Skip to content
2000
Volume 6, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

We have generated models of nanotubes by selecting atoms from the unit cells of TiO2 crystals (rutile and anatase) in specific planes, i.e., the plane (101) for anatse and the plane (110) for rutile. Using a programming language created in shell bash we designed clusters of titanium dioxide nanotubes with different lengths and diameters. The structures generated were submitted to quantum mechanical calculations using the semi-empirical PM7 method, HF and DFT methods with the 6-31g and 6-311G basis sets. The clusters were optimized and the one with the most stable structures were those with the largest diameters. The best models, i.e. the most stable structures, were the anatase nanotube of molecular formula [[(TiO2)4]20]3 and the rutile nanotube with molecular formula [[(TiO2)2]13]3. Comparing the relative free energies of the structures with the same number of atoms we concluded that the anatase nanotubes had a greater stability in comparison with the rutile nanotubes. Calculations of the DFT energy gaps yields values between 2.0 and 2.5 eV, characteristic of semiconductors and in agreement with experiment.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/187794680601160324113404
2016-01-01
2025-08-14
Loading full text...

Full text loading...

/content/journals/cpc/10.2174/187794680601160324113404
Loading

  • Article Type:
    Research Article
Keyword(s): DFT; graphene; HF; nanotubes; PM7; TiO2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test