Skip to content
2000
image of Literature on Starch Nanoparticles Used in Drug Delivery Systems: A Review

Abstract

Particle size has become a more prominent topic in multidisciplinary research in recent years, which aids in examining the relationship between the microscopic and macroscopic characteristics of different materials. Generally, acid/enzymatic hydrolysis, gamma irradiation, simple nanoprecipitation, ultra-sonication, and homogenization treatments are used to create starch nanoparticles. After starch is converted into nanoparticles, various features are impacted, including size distribution, morphological, rheological, and amylose content. It has been shown that starch nanoparticles are superior to natural starches; therefore, they have a wide range of applications as fillers, binding agents, and texture modifiers in various food products, as well as in the production of biocomposite films with improved barrier properties. The principal applications for starch nanoparticles include medication administration, nanoemulsions, and nano-starch-based composite films. There is a dearth of research on the effects of starch nanoparticle production on different native starch characteristics. In order to maximize the use of starch nanoparticles in food and non-food applications, this study thoroughly reviews all factors pertaining to different starch characteristics and their nanoparticles. Particular attention is paid to the abstract review of the literature on starch, which gives a clear idea of the relevance of this study.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468386528250827045918
2025-10-06
2025-12-06
Loading full text...

Full text loading...

References

  1. Heiligtag F.J. Niederberger M. The fascinating world of nanoparticle research. Mater. Today 2013 16 7-8 262 271 10.1016/j.mattod.2013.07.004
    [Google Scholar]
  2. Bel Haaj S. Magnin A. Pétrier C. Boufi S. Starch nanoparticles formation via high power ultrasonication. Carbohydr. Polym. 2013 92 2 1625 1632 10.1016/j.carbpol.2012.11.022 23399199
    [Google Scholar]
  3. Gadad A.P. S M, V.K.; Dandagi, P.M.; Bolmol, U.B.; Pallavi, N.P. Nanoparticles and their therapeutic applications in pharmacy. Int. J. Pharm. Sci. Nanotechnol. 2014 7 3 2509 2519 10.37285/ijpsn.2014.7.3.2
    [Google Scholar]
  4. Dinesh Kumar V. Verma P.R.P. Singh S.K. Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. Lebensm. Wiss. Technol. 2015 61 2 330 338 10.1016/j.lwt.2014.12.020
    [Google Scholar]
  5. Emerich D.F. Thanos C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther. 2003 3 4 655 663 10.1517/14712598.3.4.655 12831370
    [Google Scholar]
  6. Nikolova M. Slavchov R. Nikolova G. Maurya V.K. Nanotechnology in medicine. Nanobiomedicine 2020 533 546 10.1007/978‑3‑319‑68864‑0_45
    [Google Scholar]
  7. Cheng L.C. Jiang X. Wang J. Chen C. Liu R.S. Nano–bio effects: Interaction of nanomaterials with cells. Nanoscale 2013 5 9 3547 3569 10.1039/c3nr34276j 23532468
    [Google Scholar]
  8. Nikalje A.P. Nanotechnology and its applications in medicine. Med. Chem. 2015 5 2 81 89 10.4172/2161‑0444.1000247
    [Google Scholar]
  9. Desgouilles S. Vauthier C. Bazile D. Vacus J. Grossiord J.L. Veillard M. Couvreur P. The design of nanoparticles obtained by solvent evaporation: A comprehensive study. Langmuir 2003 19 22 9504 9510 10.1021/la034999q
    [Google Scholar]
  10. Lee M. Cho Y.W. Park J.H. Chung H. Jeong S.Y. Choi K. Moon D.H. Kim S.Y. Kim I.S. Kwon I.C. Size con-trol of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polym. Sci. 2006 284 5 506 512 10.1007/s00396‑005‑1413‑3
    [Google Scholar]
  11. Liu D. Jiang S. Shen H. Qin S. Liu J. Zhang Q. Li R. Xu Q. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J. Nanopart. Res. 2011 13 6 2375 2386 10.1007/s11051‑010‑9998‑y
    [Google Scholar]
  12. Pooja D. Tunki L. Kulhari H. Reddy B.B. Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief 2016 6 15 19 10.1016/j.dib.2015.11.038 26759823
    [Google Scholar]
  13. Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbi-tacin I in PLGA nanoparticles. Saudi Pharm. J. 2014 22 3 219 222 10.1016/j.jsps.2013.12.002 25061407
    [Google Scholar]
  14. Kızılbey K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation met-hod. ACS Omega 2019 4 1 555 562 10.1021/acsomega.8b02767
    [Google Scholar]
  15. Nava-Arzaluz M.G. Piñón-Segundo E. Ganem-Rondero A. Lechuga-Ballesteros D. Single emulsion-solvent evapo-ration technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat. Drug Deliv. Formul. 2012 6 3 209 223 10.2174/187221112802652633 22734869
    [Google Scholar]
  16. Hoa L.T.M. Chi N.T. Nguyen L.H. Chien D.M. Preparation and characterisation of nanoparticles containing keto-profen and acrylic polymers prepared by emulsion solvent evaporation method. J. Exp. Nanosci. 2012 7 2 189 197 10.1080/17458080.2010.515247
    [Google Scholar]
  17. Chi N.T. Triet N.M. Chien D.M. Preparation of drug nanoparticles by emulsion evaporation method. J. Phys. Conf. Ser. 2009 187 1 012047 10.1088/1742‑6596/187/1/012047
    [Google Scholar]
  18. Nabi-Meibodi M. Vatanara A. Najafabadi A.R. Rouini M.R. Ramezani V. Gilani K. Etemadzadeh S.M.H. Azadmanesh K. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloids Surf. B Biointerfaces 2013 112 408 414 10.1016/j.colsurfb.2013.06.013 24036624
    [Google Scholar]
  19. Vaculikova E. Grunwaldova V. Kral V. Dohnal J. Jampilek J. Preparation of candesartan and atorvastatin nano-particles by solvent evaporation. Molecules 2012 17 11 13221 13234 10.3390/molecules171113221 23132139
    [Google Scholar]
  20. Zhang Y. Li Y. Zhao X. Zu Y. Wang W. Wu W. Zhong C. Wu M. Li Z. Preparation, characterization and bioavailability of oral puerarin nanoparticles by emulsion solvent evaporation method. RSC Advances 2016 6 74 69889 69901 10.1039/C6RA08413C
    [Google Scholar]
  21. Vaculikova E. Placha D. Pisarcik M. Peikertova P. Dedkova K. Devinsky F. Jampilek J. Preparation of risedro-nate nanoparticles by solvent evaporation technique. Molecules 2014 19 11 17848 17861 10.3390/molecules191117848 25375330
    [Google Scholar]
  22. Paswan S.K. Saini T.R. Purification of drug loaded PLGA nanoparticles prepared by emulsification solvent evaporati-on using stirred cell ultrafiltration technique. Pharm. Res. 2017 34 12 2779 2786 10.1007/s11095‑017‑2257‑5 28924739
    [Google Scholar]
  23. Qiu L. Zhao X. Zu Y. Zhang Y. Liu Y. Wu W. Li Y. Ursolic acid nanoparticles for oral delivery prepared by emulsion solvent evaporation method: Characterization, in vitro evaluation of radical scavenging activity and bioavai-lability. Artif. Cells Nanomed. Biotechnol. 2019 47 1 609 620 10.1080/21691401.2019.1573739 30831030
    [Google Scholar]
  24. Jaiswal J. Kumar Gupta S. Kreuter J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emul-sification-solvent evaporation process. J. Control. Release 2004 96 1 169 178 10.1016/j.jconrel.2004.01.017 15063039
    [Google Scholar]
  25. Jiang J. Ao J. He C. Xiong J. Zhao J. Liu J. You S. Jiang H. Preparation and characterisation of ginkgolide na-noparticles via the emulsion solvent evaporation method. 2018 13 5 636 640 10.1049/mnl.2017.0906
    [Google Scholar]
  26. Yadav K. Yadav D. Yadav M. Kumar S. Noscapine loaded PLGA nanoparticles prepared using oil-in-water emul-sion solvent evaporation method. J. Nanopharm. Drug Deliv. 2016 3 1 97 105 10.1166/jnd.2015.1074
    [Google Scholar]
  27. Zhao X. Deng Y. Zhang Y. Zu Y. Lian B. Wu M. Zu C. Wu W. Silymarin nanoparticles through emulsion sol-vent evaporation method for oral delivery with high antioxidant activities, bioavailability, and absorption in the liver. RSC Advances 2016 6 95 93137 93146 10.1039/C6RA12896C
    [Google Scholar]
  28. Lee W.H. Loo C.Y. Traini D. Young P.M. Nano- and micro-based inhaled drug delivery systems for targeting alveo-lar macrophages. Expert Opin. Drug Deliv. 2015 12 6 1009 1026 10.1517/17425247.2015.1039509 25912721
    [Google Scholar]
  29. Lee Y.S. Johnson P.J. Robbins P.T. Bridson R.H. Production of nanoparticles-in-microparticles by a double emul-sion method: A comprehensive study. Eur. J. Pharm. Biopharm. 2013 83 2 168 173 10.1016/j.ejpb.2012.10.016 23153669
    [Google Scholar]
  30. Zambaux M. Bonneaux F. Gref R. Maincent P. Dellacherie E. Alonso M.J. Labrude P. Vigneron C. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release 1998 50 1-3 31 40 10.1016/S0168‑3659(97)00106‑5 9685870
    [Google Scholar]
  31. Panigrahi D. Sahu P.K. Swain S. Verma R.K. Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN Appl. Sci. 2021 3 6 638 10.1007/s42452‑021‑04609‑1
    [Google Scholar]
  32. Tewes F. Munnier E. Antoon B. Ngaboni Okassa L. Cohen-Jonathan S. Marchais H. Douziech-Eyrolles L. Sou-cé M. Dubois P. Chourpa I. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles pre-pared by single and double emulsion methods. Eur. J. Pharm. Biopharm. 2007 66 3 488 492 10.1016/j.ejpb.2007.02.016 17433641
    [Google Scholar]
  33. Liu J. Qiu Z. Wang S. Zhou L. Zhang S. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed. Mater. 2010 5 6 065002 10.1088/1748‑6041/5/6/065002 20924138
    [Google Scholar]
  34. Bilati U. Allémann E. Doelker E. Poly(D,L-lactide- co -glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency. J. Microencapsul. 2005 22 2 205 214 10.1080/02652040400026442 16019905
    [Google Scholar]
  35. Xiao J. Lu X. Huang Q. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrica-tion, microstructure, stability and in vitro digestion profile. Food Hydrocoll. 2017 62 230 238 10.1016/j.foodhyd.2016.08.014
    [Google Scholar]
  36. Li Z. Yu L. Zheng L. Geng F. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method. J. Therm. Anal. Calorim. 2010 99 2 689 693 10.1007/s10973‑009‑0127‑z
    [Google Scholar]
  37. Subroto E. Andoyo R. Indiarto R. Wulandari E. Wadhiah E.F.N. Preparation of solid Lipid nanoparticle-ferrous sulfate by double emulsion method based on fat rich in monolaurin and stearic acid. Nanomaterials 2022 12 17 3054 10.3390/nano12173054 36080090
    [Google Scholar]
  38. Haggag Y.A. Faheem A.M. Tambuwala M.M. Osman M.A. El-Gizawy S.A. O’Hagan B. Irwin N. McCarron P.A. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm. Dev. Technol. 2018 23 4 370 381 10.1080/10837450.2017.1295066 28285551
    [Google Scholar]
  39. Nabi-Meibodi M. Navidi B. Navidi N. Vatanara A. Reza Rouini M. Ramezani V. Optimized double emulsion-solvent evaporation process for production of solid lipid nanoparticles containing baclofene as a lipid insoluble drug. J. Drug Deliv. Sci. Technol. 2013 23 3 225 230 10.1016/S1773‑2247(13)50034‑7
    [Google Scholar]
  40. Alenazi A.S.M. El-Bagory I.M. Yassin A.B. Alanazi F.K. Alsarra I.A. Haq N. Bayomi M.A. Shakeel F. Design of polymeric nanoparticles for oral delivery of capreomycin peptide using double emulsion technique: Impact of stress conditions. J. Drug Deliv. Sci. Technol. 2022 71 103326 10.1016/j.jddst.2022.103326
    [Google Scholar]
  41. Amasya G. Badilli U. Aksu B. Tarimci N. Quality by design case study 1: Design of 5-fluorouracil loaded lipid na-noparticles by the W/O/W double emulsion — Solvent evaporation method. Eur. J. Pharm. Sci. 2016 84 92 102 10.1016/j.ejps.2016.01.003 26780593
    [Google Scholar]
  42. Fessi HP Puisieux F Devissaguet JP Ammoury N Benita S Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharma. 1989 55 1 R1 4 10.1016/0378‑5173(89)90281‑0
    [Google Scholar]
  43. Bilati U. Allémann E. Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur. J. Pharm. Sci. 2005 24 1 67 75 10.1016/j.ejps.2004.09.011 15626579
    [Google Scholar]
  44. Almoustafa H.A. Alshawsh M.A. Chik Z. Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic agents by nanoprecipitation method. Int. J. Pharm. 2017 533 1 275 284 10.1016/j.ijpharm.2017.09.054 28943210
    [Google Scholar]
  45. Zhang C. Pansare V.J. Prud’homme R.K. Priestley R.D. Flash nanoprecipitation of polystyrenenanoparticles. Soft Matter 2012 8 1 86 93 10.1039/C1SM06182H
    [Google Scholar]
  46. Saad W.S. Prud’homme R.K. Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 2016 11 2 212 227 10.1016/j.nantod.2016.04.006
    [Google Scholar]
  47. Hernández-Giottonini K.Y. Rodríguez-Córdova R.J. Gutiérrez-Valenzuela C.A. Peñuñuri-Miranda O. Zavala-Rivera P. Guerrero-Germán P. Lucero-Acuña A. PLGA nanoparticle preparations by emulsification and nanoprecipi-tation techniques: Effects of formulation parameters. RSC Advances 2020 10 8 4218 4231 10.1039/C9RA10857B 35495261
    [Google Scholar]
  48. Govender T. Stolnik S. Garnett M.C. Illum L. Davis S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release 1999 57 2 171 185 10.1016/S0168‑3659(98)00116‑3 9971898
    [Google Scholar]
  49. Hornig S. Heinze T. Becer C.R. Schubert U.S. Synthetic polymeric nanoparticles by nanoprecipitation. J. Mater. Chem. 2009 19 23 3838 3840 10.1039/b906556n
    [Google Scholar]
  50. Sailaja A.K. Tabassum A. Formulation of letrozole-loaded ethyl cellulose and eudragit S100 nanoparticles by nanoprecipitation technique and determination of cytotoxic activity by MTT assay. Curr. Nanomed. 2025 15 1 95 111 10.2174/0124681873283442240228054238
    [Google Scholar]
  51. Liu Y. Yang G. Zou D. Hui Y. Nigam K. Middelberg A.P.J. Zhao C.X. Formulation of nanoparticles using mi-xing-induced nanoprecipitation for drug delivery. Ind. Eng. Chem. Res. 2020 59 9 4134 4149 10.1021/acs.iecr.9b04747
    [Google Scholar]
  52. Kuddushi M. Kanike C. Xu B.B. Zhang X. Recent advances in nanoprecipitation: From mechanistic insights to ap-plications in nanomaterial synthesis. Soft Matter 2025 21 15 2759 2781 10.1039/D5SM00006H 40152021
    [Google Scholar]
  53. Bilati U. Allémann E. Doelker E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of pro-teins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 2005 6 4 E594 E604 10.1208/pt060474 16408861
    [Google Scholar]
  54. Vuddanda P.R. Mishra A. Singh S.K. Singh S. Development of polymeric nanoparticles with highly entrapped her-bal hydrophilic drug using nanoprecipitation technique: An approach of quality by design. Pharm. Dev. Technol. 2015 20 5 579 587 10.3109/10837450.2014.908302 24831535
    [Google Scholar]
  55. Yadav K.S. Sawant K.K. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparti-cles. AAPS PharmSciTech 2010 11 3 1456 1465 10.1208/s12249‑010‑9519‑4 20842542
    [Google Scholar]
  56. Jelvehgari M. Salatin S. Barar J. Barzegar-Jalali M. Adibkia K. Kiafar F. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res. Pharm. Sci. 2017 12 1 1 14 10.4103/1735‑5362.199041 28255308
    [Google Scholar]
  57. Truong-Dinh Tran T. Ha-Lien Tran P. Tu Nguyen K. Tran V.T. Nano-precipitation: Preparation and application in the field of pharmacy. Curr. Pharm. Des. 2016 22 20 2997 3006 10.2174/1381612822666160408151702 27055935
    [Google Scholar]
  58. Luque-Alcaraz A.G. Lizardi-Mendoza J. Goycoolea F.M. Higuera-Ciapara I. Argüelles-Monal W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Advances 2016 6 64 59250 59256 10.1039/C6RA06563E
    [Google Scholar]
  59. Chidambaram M. Krishnasamy K. Modifications to the conventional nanoprecipitation technique: An approach to fabricate narrow sized polymeric nanoparticles. Adv. Pharm. Bull. 2014 4 2 205 208 10.5681/apb.2014.030 24511486
    [Google Scholar]
  60. Battaglia L. Gallarate M. Cavalli R. Trotta M. Solid lipid nanoparticles produced through a coacervation method. J. Microencapsul. 2010 27 1 78 85 10.3109/02652040903031279 19538034
    [Google Scholar]
  61. Irache J. Bergougnoux L. Ezpeleta I. Gueguen J. Orecchioni A.M. Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int. J. Pharm. 1995 126 1-2 103 109 10.1016/0378‑5173(95)04103‑6
    [Google Scholar]
  62. Hao J. Wang F. Wang X. Zhang D. Bi Y. Gao Y. Zhao X. Zhang Q. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur. J. Pharm. Sci. 2012 47 2 497 505 10.1016/j.ejps.2012.07.006 22820033
    [Google Scholar]
  63. Talarico L. Consumi M. Leone G. Tamasi G. Magnani A. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin. Molecules 2021 26 9 2694 10.3390/molecules26092694 34064488
    [Google Scholar]
  64. Gallarate M. Battaglia L. Peira E. Trotta M. Peptide-loaded solid lipid nanoparticles prepared through coacervation technique. Int. J. Chem. Eng. 2011 2011 1 132435 10.1155/2011/132435
    [Google Scholar]
  65. Chirio D. Gallarate M. Peira E. Battaglia L. Serpe L. Trotta M. Formulation of curcumin-loaded solid lipid nano-particles produced by fatty acids coacervation technique. J. Microencapsul. 2011 28 6 537 548 10.3109/02652048.2011.590615 21702702
    [Google Scholar]
  66. Davidenko N. Blanco M.D. Peniche C. Becherán L. Guerrero S. Teijón J.M. Effects of different parameters on the characteristics of chitosan–poly(acrylic acid) nanoparticles obtained by the method of coacervation. J. Appl. Polym. Sci. 2009 111 5 2362 2371 10.1002/app.29231
    [Google Scholar]
  67. Battaglia L. Gallarate M. Peira E. Chirio D. Solazzi I. Giordano S.M.A. Gigliotti C.L. Riganti C. Dianzani C. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies. Nanotechnology 2015 26 25 255102 10.1088/0957‑4484/26/25/255102 26043866
    [Google Scholar]
  68. Battaglia L. Muntoni E. Chirio D. Peira E. Annovazzi L. Schiffer D. Mellai M. Riganti C. Salaroglio I.C. La-notte M. Panciani P. Capucchio M.T. Valazza A. Biasibetti E. Gallarate M. Solid lipid nanoparticles by coacerva-tion loaded with a methotrexate prodrug: Preliminary study for glioma treatment. Nanomedicine (Lond.) 2017 12 6 639 656 10.2217/nnm‑2016‑0380 28186465
    [Google Scholar]
  69. Battaglia L. Serpe L. Muntoni E. Zara G. Trotta M. Gallarate M. Methotrexate-loaded SLNs prepared by coacervation technique: In vitro cytotoxicity and in vivo pharmacokinetics and biodistribution. Nanomedicine (Lond.) 2011 6 9 1561 1573 10.2217/nnm.11.52 22011315
    [Google Scholar]
  70. Hedayati R. Jahanshahi M. Attar H. Fabrication and characterization of albumin‐acacia nanoparticles based on complex coacervation as potent nanocarrier. J. Chem. Technol. Biotechnol. 2012 87 10 1401 1408 10.1002/jctb.3758
    [Google Scholar]
  71. D’Addio S.M. Kafka C. Akbulut M. Beattie P. Saad W. Herrera M. Kennedy M.T. Prud’homme R.K. Novel method for concentrating and drying polymeric nanoparticles: Hydrogen bonding coacervate precipitation. Mol. Pharm. 2010 7 2 557 564 10.1021/mp900260q 20175521
    [Google Scholar]
  72. Tavares I.S. Caroni A.L.P.F. Neto A.A.D. Pereira M.R. Fonseca J.L.C. Surface charging and dimensions of chito-san coacervated nanoparticles. Colloids Surf. B Biointerfaces 2012 90 254 258 10.1016/j.colsurfb.2011.10.025 22078924
    [Google Scholar]
  73. Nagpal K. Singh S.K. Mishra D.N. Chitosan nanoparticles: A promising system in novel drug delivery. Chem. Pharm. Bull. (Tokyo) 2010 58 11 1423 1430 10.1248/cpb.58.1423 21048331
    [Google Scholar]
  74. Bozkir A. Saka O.M. Chitosan nanoparticles for plasmid DNA delivery: Effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv. 2004 11 2 107 112 10.1080/10717540490280705 15200009
    [Google Scholar]
  75. Patra S. Basak P. Tibarewala D.N. Synthesis of gelatin nano/submicron particles by binary nonsolvent aided coacer-vation (BNAC) method. Mater. Sci. Eng. C 2016 59 310 318 10.1016/j.msec.2015.10.011 26652378
    [Google Scholar]
  76. Wangsuntornpakdee P. Sae-tan S. Iwamoto S. Peanparkdee M. Optimisation of soybean oil enriched with lipophilic antioxidants from Thai rice germs and their nanoparticles developed using complex coacervation. Food Biosci. 2023 54 102888 10.1016/j.fbio.2023.102888
    [Google Scholar]
  77. Wilson B. Ambika T.V. Dharmesh Kumar Patel R. Jenita J.L. Priyadarshini S.R.B. Nanoparticles based on albu-min: Preparation, characterization and the use for 5-flurouracil delivery. Int. J. Biol. Macromol. 2012 51 5 874 878 10.1016/j.ijbiomac.2012.07.014 22820011
    [Google Scholar]
  78. Jelvehgari M. Zakeri-Milani P. Siahi-Shadbad M.R. Loveymi B.D. Nokhodchi A. Azari Z. Valizadeh H. Develo-pment of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech 2010 11 3 1237 1242 10.1208/s12249‑010‑9488‑7 20686881
    [Google Scholar]
  79. Müller W.E.G. Neufurth M. Lieberwirth I. Wang S. Schröder H.C. Wang X. Functional importance of coacerva-tion to convert calcium polyphosphate nanoparticles into the physiologically active state. Mater. Today Bio 2022 16 100404 10.1016/j.mtbio.2022.100404 36065353
    [Google Scholar]
  80. Martínez Rivas C.J. Tarhini M. Badri W. Miladi K. Greige-Gerges H. Nazari Q.A. Galindo Rodríguez S.A. Ro-mán R.Á. Fessi H. Elaissari A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017 532 1 66 81 10.1016/j.ijpharm.2017.08.064 28801107
    [Google Scholar]
  81. Galindo-Rodriguez S. Allémann E. Fessi H. Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm. Res. 2004 21 8 1428 1439 10.1023/B:PHAM.0000036917.75634.be 15359578
    [Google Scholar]
  82. Allémann E. Gurny R. Doelker E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out pro-cess: Influence of process parameters on particle size. Int. J. Pharm. 1992 87 1-3 247 253 10.1016/0378‑5173(92)90249‑2
    [Google Scholar]
  83. Mendoza-Muñoz N. Quintanar-Guerrero D. Allémann E. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Recent Pat. Drug Deliv. Formul. 2012 6 3 236 249 10.2174/187221112802652688 22734871
    [Google Scholar]
  84. Allémann E. Leroux J.C. Gurny R. Doelker E. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. 1993 10 12 1732 1737 10.1023/A:1018970030327 7905625
    [Google Scholar]
  85. Rorabeck K. Zhitomirsky I. Salting-out aided dispersive extraction of Mn3O4 nanoparticles and carbon nanotubes for application in supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2021 618 126451 10.1016/j.colsurfa.2021.126451
    [Google Scholar]
  86. Balakrishanan M.H. Rajan M. Size-controlled synthesis of biodegradable nanocarriers for targeted and controlled cancer drug delivery using salting out cation. Bull. Mater. Sci. 2016 39 1 69 77 10.1007/s12034‑015‑0946‑4
    [Google Scholar]
  87. Jitta S.R. Kumar, L Salting Out and Ionic Gelation Manufacturing Techniques for Nanoparticles. Emerging Techno-logies for Nanoparticle Manufacturing. Cham Springer 2021 129 165 10.1007/978‑3‑030‑50703‑9_7
    [Google Scholar]
  88. McCarron P.A. Donnelly R.F. Marouf W. Celecoxib-loaded poly(D,L -lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. J. Microencapsul. 2006 23 5 480 498 10.1080/02652040600682390 16980271
    [Google Scholar]
  89. Tok K.C. Gumustas M. Sengel-Turk C.T. Amasya G. Bayram B. Arioglu-Inan E. Development of salting-out extraction methodology for the determination of piroxicam from polymeric based nanocarriers and biological samples. J. Pharm. Biomed. Anal. 2022 219 114966 10.1016/j.jpba.2022.114966 35908414
    [Google Scholar]
  90. Galindo-Rodríguez S.A. Puel F. Briançon S. Allémann E. Doelker E. Fessi H. Comparative scale-up of three met-hods for producing ibuprofen-loaded nanoparticles. Eur J. Pharm. Sci. 2005 25 4-5 357 367 10.1016/j.ejps.2005.03.013 15916889
    [Google Scholar]
  91. Krishnasailaja A. Sarithareddy A. Preparation and characterisation of sulfasalazine loaded polymeric nanoparticles by salting out technique. J. Bionanosci 2017 11 1 17 23 10.1166/jbns.2017.1410
    [Google Scholar]
  92. Lin C. Chen Z. Feng W. Wang R. Wang T. Salting-out effect-mediated size-control of protein nanoparticles to-wards controllable microstructures for sustained release of eugenol. Food Chem. 2023 138080 10.1016/j.foodchem.2023.138080 38070237
    [Google Scholar]
  93. Alekhya A. Sailaja A.K. Formulation and evaluation of letrozole nanoparticles by salting out technique and determi-nation of anti-cancer activity by MTT assay. Nano Biomed. Eng. 2022 14 3 246 253 10.5101/nbe.v14i3.p246‑253
    [Google Scholar]
  94. Modi S. Anderson B.D. Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 2013 10 8 3076 3089 10.1021/mp400154a 23758289
    [Google Scholar]
  95. Fruntke A. Hülsmann J. Skodda L.H. Blümbott B. Godmann M. Koschella A. Heinzel T. Heinze T. Wilke T. Polysaccharide-based nanoparticles prepared by dialysis: Novel drug delivery systems for chemistry education. J. Chem. Educ. 2025 102 3 1169 1178 10.1021/acs.jchemed.4c00895
    [Google Scholar]
  96. Xie J. Wang C.H. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of pacli-taxel. Pharm. Res. 2005 22 12 2079 2090 10.1007/s11095‑005‑7782‑y 16132339
    [Google Scholar]
  97. Zhang Z. Feng S.S. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules 2006 7 4 1139 1146 10.1021/bm050953v 16602731
    [Google Scholar]
  98. Shakeri F. Shakeri S. Hojjatoleslami M. Preparation and characterization of carvacrol loaded polyhydroxybutyrate nanoparticles by nanoprecipitation and dialysis methods. J. Food Sci. 2014 79 4 N697 N705 10.1111/1750‑3841.12406 24621231
    [Google Scholar]
  99. Nah J.W. Paek Y.W. Jeong Y.I. Kim D.W. Cho C.S. Kim S.H. Kim M.Y. Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method. Arch. Pharm. Res. 1998 21 4 418 422 10.1007/BF02974636 9875469
    [Google Scholar]
  100. Rodríguez-Félix F. Del-Toro-Sánchez C.L. Tapia-Hernández J.A. A new design for obtaining of white zein micro- and nanoparticles powder: Antisolvent-dialysis method. Food Sci. Biotechnol. 2020 29 5 619 629 10.1007/s10068‑019‑00702‑9 32419960
    [Google Scholar]
  101. Chen H. Xu B. Zhou C. Yagoub A.E.G.A. Cai Z. Yu X. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparti-cles. Food Hydrocoll. 2022 122 107110 10.1016/j.foodhyd.2021.107110
    [Google Scholar]
  102. Liu L. Xiao Z. Niu S. He Y. Wang G. Pei X. Tao W. Wang M. Preparation, characteristics and feeble induced-apoptosis performance of non-dialysis requiring selenium nanoparticles@chitosan. Mater. Des. 2019 182 108024 10.1016/j.matdes.2019.108024
    [Google Scholar]
  103. Byrappa K. Ohara S. Adschiri T. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv. Drug Deliv. Rev. 2008 60 3 299 327 10.1016/j.addr.2007.09.001 18192071
    [Google Scholar]
  104. Sheth P. Sandhu H. Singhal D. Malick W. Shah N. Serpil Kislalioglu M. Nanoparticles in the pharmaceutical in-dustry and the use of supercritical fluid technologies for nanoparticle production. Curr. Drug Deliv. 2012 9 3 269 284 10.2174/156720112800389052 22283656
    [Google Scholar]
  105. Vorobei A.M. Parenago O.O. Using supercritical fluid technologies to prepare micro-and nanoparticles. Russ. J. Phys. Chem. A. Focus Chem. 2021 95 3 407 417 10.1134/S0036024421030237
    [Google Scholar]
  106. Padrela L. Rodrigues M.A. Duarte A. Dias A.M.A. Braga M.E.M. de Sousa H.C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – A comprehensive review. Adv. Drug Deliv. Rev. 2018 131 22 78 10.1016/j.addr.2018.07.010 30026127
    [Google Scholar]
  107. Adschiri T. Yoko A. Supercritical fluids for nanotechnology. J. Supercrit. Fluids 2018 134 167 175 10.1016/j.supflu.2017.12.033
    [Google Scholar]
  108. Sun Y.P. Meziani M.J. Pathak P. Qu L. Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chemistry 2005 11 5 1366 1373 10.1002/chem.200400422 15390139
    [Google Scholar]
  109. Lam U.T. Mammucari R. Suzuki K. Foster N.R. Processing of iron oxide nanoparticles by supercritical fluids. Ind. Eng. Chem. Res. 2008 47 3 599 614 10.1021/ie070494+
    [Google Scholar]
  110. Taboada E. Solanas R. Rodríguez E. Weissleder R. Roig A. Supercritical‐fluid‐assisted one‐pot synthesis of bio-compatible core (γ‐Fe2O3)/shell (SiO2) nanoparticles as high relaxivity T2‐contrast agents for magnetic resonance ima-ging. Adv. Funct. Mater. 2009 19 14 2319 2324 10.1002/adfm.200801681
    [Google Scholar]
  111. Ha E.S. Sim W.Y. Lee S.K. Jeong J.S. Kim J.S. Baek I. Choi D.H. Park H. Hwang S.J. Kim M.S. Preparation and evaluation of resveratrol-loaded composite nanoparticles using a supercritical fluid technology for enhanced oral and skin delivery. Antioxidants 2019 8 11 554 10.3390/antiox8110554 31739617
    [Google Scholar]
  112. Varshosaz J. Hassanzadeh F. Mahmoudzadeh M. Sadeghi A. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol. 2009 189 1 97 102 10.1016/j.powtec.2008.06.009
    [Google Scholar]
  113. Pathak P. Meziani M.J. Desai T. Sun Y.P. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J. Supercrit. Fluids 2006 37 3 279 286 10.1016/j.supflu.2005.09.005
    [Google Scholar]
  114. Xu P.Y. Kankala R. Pan Y.J. Yuan H. Wang S.B. Chen A. Overcoming multidrug resistance through inhalable siRNA nanoparticles-decorated porous microparticles based on supercritical fluid technology. Int. J. Nanomedicine 2018 13 4685 4698 10.2147/IJN.S169399 30154654
    [Google Scholar]
  115. Lane M.K.M. Zimmerman J.B. Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis. Green Chem. 2019 21 14 3769 3781 10.1039/C9GC01619H
    [Google Scholar]
  116. Martín V. Cocero M.J. Rodríguez-Rojo S. Fluidization of nanoparticles agglomerates enhanced by supercritical car-bon dioxide. Powder Technol. 2017 318 242 247 10.1016/j.powtec.2017.06.009
    [Google Scholar]
  117. Campardelli R. Cherain M. Perfetti C. Iorio C. Scognamiglio M. Reverchon E. Della Porta G. Lipid nanoparti-cles production by supercritical fluid assisted emulsion–diffusion. J. Supercrit. Fluids 2013 82 34 40 10.1016/j.supflu.2013.05.020
    [Google Scholar]
  118. Williams G.L. Vohs J.K. Brege J.J. Fahlman B.D. Supercritical fluid facilitated growth of copper and aluminum oxi-de nanoparticles. J. Chem. Educ. 2005 82 5 771 10.1021/ed082p771
    [Google Scholar]
  119. De Marco I. Supercritical fluids and nanoparticles in cancer therapy. Micromachines 2022 13 9 1449 10.3390/mi13091449 36144072
    [Google Scholar]
  120. Fattahi A. Karimi-Sabet J. Keshavarz A. Golzary A. Rafiee-Tehrani M. Dorkoosh F.A. Preparation and characte-rization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. J. Supercrit. Fluids 2016 107 469 478 10.1016/j.supflu.2015.05.013
    [Google Scholar]
  121. Keshavarz A. Karimi-Sabet J. Fattahi A. Golzary A. Rafiee-Tehrani M. Dorkoosh F.A. Preparation and characte-rization of raloxifene nanoparticles using rapid expansion of supercritical solution (RESS). J. Supercrit. Fluids 2012 63 169 179 10.1016/j.supflu.2011.12.005
    [Google Scholar]
  122. Zhao Z. Xie M. Li Y. Chen A. Li G. Zhang J. Hu H. Wang X. Li S. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2. Int. J. Nanomedicine 2015 10 3171 3181 10.2147/IJN.S80434 25995627
    [Google Scholar]
  123. Tiruwa R. A review on nanoparticles – preparation and evaluation parameters. Indian J. Pharm. Biol. Res. 2016 4 2 27 31 10.30750/ijpbr.4.2.4
    [Google Scholar]
  124. Weng J. Tong H.H.Y. Chow S.F. In vitro release study of the polymeric drug nanoparticles: Development and valida-tion of a novel method. Pharmaceutics 2020 12 8 732 10.3390/pharmaceutics12080732 32759786
    [Google Scholar]
  125. Bohrey S. Chourasiya V. Pandey A. Polymeric nanoparticles containing diazepam: Preparation, optimization, cha-racterization, in-vitro drug release and release kinetic study. Nano Converg. 2016 3 1 3 10.1186/s40580‑016‑0061‑2 28191413
    [Google Scholar]
  126. Balzus B. Colombo M. Sahle F.F. Zoubari G. Staufenbiel S. Bodmeier R. Comparison of different in vitro release methods used to investigate nanocarriers intended for dermal application. Int. J. Pharm. 2016 513 1-2 247 254 10.1016/j.ijpharm.2016.09.033 27628784
    [Google Scholar]
  127. Yu M. Yuan W. Li D. Schwendeman A. Schwendeman S.P. Predicting drug release kinetics from nanocarriers insi-de dialysis bags. J. Control. Release 2019 315 23 30 10.1016/j.jconrel.2019.09.016 31629038
    [Google Scholar]
  128. Gandhi A. Jana S. Sen K.K. In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery. Int. J. Biol. Macromol. 2014 67 478 482 10.1016/j.ijbiomac.2014.04.019 24755259
    [Google Scholar]
  129. Mustapa F. Wawe S.L. Ahmad L.O. Wibowo D. Mahmud A. Maulidiyah M. Umar A.A. Nurdin M. Develop-ment of cellulose acetate-polyethylene glycol-chitosan membrane-embedded TiO2 nanoparticles for reverse osmosis desalination. Water Air Soil Pollut. 2025 236 1 61 10.1007/s11270‑024‑07693‑2
    [Google Scholar]
  130. Nimesh S. Manchanda R. Kumar R. Saxena A. Chaudhary P. Yadav V. Mozumdar S. Chandra R. Prepara-tion, characterization and in vitro drug release studies of novel polymeric nanoparticles. Int. J. Pharm. 2006 323 1-2 146 152 10.1016/j.ijpharm.2006.05.065 16920286
    [Google Scholar]
  131. Zhou Y. He C. Chen K. Ni J. Cai Y. Guo X. Wu X.Y. A new method for evaluating actual drug release kinetics of nanoparticles inside dialysis devices via numerical deconvolution. J. Control. Release 2016 243 11 20 10.1016/j.jconrel.2016.09.031 27693750
    [Google Scholar]
  132. Abdel-Mottaleb M.M.A. Lamprecht A. Standardized in vitro drug release test for colloidal drug carriers using modified USP dissolution apparatus I. Drug Dev. Ind. Pharm. 2011 37 2 178 184 10.3109/03639045.2010.502534 21073322
    [Google Scholar]
  133. Savaser A. Esim O. Kurbanoglu S. Ozkan S.A. Ozkan Y. Current perspectives on drug release studies from poly-meric nanoparticles. Organic Materials as Smart Nanocarriers for Drug Delivery. William Andrew Publishing 2018 101 145 10.1016/B978‑0‑12‑813663‑8.00003‑8
    [Google Scholar]
  134. Shen J. Burgess D.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent develop-ments and challenges. Drug Deliv. Transl. Res. 2013 3 5 409 415 10.1007/s13346‑013‑0129‑z 24069580
    [Google Scholar]
  135. Samy M. Abd El-Alim S.H. Rabia A.E.G. Amin A. Ayoub M.M.H. Formulation, characterization and in vitro re-lease study of 5-fluorouracil loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2020 156 783 791 10.1016/j.ijbiomac.2020.04.112 32320805
    [Google Scholar]
  136. Pignatello R. Ricupero N. Bucolo C. Maugeri F. Maltese A. Puglisi G. Preparation and characterization of Eudra-git Retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech 2006 7 1 E192 E198 10.1208/pt070127 28290042
    [Google Scholar]
  137. Motwani S. Chopra S. Talegaonkar S. Kohli K. Ahmad F. Khar R. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur. J. Pharm. Biopharm. 2007 68 3 513 525 10.1016/j.ejpb.2007.09.009 17983737
    [Google Scholar]
  138. Shafique M. Khan M.A. Khan W.S. Maqsood-ur-Rehman; Ahmad, W.; Khan, S. Fabrication, characterization, and in vivo evaluation of famotidine loaded solid lipid nanoparticles for boosting oral bioavailability. J. Nanomater. 2017 2017 1 10 10.1155/2017/7357150
    [Google Scholar]
  139. Nazem Z. Firoozian F. Khodabandelou S. Mohammadi M. Mahboobian M.M. Systematic optimization of solid lipid nanoparticles of silybin for improved oral drug delivery by box-behnken design: in vitro and in vivo evaluations. J. Pharm. Innov. 2023 18 2 472 484 10.1007/s12247‑022‑09637‑x
    [Google Scholar]
  140. Jafarieh O. Md S. Ali M. Baboota S. Sahni J.K. Kumari B. Bhatnagar A. Ali J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2015 41 10 1674 1681 10.3109/03639045.2014.991400 25496439
    [Google Scholar]
  141. Haggag Y.A. Abosalha A.K. Tambuwala M.M. Osman E.Y. El-Gizawy S.A. Essa E.A. Donia A.A. Polymeric nanoencapsulation of zaleplon into PLGA nanoparticles for enhanced pharmacokinetics and pharmacological activity. Biopharm. Drug Dispos. 2021 42 1 12 23 10.1002/bdd.2255 33320969
    [Google Scholar]
  142. Jain A.K. Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019 47 1 524 539 10.1080/21691401.2018.1561457 30784319
    [Google Scholar]
  143. Wang L. Luo Q. Lin T. Li R. Zhu T. Zhou K. Ji Z. Song J. Jia B. Zhang C. Chen W. Zhu G. PEGylated na-nostructured lipid carriers (PEG–NLC) as a novel drug delivery system for biochanin A. Drug Dev. Ind. Pharm. 2015 41 7 1204 1212 10.3109/03639045.2014.938082 25010850
    [Google Scholar]
  144. Jose J. Kanniyappan H. Muthuvijayan V. A novel, rapid and cost-effective method for separating drug-loaded lipo-somes prepared from egg yolk phospholipids. Process Biochem. 2022 115 80 91 10.1016/j.procbio.2022.02.010
    [Google Scholar]
  145. Zhao Y. Chang Y.X. Hu X. Liu C.Y. Quan L.H. Liao Y.H. Solid lipid nanoparticles for sustained pulmonary deli-very of Yuxingcao essential oil: Preparation, characterization and in vivo evaluation. Int. J. Pharm. 2017 516 1-2 364 371 10.1016/j.ijpharm.2016.11.046 27884712
    [Google Scholar]
  146. Beber T.C. de Andrade D.F. Santos Chaves P. Pohlmann A.R. Guterres S.S. Ruver Beck R.C. Cationic polymeric nanocapsules as a strategy to target dexamethasone to viable epidermis: Skin penetration and permeation studies. J. Nanosci. Nanotechnol. 2016 16 2 1331 1338 10.1166/jnn.2016.11670 27433583
    [Google Scholar]
  147. Ammoury N. Dubrasquet M. Fessi H. Devissaguet J.P. Puisieux F. Benita S. Indomethacin-loaded poly (d,l-lactide) nanocapsules protection from gastrointestinal ulcerations and anti-inflammatory activity evaluation in rats. Clin. Mater. 1993 13 1-4 121 130 10.1016/0267‑6605(93)90098‑R
    [Google Scholar]
  148. Xie P. Tang X. Li L. Qian Z. Ran M. Zhang X. Xin Q. Luo H. Drug-loaded carbon nanoparticle suspension in-jection: Drug selection, releasing behavior, in vitro cytotoxicity and in vivo lymph node targeting. J. Nanosci. Nanotechnol. 2016 16 7 6910 6918 10.1166/jnn.2016.11621
    [Google Scholar]
  149. Grillo R. Dias F.V. Querobino S.M. Alberto-Silva C. Fraceto L.F. de Paula E. de Araujo D.R. Influence of hybrid polymeric nanoparticle/thermosensitive hydrogels systems on formulation tracking and in vitro artificial membrane permeation: A promising system for skin drug-delivery. Colloids Surf. B Biointerfaces 2019 174 56 62 10.1016/j.colsurfb.2018.10.063 30439638
    [Google Scholar]
  150. Xia Q. Zhang Y. Li Z. Hou X. Feng N. Red blood cell membrane-camouflaged nanoparticles: A novel drug deli-very system for antitumor application. Acta Pharm. Sin. B 2019 9 4 675 689 10.1016/j.apsb.2019.01.011 31384529
    [Google Scholar]
  151. Sevencan C. McCoy R.S.A. Ravisankar P. Liu M. Govindarajan S. Zhu J. Bay B.H. Leong D.T. Cell membra-ne nanotherapeutics: From synthesis to applications emerging tools for personalized cancer therapy. Adv. Ther. 2020 3 3 1900201 10.1002/adtp.201900201
    [Google Scholar]
  152. Gupta R. Chen Y. Xie H. In vitro dissolution considerations associated with nano drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 6 1732 10.1002/wnan.1732 34132050
    [Google Scholar]
  153. Oroojalian F. Beygi M. Baradaran B. Mokhtarzadeh A. Shahbazi M.A. Immune cell Membrane‐Coated biomi-metic nanoparticles for targeted cancer therapy. Small 2021 17 12 2006484 10.1002/smll.202006484 33577127
    [Google Scholar]
  154. dos Santos-Silva A.M. de Caland L.B. do Nascimento E.G. Oliveira A.L.C.S.L. de Araújo-Júnior R.F. Cornélio A.M. Fernandes-Pedrosa M.F. da Silva-Júnior A.A. Self-assembled benznidazole-loaded cationic nanoparticles con-taining cholesterol/sialic acid: Physicochemical properties, in vitro drug release and in vitro anticancer efficacy. Int. J. Mol. Sci. 2019 20 9 2350 10.3390/ijms20092350 31083590
    [Google Scholar]
  155. Choi B. Park W. Park S.B. Rhim W.K. Han D.K. Recent trends in cell membrane-cloaked nanoparticles for thera-peutic applications. Methods 2020 177 2 14 10.1016/j.ymeth.2019.12.004 31874237
    [Google Scholar]
  156. Jiménez-Jiménez C. Manzano M. Vallet-Regí M. Nanoparticles coated with cell membranes for biomedical applica-tions. Biology 2020 9 11 406 10.3390/biology9110406 33218092
    [Google Scholar]
  157. Jores K. Mehnert W. Drechsler M. Bunjes H. Johann C. Mäder K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release 2004 95 2 217 227 10.1016/j.jconrel.2003.11.012 14980770
    [Google Scholar]
  158. Iyengar S.J. Joy M. Maity T. Chakraborty J. Kotnala R.K. Ghosh S. Colloidal properties of water dispersible magnetite nanoparticles by photon correlation spectroscopy. RSC Advances 2016 6 17 14393 14402 10.1039/C5RA26488J
    [Google Scholar]
  159. Yamaguchi T. Azuma Y. Okuyama K. Development of a photon correlation spectroscopy instrument to measure size distributions of nanoparticles. Part. Part. Syst. Charact. 2006 23 2 188 192 10.1002/ppsc.200601029
    [Google Scholar]
  160. Kaszuba M. The measurement of nanoparticles using photon correlation spectroscopy and avalanche photo diodes. J. Nanopart. Res. 1999 1 3 405 409 10.1023/A:1010072129578
    [Google Scholar]
  161. Petersson K. Ilver D. Johansson C. Krozer A. Brownian motion of aggregating nanoparticles studied by photon co-rrelation spectroscopy and measurements of dynamic magnetic properties. Anal. Chim. Acta 2006 573-574 138 146 10.1016/j.aca.2006.03.055 17723517
    [Google Scholar]
  162. Krishtop V. Doronin I. Okishev K. Improvement of photon correlation spectroscopy method for measuring nanopar-ticle size by using attenuated total reflectance. Opt. Express 2012 20 23 25693 25699 10.1364/OE.20.025693 23187387
    [Google Scholar]
  163. Otto F. Sun X. Schulz F. Sanchez-Cano C. Feliu N. Westermeier F. Parak W.J. X‐ray photon correlation spec-troscopy towards measuring nanoparticle diameters in biological environments allowing for the in situ analysis of their bio‐nano interface. Small 2022 18 37 2201324 10.1002/smll.202201324 35905490
    [Google Scholar]
  164. Viguié J.R. Sukmanowski J. Nölting B. Royer F.X. Study of agglomeration of alumina nanoparticles by atomic for-ce microscopy (AFM) and photon correlation spectroscopy (PCS). Colloids Surf. A Physicochem. Eng. Asp. 2007 302 1-3 269 275 10.1016/j.colsurfa.2007.02.038
    [Google Scholar]
  165. Klapetek P. Valtr M. Nečas D. Salyk O. Dzik P. Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res. Lett. 2011 6 1 514 10.1186/1556‑276X‑6‑514 21878120
    [Google Scholar]
  166. Grobelny J. DelRio F.W. Pradeep N. Kim D.I. Hackley V.A. Cook R.F. Size measurement of nanoparticles using ato-mic force microscopy. Characterization of Nanoparticles Intended for Drug Delivery Humana Press 2011 697 71 82 10.1007/978‑1‑60327‑198‑1_7
    [Google Scholar]
  167. Junno T. Deppert K. Montelius L. Samuelson L. Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 1995 66 26 3627 3629 10.1063/1.113809
    [Google Scholar]
  168. Li K. Du S. Van Ginkel S. Chen Y. Atomic force microscopy study of the interaction of DNA and nanoparticles. Nanomaterial Advances in Experimental Medicine and Biology Springer Dordrecht 2014 811 93 109 10.1007/978‑94‑017‑8739‑0_6
    [Google Scholar]
  169. Hoo C.M. Starostin N. West P. Mecartney M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res. 2008 10 S1 89 96 10.1007/s11051‑008‑9435‑7
    [Google Scholar]
  170. Mühlfeld C. Rothen-Rutishauser B. Vanhecke D. Blank F. Gehr P. Ochs M. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part. Fibre Toxicol. 2007 4 1 11 10.1186/1743‑8977‑4‑11 17996124
    [Google Scholar]
  171. Hailstone R.K. DiFrancesco A.G. Leong J.G. Allston T.D. Reed K.J. A study of lattice expansion in CeO2 nanopar-ticles by transmission electron microscopy. J. Phys. Chem. C 2009 113 34 15155 15159 10.1021/jp903468m
    [Google Scholar]
  172. Schrand A.M. Schlager J.J. Dai L. Hussain S.M. Preparation of cells for assessing ultrastructural localization of na-noparticles with transmission electron microscopy. Nat. Protoc. 2010 5 4 744 757 10.1038/nprot.2010.2 20360769
    [Google Scholar]
  173. Asoro M.A. Kovar D. Ferreira P.J. In situ transmission electron microscopy observations of sublimation in silver na-noparticles. ACS Nano 2013 7 9 7844 7852 10.1021/nn402771j 23941466
    [Google Scholar]
  174. Evans J.E. Jungjohann K.L. Browning N.D. Arslan I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 2011 11 7 2809 2813 10.1021/nl201166k 21619024
    [Google Scholar]
  175. McDowell M.T. Ryu I. Lee S.W. Wang C. Nix W.D. Cui Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012 24 45 6034 6041 10.1002/adma.201202744 22945804
    [Google Scholar]
  176. Jackson A.M. Hu Y. Silva P.J. Stellacci F. From homoligand- to mixed-ligand- monolayer-protected metal nanopar-ticles: A scanning tunneling microscopy investigation. J. Am. Chem. Soc. 2006 128 34 11135 11149 10.1021/ja061545h 16925432
    [Google Scholar]
  177. Ong Q.K. Reguera J. Silva P.J. Moglianetti M. Harkness K. Longobardi M. Mali K.S. Renner C. De Feyter S. Stellacci F. High-resolution scanning tunneling microscopy characterization of mixed monolayer protected gold nano-particles. ACS Nano 2013 7 10 8529 8539 10.1021/nn402414b 24024977
    [Google Scholar]
  178. Biscarini F. Ong Q.K. Albonetti C. Liscio F. Longobardi M. Mali K.S. Ciesielski A. Reguera J. Renner C. De Feyter S. Samorì P. Stellacci F. Quantitative analysis of scanning tunneling microscopy images of mixed-ligand-functionalized nanoparticles. Langmuir 2013 29 45 13723 13734 10.1021/la403546c 24083627
    [Google Scholar]
  179. Centrone A. Hu Y. Jackson A.M. Zerbi G. Stellacci F. Phase separation on mixed-monolayer-protected metal na-noparticles: A study by infrared spectroscopy and scanning tunneling microscopy. Small 2007 3 5 814 817 10.1002/smll.200600736 17410617
    [Google Scholar]
  180. Walton A.S. Lauritsen J.V. Topsøe H. Besenbacher F. MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy. J. Catal. 2013 308 306 318 10.1016/j.jcat.2013.08.017
    [Google Scholar]
  181. Rim K.T. Eom D. Liu L. Stolyarova E. Raitano J.M. Chan S.W. Flytzani-Stephanopoulos M. Flynn G.W. Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: A scanning tunneling microscopy/spectroscopy study. J. Phys. Chem. C 2009 113 23 10198 10205 10.1021/jp8112599
    [Google Scholar]
  182. Mohan A.C. Renjanadevi B. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Procedia Technol. 2016 24 761 766 10.1016/j.protcy.2016.05.078
    [Google Scholar]
  183. Dubes A. Parrot-Lopez H. Abdelwahed W. Degobert G. Fessi H. Shahgaldian P. Coleman A.W. Scanning elec-tron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodex-trins. Eur. J. Pharm. Biopharm. 2003 55 3 279 282 10.1016/S0939‑6411(03)00020‑1 12754001
    [Google Scholar]
  184. Bootz A. Vogel V. Schubert D. Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004 57 2 369 375 10.1016/S0939‑6411(03)00193‑0 15018998
    [Google Scholar]
  185. Sokolova V. Ludwig A.K. Hornung S. Rotan O. Horn P.A. Epple M. Giebel B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 2011 87 1 146 150 10.1016/j.colsurfb.2011.05.013 21640565
    [Google Scholar]
  186. Saupe A. Gordon K.C. Rades T. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostruc-tured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int. J. Pharm. 2006 314 1 56 62 10.1016/j.ijpharm.2006.01.022 16574354
    [Google Scholar]
  187. Kammers A.D. Daly S. Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp. Mech. 2013 53 8 1333 1341 10.1007/s11340‑013‑9734‑5
    [Google Scholar]
  188. Isa L. Lucas F. Wepf R. Reimhult E. Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy. Nat. Commun. 2011 2 1 438 10.1038/ncomms1441 21847112
    [Google Scholar]
  189. Perevyazko I. Vollrath A. Hornig S. Pavlov G.M. Schubert U.S. Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. J. Polym. Sci. A Polym. Chem. 2010 48 18 3924 3931 10.1002/pola.24157
    [Google Scholar]
  190. Zhang Y. Yang M. Portney N.G. Cui D. Budak G. Ozbay E. Ozkan M. Ozkan C.S. Zeta potential: A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed. Microdevices 2008 10 2 321 328 10.1007/s10544‑007‑9139‑2 18165903
    [Google Scholar]
  191. Dong Y. Feng S.S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004 25 14 2843 2849 10.1016/j.biomaterials.2003.09.055 14962562
    [Google Scholar]
  192. Wu Y. Yang W. Wang C. Hu J. Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhi-zinate. Int. J. Pharm. 2005 295 1-2 235 245 10.1016/j.ijpharm.2005.01.042 15848008
    [Google Scholar]
  193. Gordillo-Galeano A. Mora-Huertas C.E. Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids Surf. A Physicochem. Eng. Asp. 2021 620 126610 10.1016/j.colsurfa.2021.126610
    [Google Scholar]
  194. Midekessa G. Godakumara K. Ord J. Viil J. Lättekivi F. Dissanayake K. Kopanchuk S. Rinken A. An-dronowska A. Bhattacharjee S. Rinken T. Fazeli A. Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability. ACS Omega 2020 5 27 16701 16710 10.1021/acsomega.0c01582 32685837
    [Google Scholar]
  195. Chawla J.S. Amiji M.M. Biodegradable] poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002 249 1-2 127 138 10.1016/S0378‑5173(02)00483‑0 12433441
    [Google Scholar]
  196. Kamshad M. Jahanshah Talab M. Beigoli S. Sharifirad A. Chamani J. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. J. Biomol. Struct. Dyn. 2019 37 8 2030 2040 10.1080/07391102.2018.1475258 29757090
    [Google Scholar]
  197. Agel M.R. Baghdan E. Pinnapireddy S.R. Lehmann J. Schäfer J. Bakowsky U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf. B Biointerfaces 2019 178 460 468 10.1016/j.colsurfb.2019.03.027 30921681
    [Google Scholar]
  198. Abdelmonem A.M. Pelaz B. Kantner K. Bigall N.C. del Pino P. Parak W.J. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J. Inorg. Biochem. 2015 153 334 338 10.1016/j.jinorgbio.2015.08.029 26387023
    [Google Scholar]
  199. Schmidt T. Oliveira P.W. Mennig M. Schmidt H. Preparation of optical axial GRIN components through migration of charged amorphous ZrO2 nanoparticles inside an organic–inorganic hybrid matrix by electrophoresis. J. Non-Cryst. Solids 2007 353 30-31 2826 2831 10.1016/j.jnoncrysol.2007.06.004
    [Google Scholar]
  200. Chang T.Y. Chen C.C. Cheng K.M. Chin C.Y. Chen Y.H. Chen X.A. Sun J.R. Young J.J. Chiueh T.S. Trime-thyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spec-trum including multidrug-resistant strains of Acinetobacter baumannii. Colloids Surf. B Biointerfaces 2017 155 61 70 10.1016/j.colsurfb.2017.03.054 28411476
    [Google Scholar]
  201. Polo E. Araban V. Pelaz B. Alvarez A. Taboada P. Mahmoudi M. del Pino P. Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods. Appl. Mater. Today 2019 15 599 604 10.1016/j.apmt.2019.04.013
    [Google Scholar]
  202. Rodrigues S. Costa A.M.R. Grenha A. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripo-lyphosphate and charge ratios. Carbohydr. Polym. 2012 89 1 282 289 10.1016/j.carbpol.2012.03.010 24750635
    [Google Scholar]
  203. Xiao Y. Wiesner M.R. Characterization of surface hydrophobicity of engineered nanoparticles. J. Hazard. Mater. 2012 215-216 146 151 10.1016/j.jhazmat.2012.02.043 22417396
    [Google Scholar]
  204. Forny L. Saleh K. Denoyel R. Pezron I. Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation. Langmuir 2010 26 4 2333 2338 10.1021/la902759s 20141200
    [Google Scholar]
  205. Deák A. Hild E. Kovács A.L. Hórvölgyi Z. Contact angle determination of nanoparticles: Film balance and scan-ning angle reflectometry studies. Phys. Chem. Chem. Phys. 2007 9 48 6359 6370 10.1039/b702937n 18060166
    [Google Scholar]
  206. Fu W. Zhang W. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force mi-croscope. Phys. Chem. Chem. Phys. 2018 20 37 24434 24443 10.1039/C8CP04676J 30221292
    [Google Scholar]
  207. Li G. Cao Z. Ho K.K.H.Y. Zuo Y.Y. Quantitative determination of the hydrophobicity of nanoparticles. Anal. Chem. 2022 94 4 2078 2086 10.1021/acs.analchem.1c04172 35029972
    [Google Scholar]
  208. Detrich Á. Nyári M. Volentiru E. Hórvölgyi Z. Estimation of contact angle for hydrophobic silica nanoparticles in their hexagonally ordered layer. Mater. Chem. Phys. 2013 140 2-3 602 609 10.1016/j.matchemphys.2013.04.013
    [Google Scholar]
  209. Grigoriev D.O. Krägel J. Dutschk V. Miller R. Möhwald H. Contact angle determination of micro- and nanoparti-cles at fluid/fluid interfaces: The excluded area concept. Phys. Chem. Chem. Phys. 2007 9 48 6447 6454 10.1039/b711732a 18060176
    [Google Scholar]
  210. Maestro A. Guzmán E. Ortega F. Rubio R.G. Contact angle of micro- and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014 19 4 355 367 10.1016/j.cocis.2014.04.008
    [Google Scholar]
  211. Carstensen H. Müller B.W. Müller R.H. Adsorption of ethoxylated surfactants on nanoparticles. I. Characterization by hydrophobic interaction chromatography. Int. J. Pharm. 1991 67 1 29 37 10.1016/0378‑5173(91)90262‑M
    [Google Scholar]
  212. Valsesia A. Desmet C. Ojea-Jiménez I. Oddo A. Capomaccio R. Rossi F. Colpo P. Direct quantification of na-noparticle surface hydrophobicity. Commun. Chem. 2018 1 1 53 10.1038/s42004‑018‑0054‑7
    [Google Scholar]
  213. Jones M.C. Jones S.A. Riffo-Vasquez Y. Spina D. Hoffman E. Morgan A. Patel A. Page C. Forbes B. Dailey L.A. Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J. Control. Release 2014 183 94 104 10.1016/j.jconrel.2014.03.022 24657808
    [Google Scholar]
  214. Song J.E. Phenrat T. Marinakos S. Xiao Y. Liu J. Wiesner M.R. Tilton R.D. Lowry G.V. Hydrophobic interacti-ons increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ. Sci. Technol. 2011 45 14 5988 5995 10.1021/es200547c 21692483
    [Google Scholar]
  215. Estep P Caffry I Yu Y Sun T Cao Y Lynaugh H Jain T Vásquez M Tessier PM Xu Y An alternative assay to hydrophobic interaction chromatography for high-throughput characterization of monoclonal antibodies 2015 10.1080/19420862.2015.1016694
    [Google Scholar]
  216. Pazokifard S. Farrokhpay S. Mirabedini M. Esfandeh M. Surface treatment of TiO2 nanoparticles via sol–gel met-hod: Effect of silane type on hydrophobicity of the nanoparticles. Prog. Org. Coat. 2015 87 36 44 10.1016/j.porgcoat.2015.04.021
    [Google Scholar]
  217. Li X.W. Song R.G. Jiang Y. Wang C. Jiang D. Surface modification of TiO2 nanoparticles and its effect on the pro-perties of fluoropolymer/TiO2 nanocomposite coatings. Appl. Surf. Sci. 2013 276 761 768 10.1016/j.apsusc.2013.03.167
    [Google Scholar]
  218. Carpenter A.W. Johnson J.A. Schoenfisch M.H. Nitric oxide-releasing silica nanoparticles with varied surface hydrophobicity. Colloids Surf. A Physicochem. Eng. Asp. 2014 454 144 151 10.1016/j.colsurfa.2014.03.094
    [Google Scholar]
  219. Li J.H. Shao X.S. Zhou Q. Li M.Z. Zhang Q.Q. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 2013 265 663 670 10.1016/j.apsusc.2012.11.072
    [Google Scholar]
  220. Luo M.L. Zhao J.Q. Tang W. Pu C.S. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane sur-face by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci. 2005 249 1-4 76 84 10.1016/j.apsusc.2004.11.054
    [Google Scholar]
  221. Liu Y. Li Y. Deng L. Zou L. Feng F. Zhang H. Hydrophobic ethylcellulose/gelatin nanofibers containing zinc oxi-de nanoparticles for antimicrobial packaging. J. Agric. Food Chem. 2018 66 36 9498 9506 10.1021/acs.jafc.8b03267 30138556
    [Google Scholar]
  222. Pazokifard S. Mirabedini S.M. Esfandeh M. Farrokhpay S. Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: Characterization and mechanism. Adv. Powder Technol. 2012 23 4 428 436 10.1016/j.apt.2012.02.006
    [Google Scholar]
  223. Xu B. Cai Z. Wang W. Ge F. Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf. Coat. Tech. 2010 204 9-10 1556 1561 10.1016/j.surfcoat.2009.09.086
    [Google Scholar]
  224. Meng T. Xie R. Ju X.J. Cheng C.J. Wang S. Li P.F. Liang B. Chu L.Y. Nano-structure construction of porous membranes by depositing nanoparticles for enhanced surface wettability. J. Membr. Sci. 2013 427 63 72 10.1016/j.memsci.2012.09.051
    [Google Scholar]
  225. Seyfi J. Hejazi I. Jafari S.H. Khonakdar H.A. Simon F. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles. J. Colloid Interface Sci. 2016 478 117 126 10.1016/j.jcis.2016.06.005 27288577
    [Google Scholar]
  226. Zhou Y. Li M. Zhong X. Zhu Z. Deng P. Liu H. Hydrophobic composite coatings with photocatalytic self-cleaning properties by micro/nanoparticles mixed with fluorocarbon resin. Ceram. Int. 2015 41 4 5341 5347 10.1016/j.ceramint.2014.12.090
    [Google Scholar]
  227. Al-Sayed S.A. Amin M.O. Al-Hetlani E. Magnetic nanoparticle-based surface-assisted laser desorption/ionization mass spectrometry for cosmetics detection in contaminated fingermarks: Magnetic recovery and surface roughness. ACS Omega 2022 7 48 43894 43903 10.1021/acsomega.2c05134 36506115
    [Google Scholar]
  228. Amin M.O. Al-Hetlani E. Francese S. Magnetic carbon nanoparticles derived from candle soot for SALDI MS analy-ses of drugs and heavy metals in latent fingermarks. Microchem. J. 2022 178 107381 10.1016/j.microc.2022.107381
    [Google Scholar]
  229. Fang R.H. Kroll A.V. Gao W. Zhang L. Cell membrane coating nanotechnology. Adv. Mater. 2018 30 23 1706759 10.1002/adma.201706759 29582476
    [Google Scholar]
  230. Shevchenko V.Y. Madison A.E. Structure of nanoparticles: I. Generalized crystallography of nanoparticles and magic numbers. Glass Phys. Chem. 2002 28 1 40 43 10.1023/A:1014201530029
    [Google Scholar]
  231. Tian S. Li Y.Z. Li M.B. Yuan J. Yang J. Wu Z. Jin R. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015 6 1 8667 10.1038/ncomms9667 26482704
    [Google Scholar]
  232. Avilov A.S. Gubin S.P. Zaporozhets M.A. Electron crystallography as an informative method for studying the struc-ture of nanoparticles. Crystallogr. Rep. 2013 58 6 788 804 10.1134/S1063774513060059
    [Google Scholar]
  233. Helmlinger J. Prymak O. Loza K. Gocyla M. Heggen M. Epple M. On the crystallography of silver nanoparticles with different shapes. Cryst. Growth Des. 2016 16 7 3677 3687 10.1021/acs.cgd.6b00178
    [Google Scholar]
  234. Coppens P. Chen Y. Trzop E. Crystallography and properties of polyoxotitanate nanoclusters. Chem. Rev. 2014 114 19 9645 9661 10.1021/cr400724e 24820889
    [Google Scholar]
  235. Caballero-George C. Marin; Briceño, Critical evaluation of biodegradable polymers used in nanodrugs. Int. J. Nanomedicine 2013 8 3071 3090 10.2147/IJN.S47186 23990720
    [Google Scholar]
  236. Palza H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015 16 1 2099 2116 10.3390/ijms16012099 25607734
    [Google Scholar]
  237. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3 19107579
    [Google Scholar]
  238. Wackerlig J. Schirhagl R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use. A review. Anal. Chem. 2016 88 1 250 261 10.1021/acs.analchem.5b03804 26539750
    [Google Scholar]
  239. Feng S.S. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices 2004 1 1 115 125 10.1586/17434440.1.1.115 16293015
    [Google Scholar]
  240. Patel T. Zhou J. Piepmeier J.M. Saltzman W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 701 705 10.1016/j.addr.2011.12.006 22210134
    [Google Scholar]
  241. Chavanpatil M.D. Khdair A. Patil Y. Handa H. Mao G. Panyam J. Polymer‐surfactant nanoparticles for sustai-ned release of water‐soluble drugs. J. Pharm. Sci. 2007 96 12 3379 3389 10.1002/jps.20961 17721942
    [Google Scholar]
  242. Son G.H. Lee B.J. Cho C.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig. 2017 47 4 287 296 10.1007/s40005‑017‑0320‑1
    [Google Scholar]
  243. Kamaly N. Yameen B. Wu J. Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016 116 4 2602 2663 10.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  244. Mukherjee B. Santra K. Pattnaik G. Ghosh S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int. J. Nanomedicine 2008 3 4 487 496 10.2147/IJN.S3938 19337417
    [Google Scholar]
  245. Güncüm E. Işıklan N. Anlaş C. Ünal N. Bulut E. Bakırel T. Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin – an antimicrobial drug. Artif. Cells Nanomed Biotechnol. 2018 46 sup2 964 973 10.1080/21691401.2018.1476371 29806495
    [Google Scholar]
  246. Kaleemuddin M. Srinivas P. Lyophilized oral sustained release polymeric nanoparticles of nateglinide. AAPS PharmSciTech 2013 14 1 78 85 10.1208/s12249‑012‑9887‑z 23229379
    [Google Scholar]
  247. Nagpal M. Vishvakarma V. Kaur M. Arora S. Role of nanotechnology in taste masking: Recent updates. Curr. Drug Res. Rev. 2023 15 1 1 14 10.2174/2589977514666220526091259 35619251
    [Google Scholar]
  248. Krieser K. Emanuelli J. Daudt R.M. Bilatto S. Willig J.B. Guterres S.S. Pohlmann A.R. Buffon A. Correa D.S. Külkamp-Guerreiro I.C. Taste-masked nanoparticles containing Saquinavir for pediatric oral administration. Mater. Sci. Eng. C 2020 117 111315 10.1016/j.msec.2020.111315 32919675
    [Google Scholar]
  249. Naik J. Rajput R. Singh M.K. Development and evaluation of ibuprofen loaded hydrophilic biocompatible polyme-ric nanoparticles for the taste masking and solubility enhancement. Bionanoscience 2021 11 1 21 31 10.1007/s12668‑020‑00798‑y
    [Google Scholar]
  250. Bianchin M.D. Prebianca G. Immich M.F. Teixeira M.L. Colombo M. Koester L.S. Araújo B.V. Poletto F. Kü-lkamp-Guerreiro I.C. Monoolein-based nanoparticles containing indinavir: A taste-masked drug delivery system. Drug Dev. Ind. Pharm. 2021 47 1 83 91 10.1080/03639045.2020.1862167 33289591
    [Google Scholar]
  251. Fan Y. Chen H. Huang Z. Zhu J. Wan F. Peng T. Pan X. Huang Y. Wu C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int. J. Pharm. 2020 575 118875 10.1016/j.ijpharm.2019.118875 31765781
    [Google Scholar]
  252. Deng Y. Shen L. Yang Y. Shen J. Development of nanoparticle-based orodispersible palatable pediatric formula-tions. Int. J. Pharm. 2021 596 120206 10.1016/j.ijpharm.2021.120206 33493595
    [Google Scholar]
  253. Douroumis D. Orally disintegrating dosage forms and taste-masking technologies; 2010. Expert Opin. Drug Deliv. 2011 8 5 665 675 10.1517/17425247.2011.566553 21438776
    [Google Scholar]
  254. Rajesh A.M. Popat K.M. Taste masking of azithromycin by resin complex and sustained release through interpenetra-ting polymer network with functionalized biopolymers. Drug Dev. Ind. Pharm. 2017 43 5 732 741 10.1080/03639045.2016.1224894 27600608
    [Google Scholar]
  255. Kaur R. Kaur S. Role of polymers in drug delivery. J. Drug Deliv. Ther. 2014 4 3 32 36 10.22270/jddt.v4i3.826
    [Google Scholar]
  256. Bhatia S. Bhatia S. Natural polymers vs synthetic polymer. Natural Polymer Drug Delivery Systems. Cham Springer 2016 95 118 10.1007/978‑3‑319‑41129‑3_3
    [Google Scholar]
  257. Olatunji O. Natural polymers: Industry techniques and applications. Springer 2015 10.1007/978‑3‑319‑26414‑1
    [Google Scholar]
  258. Thomas S. Visakh P. Mathew A.P. Advances in natural polymers. Adv. Struct. Mater. 2013 18 312 334 10.1007/978‑3‑642‑20940‑6
    [Google Scholar]
  259. Fang Z. Cheng H. Liang L. Natural biodegradable medical polymers: Therapeutic peptides and proteins. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. Woodhead Publishing 2017 321 350 10.1016/B978‑0‑08‑100372‑5.00011‑8
    [Google Scholar]
  260. Gombotz W.R. Pettit D.K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 1995 6 4 332 351 10.1021/bc00034a002 7578352
    [Google Scholar]
  261. Chow D. Nunalee M.L. Lim D.W. Simnick A.J. Chilkoti A. Peptide-based biopolymers in biomedicine and biotech-nology. Mater. Sci. Eng. Rep. 2008 62 4 125 155 10.1016/j.mser.2008.04.004 19122836
    [Google Scholar]
  262. Vasile C. Pamfil D. Stoleru E. Baican M. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 2020 25 7 1539 10.3390/molecules25071539 32230990
    [Google Scholar]
  263. Paul S. Das B. Sharma H.K. A review on bio-polymers derived from animal sources with special reference to their potential applications. J. Drug Deliv. Ther. 2021 11 2 209 223 10.22270/jddt.v11i2.4763
    [Google Scholar]
  264. Ngwuluka N. Ochekpe N. Aruoma O. Naturapolyceutics: The science of utilizing natural polymers for drug delivery. Polymers 2014 6 5 1312 1332 10.3390/polym6051312
    [Google Scholar]
  265. Germershaus O. Lühmann T. Rybak J.C. Ritzer J. Meinel L. Application of natural and semi-synthetic polymers for the delivery of sensitive drugs. Int. Mater. Rev. 2015 60 2 101 131 10.1179/1743280414Y.0000000045
    [Google Scholar]
  266. Dmour I. Taha M.O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. Organic Materials as Smart Nanocarriers for Drug Delivery 2018 35 100 10.1016/B978‑0‑12‑813663‑8.00002‑6
    [Google Scholar]
  267. Sulakhe V.N. Introduction to semisynthetic and synthetic fiber based composites. Natural and Synthetic Fiber Rein-forced Composites: Synthesis, Properties and Applications. Wiley‐VCH 2022 10.1002/9783527832996.ch4
    [Google Scholar]
  268. Englert C. Brendel J.C. Majdanski T.C. Yildirim T. Schubert S. Gottschaldt M. Windhab N. Schubert U.S. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog. Polym. Sci. 2018 87 107 164 10.1016/j.progpolymsci.2018.07.005
    [Google Scholar]
  269. Mogoşanu G.D. Grumezescu A.M. Bejenaru L.E. Bejenaru C. Natural and synthetic polymers for drug delivery and targeting. Nanobiomaterials in Drug Delivery William Andrew 2016 9 229 284 10.1016/B978‑0‑323‑42866‑8.00008‑3
    [Google Scholar]
  270. Ogunsona E. Ojogbo E. Mekonnen T. Advanced material applications of starch and its derivatives. Eur. Polym. J. 2018 108 570 581 10.1016/j.eurpolymj.2018.09.039
    [Google Scholar]
  271. Miyazaki M. Van Hung P. Maeda T. Morita N. Recent advances in application of modified starches for breadma-king. Trends Food Sci. Technol. 2006 17 11 591 599 10.1016/j.tifs.2006.05.002
    [Google Scholar]
  272. Chan S.Y. Goh C.F. Lau J.Y. Tiew Y.C. Balakrishnan T. Rice starch thin films as a potential buccal delivery sys-tem: Effect of plasticiser and drug loading on drug release profile. Int. J. Pharm. 2019 562 203 211 10.1016/j.ijpharm.2019.03.044 30904726
    [Google Scholar]
  273. Le Corre D. Bras J. Dufresne A. Starch nanoparticles: A review. Biomacromolecules 2010 11 5 1139 1153 10.1021/bm901428y 20405913
    [Google Scholar]
  274. Builders P.F. Arhewoh M.I. Pharmaceutical applications of native starch in conventional drug delivery. Stärke 2016 68 9-10 864 873 10.1002/star.201500337
    [Google Scholar]
  275. Punia Bangar S. Ashogbon A.O. Singh A. Chaudhary V. Whiteside W.S. Enzymatic modification of starch: A green approach for starch applications. Carbohydr. Polym. 2022 287 119265 10.1016/j.carbpol.2022.119265 35422280
    [Google Scholar]
  276. Chiu C.W. Solarek D. Modification of starches. Starch. Academic Press 2009 629 655 10.1016/B978‑0‑12‑746275‑2.00017‑3
    [Google Scholar]
  277. Punia S. Barley starch modifications: Physical, chemical and enzymatic - A review. Int. J. Biol. Macromol. 2020 144 578 585 10.1016/j.ijbiomac.2019.12.088 31843612
    [Google Scholar]
  278. Schmiele M. Sampaio U.M. Gomes P.T. Clerici M.T. Physical modifications of starch. Starches for Food. Application 2019 223 269 10.1016/B978‑0‑12‑809440‑2.00006‑X
    [Google Scholar]
  279. Zia-ud-Din   Xiong H. Fei P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017 57 12 2691 2705 10.1080/10408398.2015.1087379 26529587
    [Google Scholar]
  280. BeMiller J.N. Physical modification of starch. Starch in Food. Woodhead Publishing 2018 223 253 10.1016/B978‑0‑08‑100868‑3.00005‑6
    [Google Scholar]
  281. Bhatt P. Kumar V. Singh S. Garg S. Kumar M. Wong L.S. Kumarasamy V. Pahwa S. Subramaniyan V. En-zymatic debranching of starch: Techniques for improving drug delivery and industrial applications. Stärke 2025 77 4 202400224 10.1002/star.202400224
    [Google Scholar]
  282. Waliszewski K.N. Aparicio M.A. Bello L.A. Monroy J.A. Changes of banana starch by chemical and physical modi-fication. Carbohydr. Polym. 2003 52 3 237 242 10.1016/S0144‑8617(02)00270‑9
    [Google Scholar]
  283. Masina N. Choonara Y.E. Kumar P. du Toit L.C. Govender M. Indermun S. Pillay V. A review of the chemical modification techniques of starch. Carbohydr. Polym. 2017 157 1226 1236 10.1016/j.carbpol.2016.09.094 27987827
    [Google Scholar]
  284. Chen Y.F. Kaur L. Singh J. Chemical modification of starch. Starch in Food. (Second Edition) Woodhead Publis-hing 2018 283 321 10.1016/B978‑0‑08‑100868‑3.00007‑X
    [Google Scholar]
  285. Wang X. Huang L. Zhang C. Deng Y. Xie P. Liu L. Cheng J. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr. Polym. 2020 240 116292 10.1016/j.carbpol.2020.116292 32475573
    [Google Scholar]
  286. Moad G. Chemical modification of starch by reactive extrusion. Prog. Polym. Sci. 2011 36 2 218 237 10.1016/j.progpolymsci.2010.11.002
    [Google Scholar]
  287. Chen Y. McClements D.J. Peng X. Chen L. Xu Z. Meng M. Ji H. Long J. Qiu C. Zhao J. Jin Z. Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci. Technol. 2023 131 164 174 10.1016/j.tifs.2022.11.025
    [Google Scholar]
  288. Rajan A. Sudha J.D. Abraham T.E. Enzymatic modification of cassava starch by fungal lipase. Ind. Crops Prod. 2008 27 1 50 59 10.1016/j.indcrop.2007.07.003
    [Google Scholar]
  289. van der Maarel M.J.E.C. Capron I. Euverink G.J.W. Bos H.T. Kaper T. Binnema D.J. Steeneken P.A.M. A novel thermoreversible gelling product made by enzymatic modification of starch. Stärke 2005 57 10 465 472 10.1002/star.200500409
    [Google Scholar]
  290. Zhou D. Ma Z. Yin X. Hu X. Boye J.I. Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments. Food Hydrocoll. 2019 93 386 394 10.1016/j.foodhyd.2019.02.048
    [Google Scholar]
  291. Chengyao X. Yan Q. Chaonan D. Xiaopei C. Yanxin W. Ding L. Xianfeng Y. Jian H. Yan H. Zhongli C. Zhoukun L. Enzymatic properties of an efficient glucan branching enzyme and its potential application in starch modi-fication. Protein Expr. Purif. 2021 178 105779 10.1016/j.pep.2020.105779 33115653
    [Google Scholar]
  292. Fan Y. Picchioni F. Modification of starch: A review on the application of “green” solvents and controlled functionali-zation. Carbohydr. Polym. 2020 241 116350 10.1016/j.carbpol.2020.116350 32507175
    [Google Scholar]
  293. Chauhan K. Priya V. Singh P. Chauhan G.S. Kumari S. Singhal R.K. A green and highly efficient sulfur functio-nalization of starch. RSC Advances 2015 5 64 51762 51772 10.1039/C5RA07332D
    [Google Scholar]
  294. Su Q. Wang Y. Zhao X. Wang H. Wang Z. Wang N. Zhang H. Functionalized nano-starch prepared by surface-initiated atom transfer radical polymerization and quaternization. Carbohydr. Polym. 2020 229 115390 10.1016/j.carbpol.2019.115390 31826456
    [Google Scholar]
  295. Zarski A. Kapusniak K. Ptak S. Rudlicka M. Coseri S. Kapusniak J. Functionalization methods of starch and its derivatives: From old limitations to new possibilities. Polymers 2024 16 5 597 10.3390/polym16050597 38475281
    [Google Scholar]
  296. Nevoralová M. Koutný M. Ujčić A. Horák P. Kredatusová J. Šerá J. Růžek L. Růžková M. Krejčíková S. Šlouf M. Kruliš Z. Controlled biodegradability of functionalized thermoplastic starch based materials. Polym. Degrad. Stabil. 2019 170 108995 10.1016/j.polymdegradstab.2019.108995
    [Google Scholar]
  297. Rafiee F. Rezaie Karder F. Bio-crosslinking of chitosan with oxidized starch, its functionalization with amino acid and magnetization: As a green magnetic support for silver immobilization and its catalytic activity investigation. Int. J. Biol. Macromol. 2020 146 1124 1132 10.1016/j.ijbiomac.2019.09.238 31726171
    [Google Scholar]
  298. Wu D. Bäckström E. Hakkarainen M. Starch derived nanosized graphene oxide functionalized bioactive porous starch scaffolds. Macromol. Biosci. 2017 17 6 1600397 10.1002/mabi.201600397 28122148
    [Google Scholar]
  299. Abugoch James L.E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional pro-perties. Adv. Food Nutr. Res. 2009 58 1 31 10.1016/S1043‑4526(09)58001‑1 19878856
    [Google Scholar]
  300. Liu F. Hua S. Wang C. Qiu M. Jin L. Hu B. Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch. Chemosphere 2021 279 130539 10.1016/j.chemosphere.2021.130539 33862363
    [Google Scholar]
  301. Punia S. Kumar M. Siroha A.K. Kennedy J.F. Dhull S.B. Whiteside W.S. Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydr. Polym. 2021 260 117776 10.1016/j.carbpol.2021.117776 33712132
    [Google Scholar]
  302. Lazik W. Heinze T. Pfeiffer K. Albrecht G. Mischnick P. Starch derivatives of a high degree of functionalization. VI. Multistep carboxymethylation. J. Appl. Polym. Sci. 2002 86 3 743 752 10.1002/app.10983
    [Google Scholar]
  303. Heinze T. Liebert T. Heinze U. Schwikal K. Starch derivatives of high degree of functionalization 9: Carboxy-methyl starches. Cellulose 2004 11 2 239 245 10.1023/B:CELL.0000025386.68486.a4
    [Google Scholar]
  304. Heinze T. Pfeiffer K. Liebert T. Heinze U. Effective approaches for estimating the functionalization pattern of car-boxymethyl starch of different origin. Stärke 1999 51 1 11 16 10.1002/(SICI)1521‑379X(199901)51:1<11:AID‑STAR11>3.0.CO;2‑2
    [Google Scholar]
  305. Heinze T. Heinze U. Grote C. Kötz J. Lazik W. Starch derivatives of high degree of functionalization. 4. Homoge-neous tritylation of starch and subsequent carboxymethylation. Stärke 2001 53 6 261 268 10.1002/1521‑379X(200106)53:6<261:AID‑STAR261>3.0.CO;2‑Z
    [Google Scholar]
  306. BeMiller J. N. Whistler R. L. Starch: Chemistry and technology Academic Press 2009
    [Google Scholar]
  307. Fonseca F. Girardeau A. Passot S. Freeze-drying of lactic acid bacteria: A stepwise approach for developing a freeze-drying protocol based on physical properties. Cryopreservation and Freeze-Drying Protocols. New York, NY Humana 2021 703 719 10.1007/978‑1‑0716‑0783‑1_38
    [Google Scholar]
  308. Ojogbo E. Ogunsona E.O. Mekonnen T.H. Chemical and physical modifications of starch for renewable polymeric materials. Materials Today Sustainability 2020 7-8 100028 10.1016/j.mtsust.2019.100028
    [Google Scholar]
  309. Fonseca L.M. Halal S.L.M.E. Dias A.R.G. Zavareze E.R. Physical modification of starch by heat-moisture treat-ment and annealing and their applications: A review. Carbohydr. Polym. 2021 274 118665 10.1016/j.carbpol.2021.118665 34702484
    [Google Scholar]
  310. Donald A.M. Kato K.L. Perry P.A. Waigh T.A. Scattering studies of the internal structure of starch granules. Stärke 2001 53 10 504 512 10.1002/1521‑379X(200110)53:10<504:AID‑STAR504>3.0.CO;2‑5
    [Google Scholar]
  311. Nawaz H. Waheed R. Nawaz M. Shahwar D. Physical and chemical modifications in starch structure and reactivity. Chemical properties of starch. IntechOpen 2020 10.5772/intechopen.88870
    [Google Scholar]
  312. Gilet A. Quettier C. Wiatz V. Bricout H. Ferreira M. Rousseau C. Monflier E. Tilloy S. Unconventional media and technologies for starch etherification and esterification. Green Chem. 2018 20 6 1152 1168 10.1039/C7GC03135A
    [Google Scholar]
  313. Xu J. Andrews T.D. Shi Y.C. Recent advances in the preparation and characterization of intermediately to highly esterified and etherified starches: A review. Stärke 2020 72 3-4 1900238 10.1002/star.201900238
    [Google Scholar]
  314. Kim Y. Jung C. Reaction mechanisms applied to starch modification for biodegradable plastics: Etherification and esterification. Int. J. Polym. Sci. 2022 2022 1 10 10.1155/2022/2941406
    [Google Scholar]
  315. Clasen S.H. Müller C.M.O. Parize A.L. Pires A.T.N. Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction. Carbohydr. Polym. 2018 180 348 353 10.1016/j.carbpol.2017.10.016 29103514
    [Google Scholar]
  316. Akinterinwa A. Oladele E. Adebayo A. Gurgur E. Iyanu O.O. Ajayi O. Cross-linked-substituted (esteri-fied/etherified) starch derivatives as aqueous heavy metal ion adsorbent: A review. Water Sci. Technol. 2020 82 1 wst2020332 10.2166/wst.2020.332 32910789
    [Google Scholar]
  317. Otache M.A. Duru R.U. Achugasim O. Abayeh O.J. Advances in the modification of starch via esterification for enhanced properties. J. Polym. Environ. 2021 29 5 1365 1379 10.1007/s10924‑020‑02006‑0
    [Google Scholar]
  318. Teramoto N. Motoyama T. Yosomiya R. Shibata M. Synthesis, thermal properties, and biodegradability of propyl-etherified starch. Eur. Polym. J. 2003 39 2 255 261 10.1016/S0014‑3057(02)00199‑4
    [Google Scholar]
  319. Shah N. Mewada R.K. Mehta T. Crosslinking of starch and its effect on viscosity behaviour. Rev. Chem. Eng. 2016 32 2 265 270 10.1515/revce‑2015‑0047
    [Google Scholar]
  320. Ayoub A.S. Rizvi S.S.H. An overview on the technology of cross-linking of starch for nonfood applications. J. Plast. Film Sheeting 2009 25 1 25 45 10.1177/8756087909336493
    [Google Scholar]
  321. Reddy N. Yang Y. Citric acid cross-linking of starch films. Food Chem. 2010 118 3 702 711 10.1016/j.foodchem.2009.05.050
    [Google Scholar]
  322. Koo S.H. Lee K.Y. Lee H.G. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocoll. 2010 24 6-7 619 625 10.1016/j.foodhyd.2010.02.009
    [Google Scholar]
  323. Woo K.S. Seib P.A. Cross‐linked resistant starch: Preparation and properties. Cereal Chem. 2002 79 6 819 825 10.1094/CCHEM.2002.79.6.819
    [Google Scholar]
  324. Hoover R. Acid-treated starches. Food Rev. Int. 2000 16 3 369 392 10.1081/FRI‑100100292
    [Google Scholar]
  325. Singh V. Ali S.Z. Acid degradation of starch. The effect of acid and starch type. Carbohydr. Polym. 2000 41 2 191 195 10.1016/S0144‑8617(99)00086‑7
    [Google Scholar]
  326. Komiya T. Nara S. Changes in crystallinity and gelatinization phenomena of potato starch by acid treatment. Stärke 1986 38 1 9 13 10.1002/star.19860380104
    [Google Scholar]
  327. Thirathumthavorn D. Charoenrein S. Thermal and pasting properties of acid‐treated rice starches. Stärke 2005 57 5 217 222 10.1002/star.200400332
    [Google Scholar]
  328. Palma-Rodriguez H.M. Agama-Acevedo E. Mendez-Montealvo G. Gonzalez-Soto R.A. Vernon-Carter E.J. Bello-Pérez L.A. Effect of acid treatment on the physicochemical and structural characteristics of starches from different bo-tanical sources. Stärke 2012 64 2 115 125 10.1002/star.201100081
    [Google Scholar]
  329. Hung P.V. Vien N.L. Lan Phi N.T. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chem. 2016 191 67 73 10.1016/j.foodchem.2015.02.002 26258703
    [Google Scholar]
  330. Wing R.E. Oxidation of starch by thermochemical processing. Stärke 1994 46 11 414 418 10.1002/star.19940461103
    [Google Scholar]
  331. Dimri S. Oxidation of starch. Starch: Advances in Modifications, Technologies and Applications. Cham Springer 2023 55 82 10.1007/978‑3‑031‑35843‑2_3
    [Google Scholar]
  332. Zhang Y.R. Wang X.L. Zhao G.M. Wang Y.Z. Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr. Polym. 2012 87 4 2554 2562 10.1016/j.carbpol.2011.11.036
    [Google Scholar]
  333. Ashogbon A.O. Dual modification of various starches: Synthesis, properties and applications. Food Chem. 2021 342 128325 10.1016/j.foodchem.2020.128325 33153808
    [Google Scholar]
  334. Javadian N. Mohammadi Nafchi A. Bolandi M. The effects of dual modification on functional, microstructural, and thermal properties of tapioca starch. Food Sci. Nutr. 2021 9 10 5467 5476 10.1002/fsn3.2506 34646517
    [Google Scholar]
  335. Hazarika B.J. Sit N. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical pro-perties of taro starch. Carbohydr. Polym. 2016 140 269 278 10.1016/j.carbpol.2015.12.055 26876854
    [Google Scholar]
  336. Woggum T. Sirivongpaisal P. Wittaya T. Properties and characteristics of dual-modified rice starch based biodegra-dable films. Int. J. Biol. Macromol. 2014 67 490 502 10.1016/j.ijbiomac.2014.03.029 24680811
    [Google Scholar]
  337. Kumari B. Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applica-tions. Int. J. Biol. Macromol. 2023 253 Pt 3 126952 10.1016/j.ijbiomac.2023.126952 37722643
    [Google Scholar]
  338. Colussi R. Kringel D. Kaur L. da Rosa Zavareze E. Dias A.R.G. Singh J. Dual modification of potato starch: Ef-fects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chem. 2020 318 126475 10.1016/j.foodchem.2020.126475 32135422
    [Google Scholar]
  339. Wattanachant S. Muhammad K. Mat Hashim D. Rahman R.A. Effect of crosslinking reagents and hydroxypropy-lation levels on dual-modified sago starch properties. Food Chem. 2003 80 4 463 471 10.1016/S0308‑8146(02)00314‑X
    [Google Scholar]
  340. Zhou Y. Meng S. Chen D. Zhu X. Yuan H. Structure characterization and hypoglycemic effects of dual modified resistant starch from indica rice starch. Carbohydr. Polym. 2014 103 81 86 10.1016/j.carbpol.2013.12.020 24528703
    [Google Scholar]
  341. Ren L. Wang Q. Yan X. Tong J. Zhou J. Su X. Dual modification of starch nanocrystals via crosslinking and este-rification for enhancing their hydrophobicity. Food Res. Int. 2016 87 180 188 10.1016/j.foodres.2016.07.007 29606240
    [Google Scholar]
  342. Hakke V.S. Landge V.K. Sonawane S.H. Uday Bhaskar Babu G. Ashokkumar M. Flores M.M. E. The physical, mechanical, thermal and barrier properties of starch nanoparticle (SNP)/polyurethane (PU) nanocomposite films synt-hesised by an ultrasound-assisted process. Ultrason. Sonochem. 2022 88 106069 10.1016/j.ultsonch.2022.106069 35751937
    [Google Scholar]
  343. Xie X. Zhang Y. Zhu Y. Lan Y. Preparation and drug-loading properties of amphoteric cassava starch nanoparti-cles. Nanomaterials 2022 12 4 598 10.3390/nano12040598 35214927
    [Google Scholar]
  344. Chen Q. Wei L. Lai Y. Liu Y. Preparation and characterization of tea polyphenols-chitosan-based nanoparticles and their application in starch films. BioResources 2022 17 3 4306 4322 10.15376/biores.17.3.4306‑4322
    [Google Scholar]
  345. Bezzekhami M.A. Harrane A. Belalia M. Mostefai A. Belkhir N.L. Bououdina M. Green synthesis of starch na-noparticles (SNPs) by esterification with rosin acid catalyzed by maghnite-H+ (algerian montmorillonite) with enhanced antioxidant activity. Arab. J. Sci. Eng. 2023 48 1 311 326 10.1007/s13369‑022‑07033‑8
    [Google Scholar]
  346. Pan X. Liu P. Wang Y. Yi Y. Zhang H. Qian D.W. Xiao P. Shang E. Duan J.A. Synthesis of starch nanoparti-cles with controlled morphology and various adsorption rate for urea. Food Chem. 2022 369 130882 10.1016/j.foodchem.2021.130882 34481403
    [Google Scholar]
  347. Luo L. Cheng L. Zhang R. Yang Z. Impact of high-pressure homogenization on physico-chemical, structural, and rheological properties of quinoa protein isolates. Food. Structure 2022 32 100265 10.1016/j.foostr.2022.100265
    [Google Scholar]
  348. Aslam S. Akhtar A. Nirmal N. Khalid N. Maqsood S. Recent developments in starch-based delivery systems of bioactive compounds: Formulations and applications. Food Eng. Rev. 2022 14 2 271 291 10.1007/s12393‑022‑09311‑5
    [Google Scholar]
  349. Jiang F. Du C. Zhao N. Jiang W. Yu X. Du S. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem. 2022 369 130895 10.1016/j.foodchem.2021.130895 34438343
    [Google Scholar]
  350. de Almeida F.C. de Souza C.O. Philadelpho B.O. França Lemos P.V. Cardoso L.G. Santana J.S. Alves da Silva J.B. Cruz Correia P.R. Camilloto G.P. de Souza Ferreira E. Druzian J.I. Combined effect of cassava starch nano-particles and protein isolate in properties of starch‐based nanocomposite films. J. Appl. Polym. Sci. 2021 138 18 50008 10.1002/app.50008
    [Google Scholar]
  351. Morán D. Gutiérrez G. Blanco-López M.C. Marefati A. Rayner M. Matos M. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation. Appl. Sci. 2021 11 10 4547 10.3390/app11104547
    [Google Scholar]
  352. Chacon W.D.C. dos Santos Lima K.T. Valencia G.A. Henao A.C.A. Physicochemical properties of potato starch nanoparticles produced by anti‐solvent precipitation. Stärke 2021 73 1-2 2000086 10.1002/star.202000086
    [Google Scholar]
  353. Chang Y. Hu Z. Wang P. Zhou J. Synthesis, characterization, and flocculation performance of cationic starch na-noparticles. Carbohydr. Polym. 2021 269 118337 10.1016/j.carbpol.2021.118337 34294347
    [Google Scholar]
  354. Das A. Sit N. Modification of taro starch and starch nanoparticles by various physical methods and their characteri-zation. Stärke 2021 73 5-6 2000227 10.1002/star.202000227
    [Google Scholar]
  355. Gujral H. Sinhmar A. Nehra M. Nain V. Thory R. Pathera A.K. Chavan P. Synthesis, characterization, and utili-zation of potato starch nanoparticles as a filler in nanocomposite films. Int. J. Biol. Macromol. 2021 186 155 162 10.1016/j.ijbiomac.2021.07.005 34229021
    [Google Scholar]
  356. Yan L. Chen H. Xie M. Synergic fabrication of naringin molecule into polymeric nanoparticles for the treatment and nursing care of lung cancer therapy. J. Polym. Environ. 2021 29 12 4048 4059 10.1007/s10924‑021‑02151‑0
    [Google Scholar]
  357. Hosseini Bafghi M. Safdari H. Nazari R. Darroudi M. Sabouri Z. Zargar M. Zarrinfar H. Evaluation and com-parison of the effects of biosynthesized selenium and silver nanoparticles using plant extracts with antifungal drugs on the growth of Aspergillus and Candida species. Rend. Lincei Sci. Fis. Nat. 2021 32 4 791 803 10.1007/s12210‑021‑01021‑0
    [Google Scholar]
  358. Zahib I.R. Md Tahir P. Talib M. Mohamad R. Alias A.H. Lee S.H. Effects of degree of substitution and irradia-tion doses on the properties of hydrogel prepared from carboxymethyl-sago starch and polyethylene glycol. Carbohydr. Polym. 2021 252 117224 10.1016/j.carbpol.2020.117224 33183648
    [Google Scholar]
  359. Zhi K. Wang R. Wei J. Shan Z. Shi C. Xia X. Self-assembled micelles of dual-modified starch via hydroxypropy-lation and subsequent debranching with improved solubility and stability of curcumin. Food Hydrocoll. 2021 118 106809 10.1016/j.foodhyd.2021.106809
    [Google Scholar]
  360. Bhatia M. Rohilla S. Formulation and optimization of quinoa starch nanoparticles: Quality by design approach for solubility enhancement of piroxicam. Saudi Pharm. J. 2020 28 8 927 935 10.1016/j.jsps.2020.06.013 32792837
    [Google Scholar]
  361. Chang S. Chen X. Liu S. Wang C. Novel gel-like Pickering emulsions stabilized solely by hydrophobic starch nanocrystals. Int. J. Biol. Macromol. 2020 152 703 708 10.1016/j.ijbiomac.2020.02.175 32087225
    [Google Scholar]
  362. Song X. Zheng F. Ma F. Kang H. Ren H. The physical and oxidative stabilities of Pickering emulsion stabilized by starch particle and small molecular surfactant. Food Chem. 2020 303 125391 10.1016/j.foodchem.2019.125391 31466030
    [Google Scholar]
  363. Gutiérrez G. Morán D. Marefati A. Purhagen J. Rayner M. Matos M. Synthesis of controlled size starch nanopar-ticles (SNPs). Carbohydr. Polym. 2020 250 116938 10.1016/j.carbpol.2020.116938 33049850
    [Google Scholar]
  364. Agi A. Junin R. Gbadamosi A. Abbas A. Azli N.B. Oseh J. Influence of nanoprecipitation on crystalline starch nanoparticle formed by ultrasonic assisted weak-acid hydrolysis of cassava starch and the rheology of their solutions. Chem. Eng. Process. 2019 142 107556 10.1016/j.cep.2019.107556
    [Google Scholar]
  365. Farrag Y. Montero B. Rico M. Barral L. Bouza R. Preparation and characterization of nano and] micro particles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via emulsification/solvent evaporation and nanoprecipitation techniques. J. Nanopart. Res. 2018 20 3 71 10.1007/s11051‑018‑4177‑7
    [Google Scholar]
  366. Acevedo-Guevara L. Nieto-Suaza L. Sanchez L.T. Pinzon M.I. Villa C.C. Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol. 2018 111 498 504 10.1016/j.ijbiomac.2018.01.063 29337095
    [Google Scholar]
  367. Mohammadi-Samani S. Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug deli-very systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018 13 4 288 303 10.4103/1735‑5362.235156 30065762
    [Google Scholar]
  368. Jeong O. Shin M. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch. Food Chem. 2018 256 77 84 10.1016/j.foodchem.2018.02.098 29606475
    [Google Scholar]
  369. Sadeghi R. Daniella Z. Uzun S. Kokini J. Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. J. Cereal Sci. 2017 76 122 130 10.1016/j.jcs.2017.05.020
    [Google Scholar]
  370. Yang J. Li F. Li M. Zhang S. Liu J. Liang C. Sun Q. Xiong L. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydr. Polym. 2017 173 223 232 10.1016/j.carbpol.2017.06.006 28732861
    [Google Scholar]
  371. Perez Herrera M. Vasanthan T. Chen L. Rheology of starch nanoparticles as influenced by particle size, concentra-tion and temperature. Food Hydrocoll. 2017 66 237 245 10.1016/j.foodhyd.2016.11.026
    [Google Scholar]
  372. Mahmoudi Najafi S.H. Baghaie M. Ashori A. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. Int. J. Biol. Macromol. 2016 87 48 54 10.1016/j.ijbiomac.2016.02.030 26893054
    [Google Scholar]
  373. Qin Y. Liu C. Jiang S. Xiong L. Sun Q. Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Ind. Crops Prod. 2016 87 182 190 10.1016/j.indcrop.2016.04.038
    [Google Scholar]
  374. El-Naggar M.E. El-Rafie M.H. El-sheikh M.A. El-Feky G.S. Hebeish A. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. Int. J. Biol. Macromol. 2015 81 718 729 10.1016/j.ijbiomac.2015.09.005 26358550
    [Google Scholar]
  375. Gao Y. Zuo J. Bou-Chacra N. Pinto T.J.A. Clas S.D. Walker R.B. Löbenberg R. In vitro release kinetics of anti-tuberculosis drugs from nanoparticles assessed using a modified dissolution apparatus. BioMed Res. Int. 2013 2013 1 9 10.1155/2013/136590 23936771
    [Google Scholar]
  376. Rampino A. Borgogna M. Blasi P. Bellich B. Cesàro A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm. 2013 455 1-2 219 228 10.1016/j.ijpharm.2013.07.034 23886649
    [Google Scholar]
  377. Marie Arockianathan P. Sekar S. Kumaran B. Sastry T.P. Preparation, characterization and evaluation of biocom-posite films containing chitosan and sago starch impregnated with silver nanoparticles. Int. J. Biol. Macromol. 2012 50 4 939 946 10.1016/j.ijbiomac.2012.02.022 22390849
    [Google Scholar]
  378. Chin S.F. Pang S.C. Tay S.H. Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 2011 86 4 1817 1819 10.1016/j.carbpol.2011.07.012
    [Google Scholar]
  379. Santander-Ortega M.J. Stauner T. Loretz B. Ortega-Vinuesa J.L. Bastos-González D. Wenz G. Schaefer U.F. Lehr C.M. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J. Control. Release 2010 141 1 85 92 10.1016/j.jconrel.2009.08.012 19699771
    [Google Scholar]
  380. Geng F. Chang P.R. Yu J. Ma X. The fabrication and the properties of pretreated corn starch laurate. Carbohydr. Polym. 2010 80 2 360 365 10.1016/j.carbpol.2009.11.029
    [Google Scholar]
  381. Santoyo-Aleman D. Sanchez L.T. Villa C.C. Citric‐acid modified banana starch nanoparticles as a novel vehicle for β ‐carotene delivery. J. Sci. Food Agric. 2019 99 14 6392 6399 10.1002/jsfa.9918 31283024
    [Google Scholar]
  382. Ahmad M. Mudgil P. Gani A. Hamed F. Masoodi F.A. Maqsood S. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem. 2019 270 95 104 10.1016/j.foodchem.2018.07.024 30174096
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468386528250827045918
Loading
/content/journals/cpc/10.2174/0118779468386528250827045918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test