. OstacoloC. BertaminoA. Identification of a dual acting SARS-COV-2 proteases inhibitor through in silico design and step-by-step biological characterization.Eur. J. Med. Chem.202122611386310.1016/j.ejmech.2021.11386334571172
    [Google Scholar]
  22. XiaZ. SaccoM. HuY. MaC. MengX. ZhangF. SzetoT. XiangY. ChenY. WangJ. Rational design of hybrid SARS- COV-2 main protease inhibitors guided by the superimposed cocrystal structures with the peptidomimetic inhibitors gc-376, telaprevir, and boceprevir.ACS Pharmacol. Transl. Sci.2021441408142110.1021/acsptsci.1c0009934414360
    [Google Scholar]
  23. DampallaC.S. RathnayakeA.D. Galasiti KankanamalageA.C. KimY. PereraK.D. NguyenH.N. MillerM.J. MaddenT.K. PicardH.R. ThurmanH.A. KashipathyM.M. LiuL. BattaileK.P. LovellS. ChangK.O. GroutasW.C. Structure-guided design of potent spirocyclic inhibitors of severe acute respiratory syndrome coronavirus-2 3c-like protease.J. Med. Chem.202265117818783210.1021/acs.jmedchem.2c0022435638577
    [Google Scholar]
  24. TanH. HuY. JadhavP. TanB. WangJ. Progress and challenges in targeting the SARS-COV-2 papain-like protease.J. Med. Chem.202265117561758010.1021/acs.jmedchem.2c0030335620927
    [Google Scholar]
  25. HanS.H. GoinsC.M. AryaT. ShinW.J. MawJ. HooperA. SonawaneD.P. PorterM.R. BannisterB.E. CrouchR.D. LindseyA.A. LakatosG. MartinezS.R. AlvaradoJ. AkersW.S. WangN.S. JungJ.U. MacdonaldJ.D. StaufferS.R. Structure-based optimization of ml300-derived, noncovalent inhibitors targeting the severe acute respiratory syndrome coronavirus 3cl protease (SARS-COV-2 3cl pro ).J. Med. Chem.20226542880290410.1021/acs.jmedchem.1c0059834347470
    [Google Scholar]
  26. KonnoS. KobayashiK. SendaM. FunaiY. SekiY. TamaiI. SchäkelL. SakataK. PillaiyarT. TaguchiA. TaniguchiA. GütschowM. MüllerC.E. TakeuchiK. HirohamaM. KawaguchiA. KojimaM. SendaT. ShirasakaY. KamitaniW. HayashiY. 3cl protease inhibitors with an electrophilic arylketone moiety as anti-SARS-COV-2 agents.J. Med. Chem.20226542926293910.1021/acs.jmedchem.1c0066534313428
    [Google Scholar]
  27. BaiB. BelovodskiyA. HenaM. KandadaiA.S. JoyceM.A. SaffranH.A. ShieldsJ.A. KhanM.B. ArutyunovaE. LuJ. BajwaS.K. HockmanD. FischerC. LamerT. VuongW. van BelkumM.J. GuZ. LinF. DuY. XuJ. RahimM. YoungH.S. VederasJ.C. TyrrellD.L. LemieuxM.J. NiemanJ.A. Peptidomimetic α-acyloxymethylketone warheads with six-membered lactam p1 glutamine mimic: SARS-COV-2 3cl protease inhibition, coronavirus antiviral activity, and in vitro biological stability.J. Med. Chem.20226542905292510.1021/acs.jmedchem.1c0061634242027
    [Google Scholar]
  28. StilleJ.K. TjutrinsJ. WangG. VenegasF.A. HenneckerC. RuedaA.M. SharonI. BlaineN. MironC.E. PinusS. LabarreA. PlesciaJ. Burai PatrascuM. ZhangX. WahbaA.S. VlahoD. HuotM.J. SchmeingT.M. MittermaierA.K. MoitessierN. Design, synthesis and in vitro evaluation of novel SARS-COV-2 3clpro covalent inhibitors.Eur. J. Med. Chem.202222911404610.1016/j.ejmech.2021.11404634995923
    [Google Scholar]
  29. LuttensA. GullbergH. AbdurakhmanovE. VoD.D. AkaberiD. TalibovV.O. NekhotiaevaN. VangeelL. De JongheS. JochmansD. KrambrichJ. TasA. LundgrenB. GravenforsY. CraigA.J. AtilawY. SandströmA. MoodieL.W.K. LundkvistÅ. van HemertM.J. NeytsJ. LennerstrandJ. KihlbergJ. SandbergK. DanielsonU.H. CarlssonJ. Ultralarge virtual screening identifies SARS-COV-2 main protease inhibitors with broad-spectrum activity against coronaviruses.J. Am. Chem. Soc.202214472905292010.1021/jacs.1c0840235142215
    [Google Scholar]
  30. ChenW. FengB. HanS. WangP. ChenW. ZangY. LiJ. HuY. Discovery of highly potent SARS- COV-2 mpro inhibitors based on benzoisothiazolone scaffold.Bioorg. Med. Chem. Lett.20225812852610.1016/j.bmcl.2022.12852634998903
    [Google Scholar]
  31. KhanfarM.A. SalaasN. AbumostafaR. Discovery of natural-derived Mpro inhibitors as therapeutic candidates for COVID-19: Structure-based pharmacophore screening combined with QSAR analysis.Mol. Inform.2023424220019810.1002/minf.20220019836762567
    [Google Scholar]
  32. KhanfarM.A. Structure-based pharmacophore screening coupled with QSAR analysis identified potent natural-product-derived IRAK-4 inhibitors.Mol. Inform.20214012210002510.1002/minf.20210002534427398
    [Google Scholar]
  33. KhanfarM.A. AlqtaishatS. Discovery of potent natural-product-derived sirt2 inhibitors using structure- based exploration of sirt2 pharmacophoric space coupled with QSAR analyses.Anticancer. Agents Med. Chem.202121162278228610.2174/187152062166621011212152333438557
    [Google Scholar]
  34. JonesG. WillettP. GlenR.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation.J. Mol. Biol.19952451435310.1016/S0022‑2836(95)80037‑97823319
    [Google Scholar]
  35. WolberG. DornhoferA.A. LangerT. Efficient overlay of small organic molecules using 3d pharmacophores.J. Comput. Aided Mol. Des.2007201277378810.1007/s10822‑006‑9078‑717051340
    [Google Scholar]
  36. KhanfarM.A. Al-QtaishatS. HabashM. TahaM.O. Discovery of potent adenosine A2a antagonists as potential anti-Parkinson disease agents. non-linear QSAR analyses integrated with pharmacophore modeling.Chem. Biol. Interact.20162549310110.1016/j.cbi.2016.05.02327216633
    [Google Scholar]
  37. KhanfarM.A. BanatF. AlabedS. AlqtaishatS. Discovery of potent nek2 inhibitors as potential anticancer agents using structure-based exploration of nek2 pharmacophoric space coupled with QSAR analyses.Mol. Divers.201721118720010.1007/s11030‑016‑9696‑527599492
    [Google Scholar]
  38. KhanfarM.A. AlqtaishatS. Discovery of potent IRAK-4 inhibitors as potential anti-inflammatory and anticancer agents using structure-based exploration of IRAK-4 pharmacophoric space coupled with QSAR analyses.Comput. Biol. Chem.20197914715410.1016/j.compbiolchem.2019.02.00530818109
    [Google Scholar]
  39. MysingerM.M. CarchiaM. IrwinJ.J. ShoichetB.K. Directory of useful decoys, enhanced (dud-e): Better ligands and decoys for better benchmarking.J. Med. Chem.201255146582659410.1021/jm300687e22716043
    [Google Scholar]
  40. BashatwahR.M. KhanfarM.A. BardaweelS.K. Discovery of potent polyphosphate kinase 1 (ppk1) inhibitors using structure-based exploration of ppk1pharmacophoric space coupled with docking analyses.J. Mol. Recognit.20183110e272610.1002/jmr.272629740895
    [Google Scholar]
  41. HawkinsP.C.D. SkillmanA.G. NichollsA. Comparison of shape- matching and docking as virtual screening tools.J. Med. Chem.2007501748210.1021/jm060336517201411
    [Google Scholar]
  42. ŠribarD. GrabowskiM. MurgueitioM.S. BermudezM. WeindlG. WolberG. Identification and characterization of a novel chemotype for human tlr8 inhibitors.Eur. J. Med. Chem.201917974475210.1016/j.ejmech.2019.06.08431284084
    [Google Scholar]
  43. AlabedS.J. KhanfarM. TahaM.O. Computer-aided discovery of new FGFR-1 inhibitors followed by in vitro validation.Future Med. Chem.20168151841186910.4155/fmc‑2016‑005627643626
    [Google Scholar]
  44. KhanfarM.A. YoussefD.T.A. El SayedK.A. 3d-QSAR studies of latrunculin-based actin polymerization inhibitors using COMFA and COMSIA approaches.Eur. J. Med. Chem.20104593662366810.1016/j.ejmech.2010.05.01220684858
    [Google Scholar]
  45. JanežičM. ValjavecK. LobodaK.B. HerlahB. OgrisI. KozorogM. PodobnikM. GrdadolnikS.G. WolberG. PerdihA. Dynophore-based approach in virtual screening: A case of human DNA topoisomerase IIΑ.Int. J. Mol. Sci.202122241347410.3390/ijms22241347434948269
    [Google Scholar]
  46. GossenJ. AlbaniS. HankeA. JosephB.P. BerghC. KuzikovM. CostanziE. ManelfiC. StoriciP. GribbonP. BeccariA.R. TalaricoC. SpyrakisF. LindahlE. ZalianiA. CarloniP. WadeR.C. MusianiF. KokhD.B. RossettiG. A blueprint for high affinity SARS-COV-2 mpro inhibitors from activity-based compound library screening guided by analysis of protein dynamics.ACS Pharmacol. Transl. Sci.2021431079109510.1021/acsptsci.0c0021534136757
    [Google Scholar]
  47. McGaugheyG.B. SheridanR.P. BaylyC.I. CulbersonJ.C. KreatsoulasC. LindsleyS. MaiorovV. TruchonJ.F. CornellW.D. Comparison of topological, shape, and docking methods in virtual screening.J. Chem. Inf. Model.20074741504151910.1021/ci700052x17591764
    [Google Scholar]
  48. DainaA. MichielinO. ZoeteV. Swisstargetprediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  49. YamamotoK.Z. YasuoN. SekijimaM. Screening for inhibitors of main protease in SARS-COV-2: In silico and in vitro approach avoiding peptidyl secondary amides.J. Chem. Inf. Model.202262235035810.1021/acs.jcim.1c0108735015543
    [Google Scholar]
  50. DongJ. VarbanovM. PhilippotS. VrekenF. ZengW. BlayV. Ligand-based discovery of coronavirus main protease inhibitors using macaw molecular embeddings.J. Enzyme Inhib. Med. Chem.2023381243510.1080/14756366.2022.213248636305272
    [Google Scholar]
  51. GordonC.J. TchesnokovE.P. WoolnerE. PerryJ.K. FengJ.Y. PorterD.P. GötteM. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency.J. Biol. Chem.2020295206785679710.1074/jbc.RA120.01367932284326
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128358219241210101947
Loading
/content/journals/cpd/10.2174/0113816128358219241210101947
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): COVID-19; docking; dynophores; Mpro; pharmacophore; virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test