Skip to content
2000
Volume 1, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Photovoltaic devices based on semiconducting polymers are a promising route to low-cost solution-processed solar cells (SC). The main goal of this review is to establish a synergy between different units of π-conjugated polymers for simultaneously optimizing each of the fundamental processes, which are taking place within an organic solar cell under solar illumination. Such photovoltaic (PV) parameters as open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and power conversion efficiency (, PCE) are compared for different kinds of polymers. Here the focus is on structural differences between the various polymers such as polythiophenes, poly(p-phenylene vinylene)s, polybisbenzothiazoles mainly applied in SC. Additionally, the influences of another chemical constitution such as carbazole, triphenylamine, or oxydiazole groups on the photophysical properties of solar cells are analyzed. Moreover, polymeric devices with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), [6,6]-phenyl C70-butyric acid methyl ester (PC70BM) and their derivatives with nanocrystals are reviewed in this paper. Finally, we look into present status and development prospects for new polymeric solar cells with respect to the current state-of-the-art.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/1877946811101010027
2011-01-01
2025-09-11
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/1877946811101010027
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test