Skip to content
2000
Volume 31, Issue 18
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce Recombinant Factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process. Multiple host cells, such as animal, microbial, and human cell lines, are examined. Cultivating genetically modified cells enables the production of rFVIII, with further changes after protein synthesis, such as glycosylation, taking place in eukaryotic cells to guarantee correct folding. The extraction and purification of rFVIII require advanced methods, including affinity chromatography, to improve the purity of the protein. The purified protein undergoes rigorous quality control, which includes Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis, to assess its identity, purity, and functioning. The scalability of this approach allows for the synthesis of significant amounts of rFVIII for therapeutic purposes. Optimization strategies include modifying B-Domain-Deleted (BDD) FVIII, including introns in FVIII Complementary DNA (cDNA) sequences to boost synthesis and storage, and making changes to chaperone-binding areas to optimize protein release. Furthermore, the search for a modified form of FVIII that has a longer duration of action in the body shows potential for enhancing the effectiveness of synthetic FVIII and progressing the treatment of hemophilia A. Future research should focus on improving the treatment of hemophilia A by developing a variant of FVIII that has increased stability and reduced immunogenicity.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128327353241121050134
2025-01-10
2025-09-15
Loading full text...

Full text loading...

References

  1. PipeS.W. The promise and challenges of bioengineered recombinant clotting factors.J. Thromb. Haemost.2005381692170110.1111/j.1538‑7836.2005.01367.x16102035
    [Google Scholar]
  2. SwiechK. KamenA. AnsorgeS. DurocherY. Picanço-CastroV. Russo-CarbolanteE.M.S. NetoM.S.A. CovasD.T. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII.BMC Biotechnol.201111111410.1186/1472‑6750‑11‑11422115125
    [Google Scholar]
  3. SaenkoE. AnanyevaN. MoayeriM. RamezaniA. HawleyR. Development of improved factor VIII molecules and new gene transfer approaches for hemophilia A.Curr. Gene Ther.200331274110.2174/156652303334741712553533
    [Google Scholar]
  4. Fuentes-PriorP. FujikawaK. PrattK.P. New insights into binding interfaces of coagulation factors V and VIII and their homologues lessons from high resolution crystal structures.Curr. Protein Pept. Sci.20023331333910.2174/138920302338063912188899
    [Google Scholar]
  5. WolfeL.C. Hematologic Manifestations of Systemic Illness.Lanzkowsky's Manual of Pediatric Hematology and Oncology (Sixth Edition)San DiegoAcademic Press201673110.1016/B978‑0‑12‑801368‑7.00002‑8
    [Google Scholar]
  6. SarrafzadehM.H. NavarroJ.M. The effect of oxygen on the sporulation, δ-endotoxin synthesis and toxicity of Bacillus thuringiensis H14.World J. Microbiol. Biotechnol.200622330531010.1007/s11274‑005‑9037‑9
    [Google Scholar]
  7. IshaqueA. ThriftJ. MurphyJ.E. KonstantinovK. Over-expression of Hsp70 in BHK-21 cells engineered to produce recombinant factor VIII promotes resistance to apoptosis and enhances secretion.Biotechnol. Bioeng.200797114415510.1002/bit.2120117054114
    [Google Scholar]
  8. GiangrandeP.L.F. Safety and efficacy of KOGENATE ® Bayer in previously untreated patients (PUPs) and minimally treated patients (MTPs).Haemophilia20028Suppl. 2192210.1046/j.1351‑8216.2001.00133.x11966848
    [Google Scholar]
  9. BrettlerD.B. ForsbergA.D. LevineP.H. LouisM. KasperC.K. LusherJ.M. The use of porcine factor VIII concentrate (Hyate : C) in the treatment of patients With inhibitor antibodies to factor VIII a multicenter US experience.Arch Intern Med198914961381138510.1001/archinte.1989.00390060103022
    [Google Scholar]
  10. GreenD. TuiteG.F.Jr Declining platelet counts and platelet aggregation during porcine VIII: C infusions.Am. J. Med.198986222222410.1016/0002‑9343(89)90274‑X2492401
    [Google Scholar]
  11. Hernández-CarvajalE. Arce-SolanoS. Mena-AguilarD. Fuentes-PriorP. Producción heteróloga y caracterización bioquímica del procoagulante humano Factor VIII para ensayos de cristalización de macromoléculas proteicas.Tecnol. Marcha20172947810.18845/tm.v29i4.3039
    [Google Scholar]
  12. HermansC. MancusoM.E. NolanB. PasiK.J. Recombinant factor VIII Fc for the treatment of haemophilia A.Eur. J. Haematol.2021106674576110.1111/ejh.1361033650192
    [Google Scholar]
  13. Mazurkiewicz-PisarekA. PłucienniczakG. CiachT. PłucienniczakA. The factor VIII protein and its function.Acta Biochim. Pol.2016631111610.18388/abp.2015_105626824291
    [Google Scholar]
  14. ScandellaBD. MattinglyM. PrescottR. A recombinant factor VIII A2 domain polypeptide quantitatively neutralizes human inhibitor antibodies that bind to A2.Blood199382617671775
    [Google Scholar]
  15. BurkeR.L. PachlC. QuirogaM. RosenbergS. HaigwoodN. NordfangO. EzbanM. The functional domains of coagulation factor VIII:C.J. Biol. Chem.198626127125741257810.1016/S0021‑9258(18)67127‑33017981
    [Google Scholar]
  16. TooleJ.J. PittmanD.D. OrrE.C. A large region (~95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc. Natl. Acad. Sci. USA1986835939594210.1073/pnas.83.16.59393016730
    [Google Scholar]
  17. BlümelJ. SchmidtI. EffenbergerW. SeitzH. WillkommenH. BrackmannH.H. LöwerJ. Eis-HübingerA.M. Parvovirus B19 transmission by heat-treated clotting factor concentrates.Transfusion200242111473148110.1046/j.1537‑2995.2002.00221.x12421221
    [Google Scholar]
  18. YokozakiS. FukudaY. NakanoI. KatanoY. ToyodaH. TakamatsuJ. Detection of TT virus DNA in plasma-derived clotting factor concentrates.Blood19999410361710.1182/blood.V94.10.3617.422a38f_3617_361710610120
    [Google Scholar]
  19. LeeC.A. KesslerC.M. VaronD. MartinowitzU. HeimM. EvattB.L. Prions and haemophilia: Assessment of risk.Haemophilia19984462863310.1046/j.1365‑2516.1998.440628.x
    [Google Scholar]
  20. KannichtC. KohlaG. TiemeyerM. WalterO. SandbergH. A new recombinant factor VIII: From genetics to clinical use.Drug Des. Devel. Ther.201593817381910.2147/DDDT.S8560826229443
    [Google Scholar]
  21. YektaA.A. ZomorodipourA. KhodabandehM. DaliriM. Bacterial expression and purification of C1C2 domain of human factor VIII.Iran. J. Biotechnol.20064104111
    [Google Scholar]
  22. ChoiS.J. JangK.J. LimJ.A. KimH.S. Human coagulation factor VIII domain-specific recombinant polypeptide expression.Blood Res.201550210310810.5045/br.2015.50.2.10326157780
    [Google Scholar]
  23. JacqueminM.G. DesqueperB.G. BenhidaA. Vander ElstL. HoylaertsM.F. BakkusM. ThielemansK. ArnoutJ. PeerlinckK. GillesJ.G.G. VermylenJ. Saint-RemyJ.M.R. Mechanism and kinetics of factor VIII inactivation: Study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor.Blood199892249650610.1182/blood.V92.2.4969657749
    [Google Scholar]
  24. OrlovaN.A. KovnirS.V. GabibovA.G. VorobievI.I. Stable high-level expression of factor VIII in Chinese hamster ovary cells in improved elongation factor-1 alpha-based system.BMC Biotechnol.20171713310.1186/s12896‑017‑0353‑628340620
    [Google Scholar]
  25. SandbergH. LütkemeyerD. KuprinS. WrangelM. AlmstedtA. PerssonP. EkV. MikaelssonM. Mapping and partial characterization of proteases expressed by a CHO production cell line.Biotechnol. Bioeng.200695596197110.1002/bit.2105716897737
    [Google Scholar]
  26. Mesgari-ShadiA. SarrafzadehM.H. Osmotic conditions could promote scFv antibody production in the Escherichia coli HB2151.Bioimpacts20177319920610.15171/bi.2017.23
    [Google Scholar]
  27. HaghiA.M. NateghpourM. EdrissianG. SepehrizadehZ. MohebaliM. KhoramizadeM.R. Sequence analysis of different domains of Plasmodium vivax apical membrane antigen (PvAMA-1 gene) locus in Iran.Iran J Parasitol.2012712631
    [Google Scholar]
  28. KaufmanR.J. WasleyL.C. DornerA.J. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells.J. Biol. Chem.1988263136352636210.1016/S0021‑9258(18)68793‑93129422
    [Google Scholar]
  29. CortesG.A. MooreM.J. El-NakeepS. Physiology, Von Willebrand Factor.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  30. BoedekerB.G.D. Production processes of licensed recombinant factor VIII preparations.Semin Thromb Hemost.20012743859410.1055/s‑2001‑16891
    [Google Scholar]
  31. BoedekerB.G.D. The manufacturing of the recombinant factor VIII, Kogenate.Transfus. Med. Rev.19926425626010.1016/S0887‑7963(92)70177‑11421825
    [Google Scholar]
  32. SpierR.E. GriffithsJ.B. BertholdW. Production of recombinant factor VIII from perfusion cultures: I. Large scale fermentation.Animal Cell Technology: Products of Today, Prospects of TomorrowElsevier: Oxford, England2013
    [Google Scholar]
  33. PlantierJ.L. RodriguezM.H. EnjolrasN. AttaliO. NégrierC. A factor VIII minigene comprising the truncated intron I of factor IX highly improves the in vitro production of factor VIII.Thromb. Haemost.200186859660310.1055/s‑0037‑161609211522009
    [Google Scholar]
  34. SpencerH.T. DenningG. GautneyR.E. DropulicB. RoyA.J. BaranyiL. GangadharanB. ParkerE.T. LollarP. DoeringC.B. Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII.Mol. Ther.201119230230910.1038/mt.2010.23921081907
    [Google Scholar]
  35. DoeringC.B. HealeyJ.F. ParkerE.T. BarrowR.T. LollarP. Identification of porcine coagulation factor VIII domains responsible for high level expression via enhanced secretion.J. Biol. Chem.200427986546655210.1074/jbc.M31245120014660593
    [Google Scholar]
  36. ParkerE.T. HealeyJ.F. BarrowR.T. CraddockH.N. LollarP. Reduction of the inhibitory antibody response to human factor VIII in hemophilia A mice by mutagenesis of the A2 domain B-cell epitope.Blood2004104370471010.1182/blood‑2003‑11‑389115073030
    [Google Scholar]
  37. HealeyJ.F. ParkerE.T. BarrowR.T. LangleyT.J. ChurchW.R. LollarP. The comparative immunogenicity of human and porcine factor VIII in haemophilia A mice.Thromb. Haemost.20091027354110.1160/TH08‑12‑081819572065
    [Google Scholar]
  38. ShintaniM. SanchezZ.K. KimbaraK. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy.Front. Microbiol.2015624210.3389/fmicb.2015.0024225873913
    [Google Scholar]
  39. PaceC.N. VajdosF. FeeL. GrimsleyG. GrayT. How to measure and predict the molar absorption coefficient of a protein.Protein Sci.19954112411242310.1002/pro.55600411208563639
    [Google Scholar]
  40. OrlovaN.A. KovnirS.V. VorobievI.I. YurievA.S. GabibovA.G. VorobievA.I. Stable expression of recombinant factor VIII in CHO cells using methotrexate-driven transgene amplification.Acta Nat. (Engl. Ed.)2012419310010.32607/20758251‑2012‑4‑1‑93‑10022708069
    [Google Scholar]
  41. OrlovaN.A. KovnirS.V. HodakJ.A. VorobievI.I. GabibovA.G. SkryabinK.G. Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells.BMC Biotechnol.20141415610.1186/1472‑6750‑14‑5624929670
    [Google Scholar]
  42. GregoryT.R. NicolJ.A. TammH. KullmanB. KullmanK. LeitchI.J. Eukaryotic genome size databases.Nucleic Acids Res.200735D332810.1093/nar/gkl828
    [Google Scholar]
  43. LaiT. YangY. NgSK. Advances in Mammalian cell line development technologies for recombinant protein production.Pharmaceuticals201365579603
    [Google Scholar]
  44. BasharS. JeongH.J. Bacterial production of recombinant coagulation factor VIII domains.Medicina (Kaunas)202359469410.3390/medicina5904069437109652
    [Google Scholar]
  45. BosquesC.J. CollinsB.E. MeadorJ.W.III SarvaiyaH. MurphyJ.L. DelloRussoG. BulikD.A. HsuI.H. WashburnN. SipseyS.F. MyetteJ.R. RamanR. ShriverZ. SasisekharanR. VenkataramanG. Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins.Nat. Biotechnol.201028111153115610.1038/nbt1110‑115321057479
    [Google Scholar]
  46. DietmairS. HodsonM.P. QuekL-E. TimminsN.E. GrayP. NielsenL.K. A multi-omics analysis of recombinant protein production in Hek293 cells.PLoS One.201278e4339410.1371/journal.pone.0043394
    [Google Scholar]
  47. GhaderiD. ZhangM. Hurtado-ZiolaN. VarkiA. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation.Biotechnol. Genet. Eng. Rev.201228114717610.5661/bger‑28‑14722616486
    [Google Scholar]
  48. WurmF.M. Production of recombinant protein therapeutics in cultivated mammalian cells.Nat. Biotechnol.200422111393139810.1038/nbt102615529164
    [Google Scholar]
  49. ButlerM. SpearmanM. The choice of mammalian cell host and possibilities for glycosylation engineering.Curr. Opin. Biotechnol.20143010711210.1016/j.copbio.2014.06.01025005678
    [Google Scholar]
  50. BarnesL.M. BentleyC.M. DicksonA.J. Advances in animal cell recombinant protein production: GS-NS0 expression system.Cytotechnology200032210912310.1023/A:100817071000319002973
    [Google Scholar]
  51. Guidelines for assuring the quality of pharmaceutical and biological products prepared by recombinant DNA technology, Annex 3, TRS No 814.2013Available from: https://www.who.int/publications/m/item/annex3-who-trs-814
  52. PaleyandaR.K. VelanderW.H. LeeT.K. ScandellaD.H. GwazdauskasF.C. KnightJ.W. HoyerL.W. DrohanW.N. LubonH. Transgenic pigs produce functional human factor VIII in milk.Nat. Biotechnol.1997151097197510.1038/nbt1097‑9719335047
    [Google Scholar]
  53. NiemannH. KuesW.A. Application of transgenesis in livestock for agriculture and biomedicine.Anim. Reprod. Sci.2003793-429131710.1016/S0378‑4320(03)00169‑614643109
    [Google Scholar]
  54. JänneJ. HyttinenJ.M. PeuraT. TolvanenM. AlhonenL. HalmekytöM. Transgenic animals as bioproducers of therapeutic proteins.Ann. Med.199224427328010.3109/078538992091499541389089
    [Google Scholar]
  55. BöszeZ. BaranyiM. BruceC. WhitelawA. Producing recombinant human milk proteins in the milk of livestock species.Adv Exp Med Biol.2008606357395
    [Google Scholar]
  56. MurrayJ.D. Mohamad-FauziN. CooperC.A. MagaE.A. Current status of transgenic animal research for human health applications.Acta Sci. Vet.201038s627s632
    [Google Scholar]
  57. KeeferC.L. Production of bioproducts through the use of transgenic animal models.Anim. Reprod. Sci.200482-8351210.1016/j.anireprosci.2004.04.01015271439
    [Google Scholar]
  58. BrinkM.F. BishopM.D. PieperF.R. Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk.Theriogenology200053113914810.1016/S0093‑691X(99)00247‑210735069
    [Google Scholar]
  59. van BerkelP.H.C. WellingM.M. GeertsM. van VeenH.A. RavensbergenB. SalaheddineM. PauwelsE.K.J. PieperF. NuijensJ.H. NibberingP.H. Large scale production of recombinant human lactoferrin in the milk of transgenic cows.Nat. Biotechnol.200220548448710.1038/nbt0502‑48411981562
    [Google Scholar]
  60. CasademuntE. MartinelleK. JernbergM. WingeS. TiemeyerM. BiesertL. KnaubS. WalterO. SchröderC. The first recombinant human coagulation factor VIII of human origin: Human cell line and manufacturing characteristics.Eur. J. Haematol.201289216517610.1111/j.1600‑0609.2012.01804.x22690791
    [Google Scholar]
  61. BjörkmanS. FolkessonA. JönssonS. Pharmacokinetics and dose requirements of factor VIII over the age range 3–74 years.Eur. J. Clin. Pharmacol.2009651098999810.1007/s00228‑009‑0676‑x19557401
    [Google Scholar]
  62. TiedeA. Half-life extended factor VIII for the treatment of hemophilia A.J. Thromb. Haemost.201513Suppl. 1S176S17910.1111/jth.1292926149020
    [Google Scholar]
  63. GrafL. Extended half-life factor VIII and factor IX preparations. Transfusion Medicine and Hemotherapy. S.Karger AG Basel, Switzerland2018458691
    [Google Scholar]
  64. PowellJ.S. JosephsonN.C. QuonD. RagniM.V. ChengG. LiE. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood, The Journal of the American Society of Hematology.American Society of Hematology Washington, DC201211930313037
    [Google Scholar]
  65. MahlanguJ. PowellJ.S. RagniM.V. ChowdaryP. JosephsonN.C. PabingerI. Phase 3 study of recombinant factor VIII Fc fusion protein in severe hemophilia A. Blood, The Journal of the American Society of Hematology.American Society of Hematology Washington, DC2014123317325
    [Google Scholar]
  66. McCueJ. KshirsagarR. SelvitelliK. LuQ. ZhangM. MeiB. PetersR. PierceG.F. DumontJ. RasoS. ReichertH. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.Biologicals201543421321910.1016/j.biologicals.2015.05.01226094124
    [Google Scholar]
  67. MorrisC. LeeY.S. YoonS. Adventitious agent detection methods in bio-pharmaceutical applications with a focus on viruses, bacteria, and mycoplasma.Curr. Opin. Biotechnol.20217110511410.1016/j.copbio.2021.06.02734325176
    [Google Scholar]
  68. PicançoV. HeinzS. BottD. BehrmannM. CovasD.T. SeifriedE. TonnT. Recombinant expression of coagulation factor VIII in hepatic and non-hepatic cell lines stably transduced with third generation lentiviral vectors comprising the minimal factor VIII promoter.Cytotherapy20079878579410.1080/1465324070165605317917890
    [Google Scholar]
  69. ShahaniT. CovensK. Lavend’hommeR. JazouliN. SokalE. PeerlinckK. JacqueminM. Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII.J. Thromb. Haemost.2014121364210.1111/jth.1241224118899
    [Google Scholar]
  70. da RosaN.G. SwiechK. Picanço-CastroV. de Sousa Russo-CarbolanteE.M. NetoM.A.S. de Castilho-FernandesA. FaçaV.M. FontesA.M. CovasD.T. SK-HEP cells and lentiviral vector for production of human recombinant factor VIII.Biotechnol. Lett.20123481435144310.1007/s10529‑012‑0925‑422488441
    [Google Scholar]
  71. Fantacini DM, Picanço-Castro V. Production of Recombinant Factor VIII in Human Cell Lines.Methods Mol Bio20181674637410.1007/978‑1‑4939‑7312‑5_528921428
    [Google Scholar]
  72. KenetG. ChenY.C. LoweG. PercyC. TranH. von DrygalskiA. TrossaërtM. RedingM. OldenburgJ. Mingot-CastellanoM.E. ParkY.S. PeyvandiF. OzeloM.C. MahlanguJ. QuinnJ. HuangM. ReddyD.B. KimB. Real-world rates of bleeding, factor viii use, and quality of life in individuals with severe haemophilia a receiving prophylaxis in a prospective, noninterventional study.J. Clin. Med.20211024595910.3390/jcm1024595934945255
    [Google Scholar]
  73. SwiechK. Picanço-CastroV. CovasD.T. Production of recombinant coagulation factors: Are humans the best host cells?Bioengineered20178546247010.1080/21655979.2017.127976728277160
    [Google Scholar]
  74. CallaghanM.U. NegrierC. Paz-PrielI. ChangT. ChebonS. LehleM. MahlanguJ. YoungG. Kruse-JarresR. MancusoM.E. NiggliM. HowardM. BienzN.S. ShimaM. Jiménez-YusteV. SchmittC. AsikaniusE. LevyG.G. PipeS.W. OldenburgJ. Long-term outcomes with emicizumab prophylaxis for hemophilia A with or without FVIII inhibitors from the HAVEN 1-4 studies.Blood2021137162231224210.1182/blood.202000921733512413
    [Google Scholar]
  75. Paz-PrielI. ChangT. AsikaniusE. ChebonS. EmrichT. FernandezE. KueblerP. SchmittC. Immunogenicity of emicizumab in people with hemophilia a (PwHA): Results from the HAVEN 1-4 studies.Blood2018132Suppl. 163310.1182/blood‑2018‑99‑118492
    [Google Scholar]
  76. ParnesA. MahlanguJ.N. PipeS.W. Paz-PrielI. LehleM. TraskP.C. Jiménez-YusteV. Patient preference for emicizumab versus prior factor therapy in people with haemophilia A: results from the HAVEN 3 and HAVEN 4 studies.Haemophilia2021276e772e77510.1111/hae.1442134623725
    [Google Scholar]
  77. Jimenez-YusteV. ShimaM. FukutakeK. LehleM. ChebonS. RetoutS. PortronA. LevyG.G. Emicizumab subcutaneous dosing every 4 weeks for the management of hemophilia A: Preliminary data from the pharmacokinetic run-in cohort of a multicenter, open-label, phase 3 study (HAVEN 4).Blood2017130Suppl. 18610.1182/blood.V130.Suppl_1.86.86
    [Google Scholar]
  78. PipeS.W. CollinsP. DhalluinC. KenetG. SchmittC. BuriM. Jiménez-YusteV. PeyvandiF. YoungG. OldenburgJ. MancusoM.E. KiialainenA. ChangT. LehleM. FijnvandraatK. Emicizumab prophylaxis for the treatment of infants with severe hemophilia A without factor VIII inhibitors: Results from the interim analysis of the HAVEN 7 study. Blood2022140Suppl. 145745910.1182/blood‑2022‑157264
    [Google Scholar]
  79. PipeS. CollinsP. DhalluinC. KenetG. SchmittC. BuriM. Jiménez-YusteV. PeyvandiF. YoungG. OldenburgJ. MancusoM.E. KavakliK. KiialainenA. ChangT. LehleM. NiggliM. FijnvandraatK. Emicizumab prophylaxis in infants with severe hemophilia A without factor VIII inhibitors: Results from the primary analysis of the HAVEN 7 study.Blood2023142Suppl. 150510.1182/blood‑2023‑177963
    [Google Scholar]
  80. PipeS.W. CollinsP. DhalluinC. KenetG. SchmittC. BuriM. Jiménez-YusteV. PeyvandiF. YoungG. OldenburgJ. MancusoM.E. KavakliK. KiialainenA. DebS. NiggliM. ChangT. LehleM. FijnvandraatK. Emicizumab prophylaxis in infants with hemophilia A (HAVEN 7): Primary analysis of a phase 3b open-label trial.Blood2024143141355136410.1182/blood.202302183238127586
    [Google Scholar]
  81. OldenburgJ. PipeS.W. CollinsP. DhalluinC. KenetG. SchmittC. Emicizumab prophylaxis for the treatment of infants with severe haemophilia a without factor viii inhibitors: Primary analysis of the HAVEN 7 study.Hamostaseologie202444T-07
    [Google Scholar]
  82. ZhouM. HuZ. ZhangC. WuL. LiZ. LiangD. Gene therapy for hemophilia A: Where we stand. Current Gene Therapy.Bentham Science Publishers202020214215132767930
    [Google Scholar]
  83. MiesbachW. KlamrothR. OldenburgJ. TiedeA. Gene therapy for hemophilia—opportunities and risks. Deutsches Ärzteblatt International.Deutscher Arzte-Verlag GmbH2022119887
    [Google Scholar]
  84. NathwaniA.C. Gene therapy for hemophilia.Hematology (Am. Soc. Hematol. Educ. Program)20222022156957810.1182/hematology.202200038836485127
    [Google Scholar]
  85. OzeloM.C. MahlanguJ. PasiK.J. GiermaszA. LeavittA.D. LaffanM. Valoctocogene roxaparvovec gene therapy for hemophilia A. New England Journal of Medicine.Mass Medical Soc202238610131025
    [Google Scholar]
  86. VisweshwarN. HarringtonT.J. LeavittA.D. KonkleB.A. GiermaszA. StineK. RuponJ. Di RussoG. TsengL-J. de los Angeles ResaM. GanneF. AgathonD. PlonskiF. RouyD. CockroftB.M. FangA. ArkinS. Updated results of the Alta study, a phase 1/2 study of giroctocogene fitelparvovec (PF-07055480/SB-525) gene therapy in adults with severe hemophilia A.Blood2021138Suppl. 156410.1182/blood‑2021‑148651
    [Google Scholar]
  87. PipeS.W. SheehanJ.P. CoppensM. EichlerH. LinardiC. WiegmannS. HayC.R.M. LissitchkovT. First-in-human dose-finding study of AAVhu37 vector-based gene therapy: BAY 2599023 has stable and sustained expression of FVIII over 2 years.Blood2021138Suppl. 1397110.1182/blood‑2021‑148661
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128327353241121050134
Loading
/content/journals/cpd/10.2174/0113816128327353241121050134
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test