Skip to content
2000
Volume 15, Issue 1
  • ISSN: 1877-9468
  • E-ISSN: 1877-9476

Abstract

Aims

To study the micellar effect of SDS on the oxidation of glycine by Quinolinium Dichromate (QDC) in perchloric acid medium.

Background

Among the amino acids, glycine plays a major role in multiple metabolic reactions, such as glutathione synthesis and one-carbon metabolism. The oxidation of glycine has received importance because it is the major neurotransmitter inhibitor in the spinal cord and brainstem. In the oxidation process of amino acids, highly toxic chromium (VI) compounds are converted into non-toxic chromium (III) by quinolinium dichromate (QDC) oxidant in an appropriate pH value medium.

Objective

1. To study the catalytic role of anionic surfactant (SDS) on the oxidation of glycine by QDC through micellization, evaluation of critical micelles concentration (CMC) in the presence and absence of glycine and other surface properties along with thermodynamic quantities. 2. Determination of rate constant and order of reaction with respect to QDC, glycine, acid and surfactant which will help to study the kinetics of the reaction 3. Analysis of oxidation product by FT-IR and calculation of activation parameters. 4. Synthesis of oxidant (QDC) and its characterization by UV-Visible spectrophotometer and NMR spectroscopy.

Methods

The reaction was monitored spectrophotometrically at = 440 nm using Systronics Spectrophotometer-166 and 2203. The reaction mixture containing glycine, perchloric acid, SDS and water was taken in a separate flask in a thermostat and the oxidation reaction was started by adding the required amount of oxidant.

Results

First-order kinetics was observed with respect to oxidant, glycine and hydrogen ions. The rate of reaction increased remarkably with an increase in the concentration of surfactant (SDS). The kinetic results show that the ionic strength variation does not have any significant effect on the rate whereas the increase in the dielectric constant of the medium shows a remarkable effect on the rate constant. From stoichiometry study, it was found that 2 moles of oxidant (QDC) consumed 3 moles of glycine to produce aldehyde (Formaldehyde).

Conclusion

The observed negative value of (ΔS) entropy of activation and positive (ΔH) enthalpy of activation suggests a more ordered activated complex formation and highly solvated transition state. The kinetics of the reaction in a perchloric acid medium is found to be accelerated in the presence of surfactant (SDS). The kinetics of the reaction follow pseudo first-order decay of Cr(VI) species (QDC), a unity dependence of rate on glycine and perchloric acid. The oxidation product formaldehyde was identified by FTIR. NMR spectrum analysis of synthesized QDC shows a resemblance with pure QDC.

Loading

Article metrics loading...

/content/journals/cpc/10.2174/0118779468311853240726113410
2024-08-16
2025-10-25
Loading full text...

Full text loading...

References

  1. SenapatiS. DasS. MohantyP. PatnaikA. Kinetics and mechanism of electron transfer to pyridinium chlorochromate (VI) from sulfur containing amino acid, L-cysteine in aqueous and micellar media.Pol. J. Chem. Technol.201113261010.2478/v10026‑011‑0016‑7
    [Google Scholar]
  2. ElarbiF.M. EttarhouniZ.O. Abdussalam-MohammedW. MezoughiA.B. Study on the effects of biologically active amino acids on the micellization of anionic surfactant sodium dodecyl sulfate (SDS) at different temperatures.Chemistry20224114615510.3390/chemistry4010013
    [Google Scholar]
  3. Carnero RuizC. HierrezueloJ.M. Molina-BolívarJ.A. Effect of glycine on the surface activity and micellar properties of N-decanoyl-N-methylglucamide.Colloid Polym. Sci.2008286111281128910.1007/s00396‑008‑1893‑z
    [Google Scholar]
  4. HussainA. ShuaibuA.D. ShaikhA.J. KhanA.M. Exploring the effects of selected essential amino acids on the self-association of sodium dodecyl sulphate at different temperatures.J. Mol. Liq.202234711800310.1016/j.molliq.2021.118003
    [Google Scholar]
  5. KoyaP.A. WagayT.A. IsmailK. Conductometric studies on micellization of cationic surfactants in the presence of glycine.J. Solution Chem.201544110011110.1007/s10953‑014‑0284‑y
    [Google Scholar]
  6. SalcedaR. Glycine neurotransmission: Its role in development.Front. Neurosci.20221694756310.3389/fnins.2022.947563 36188468
    [Google Scholar]
  7. PengH. GuoJ. Reduction behavior of chromium(VI) with oxalic acid in aqueous solution.Sci. Rep.20201011773210.1038/s41598‑020‑74928‑7 33082489
    [Google Scholar]
  8. VenkatapathyM. VenkatesanM. AnbarasuK. Mechanistic aspects for the oxidation of benzaldehyde by piperidinium chlorochromate.Int. J. Adv. Sci. Res.20201101348352
    [Google Scholar]
  9. KalalR. PandayD. Kinetics and correlation analysis of reactivity in the oxidation of aliphatic primary alcohols by isoquinolinium dichromate in non-aqueous medium.J. Indian Chem. Soc.202198210000910.1016/j.jics.2021.100009
    [Google Scholar]
  10. SinghJ.V. AwasthiA. DiptiD. TomarA. SinghD. Pyridinium and Quinolinium halochromates: Kinetic and mechanistic aspects.Asian J. Chem.2011231147444750
    [Google Scholar]
  11. AroraB. OjhaJ. MishraP. Kinetics and mechanism of oxidation of aliphatic secondary alcohols by benzimidazolium fluorochromate in dimethyl sulphoxide solvent.Orient. J. Chem.202137362663310.13005/ojc/370315
    [Google Scholar]
  12. CainelliG. CardilloG. Chromium oxidations in organic chemistry.Springer1984
    [Google Scholar]
  13. HainesAlan Methods for Oxidation of Organic Compounds V2: Alcohols, Alcohol Derivatives, Alky Halides, Nitroalkanes, Alkyl Azides, Carbonyl Compounds Hydroxyarenes and Aminoarenes; 201219612910.1007/s10311‑021‑01272‑1
    [Google Scholar]
  14. NagnathraoK.G. Studies on Cr VI complexes as brominating agents a kinetic and mechanistic approach[Thesis - Swami Ramanand Teerth Marathwada University, Nanded].2023
    [Google Scholar]
  15. IzzudinN.M. JalilA.A. AzizF.F.A. AzamiM.S. AliM.W. HassanN.S. RahmanA.F.A. FauziA.A. VoD.V.N. Simultaneous remediation of hexavalent chromium and organic pollutants in wastewater using period 4 transition metal oxide-based photocatalysts: A review.Environ. Chem. Lett.20211964489451710.1007/s10311‑021‑01272‑1
    [Google Scholar]
  16. Katre SangitaD. Recent advances in the oxidation reactions of organic compounds using chromium (VI) reagents.Res. J. Chem. Environ.202024130151
    [Google Scholar]
  17. WangJ. LiangY. JinQ. HouJ. LiuB. LiX. ChenW. HayatT. AlsaediA. WangX. Simultaneous removal of graphene oxide and chromium (VI) on the rare earth doped titanium dioxide coated carbon sphere composites.ACS Sustain. Chem.& Eng.2017565550556110.1021/acssuschemeng.7b00957
    [Google Scholar]
  18. CangJ. GuW. ZhangY. ZhuX. Fe3O4–SiO2 –graphene oxide–amino acid ionic liquid magnetic solid-phase extraction combined with inductively coupled plasma optical emission spectrometry for speciation of Cr(iii) and Cr(vi) in environmental water.New J. Chem.20224673178318410.1039/D1NJ04917H
    [Google Scholar]
  19. NongkynrihI. DkharJ.C. KharpuriaE. MahantiM.K. Oxidation of primary alcohols by quinolinium dichromate. A kinetic probe.Oxid. Commun.20073018287
    [Google Scholar]
  20. DeyD. MahantiM.K. Kinetics of oxidation of substituted benzyl alcohols by quinolinium dichromate.J. Org. Chem.199055235848585010.1021/jo00310a015
    [Google Scholar]
  21. KodaliS.B. JakkuN.R. KamatalaC.R. YerraguntlaR.R. Kinetics and mechanism of quinolinium dichromate mediated oxidation of sugar alcohols in Bronsted acid media.Int. J. Chem. Kinet.202052316717710.1002/kin.21339
    [Google Scholar]
  22. RahaJ. SarmaG.C. MahantiM.K. A kinetics and mechanistic study of the oxidation of l-arginine by QDC in DMF-water medium.Bull. Soc. Chim. Fr.1991128487
    [Google Scholar]
  23. SarmaG.C. MahantiM.K. Kinetics of oxidation of hydrocarbons by quinolinium dichromate.J. Phys. Org. Chem.19914421722410.1002/poc.610040404
    [Google Scholar]
  24. JainD. RathorS. A kinetics and mechanistic study of the oxidation ofL-arginine by qdc in dmf-water medium. IJSR20211010.36106/ijsr/1636505
    [Google Scholar]
  25. SarmaG.C. MahantiM.K. Oxidation of fluorene by quinolinium dichromate. ESR evidence for the chromium (V) species.Oxidation. Commun.2005284919
    [Google Scholar]
  26. NongkynrihI. MahantiM.K. Quinolinium dichromate oxidations. Kinetics and mechanism of the oxidative cleavage of styrenes.J. Org. Chem.1993581849254928
    [Google Scholar]
  27. CoreyE.J. SchmidtG. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media.Tetrahedron Lett.197920539940210.1016/S0040‑4039(01)93515‑4
    [Google Scholar]
  28. KimS. LhimD.C. Imidazolium dichromate1986
    [Google Scholar]
  29. LópezC. GonzálezA. CossíoF.P. PalomoC. 3-Carboxypyridinium dichromate (NDC) and (4-carboxypyridinium dichromate (INDC). Two new mild, stable, efficient, and inexpensive chromium (VI) oxidation reagents.Synth. Commun.198515131197121110.1080/00397918508077265
    [Google Scholar]
  30. RathorS. DangarhB.K. Oxidation of Dl-Alanine by QDC in partial non-aqueous medium–a kinetic and mechanistic study. IJESRT,20176210.5281/zenodo.290137
    [Google Scholar]
  31. MittalK.L. Physical principles of surfactant self-association into micelles, bilayers, vesicles and microemulsion droplets. In: Surfactants in solution: Recent developments;19874334
    [Google Scholar]
  32. EastoeJ. TaborR.F. Surfactants and nanoscience.In: Colloidal foundations of nanoscience.Elsevier202215318210.1016/B978‑0‑12‑822089‑4.00008‑8
    [Google Scholar]
  33. MukerjeeP. MyselsK.J. CMC of aqueous surfactant systems.Nat. Stand. Ref. Data Ser. Bur. Stand.(US)197136227
    [Google Scholar]
  34. ChangL.W. Toxicology of Metals.CRC Press1996
    [Google Scholar]
  35. DasA.K. RoyA. SahaB. MohantyR.K. DasM. Micellar effect on the reaction of chromium(VI) oxidation of D‐fructose in the presence and absence of picolinic acid in aqueous media: a kinetic study.J. Phys. Org. Chem.200114633334210.1002/poc.374
    [Google Scholar]
  36. Shaeel Al-ThabaitiN. AlSulamiQ.A. KhanZ. Role of ionic surfactants on the activation of K2S2O8 for the advanced oxidation processes.J. Mol. Liq.202336912083710.1016/j.molliq.2022.120837
    [Google Scholar]
  37. WangL. WuH. DengD. Role of surfactants in accelerating or retarding persulfate decomposition.Chem. Eng. J.202038412330310.1016/j.cej.2019.123303
    [Google Scholar]
  38. BalasubramanianK. PrathibaV. Quinolinium dichromate-a new reagent for oxidation of alcohols. . indian J. Chem. 198625B326327
    [Google Scholar]
  39. BarbieriG. BenassiR. LazzerettiP. SchenettiL. TaddeiF. The 1H NMR spectra of quinoline, quinoline N‐oxide, the quinolinium ion and of their monomethyl derivatives.Org. Magn. Reson.19757945145410.1002/mrc.1270070911
    [Google Scholar]
  40. Bosco BharathyJ.R. GanesanT.K. RajkumarE. RajagopalS. ManimaranB. RajendranT. LuK.L. Micellar effect on the electron transfer reaction of chromium(V) ion with organic sulfides.Tetrahedron200561194679468710.1016/j.tet.2005.02.052
    [Google Scholar]
  41. HansenJ.H. PetersenS.V. AndersenK.K. EnghildJ.J. DamhusT. OtzenD. Stable intermediates determine proteins’ primary unfolding sites in the presence of surfactants.Biopolymers200991322123110.1002/bip.21125 19072990
    [Google Scholar]
  42. FatimaM.E. ZainebO.E. WanisaA.M. AyshaB.M. study on the effect of biological active amino acids on the miccellirazation of anionic surfactant sodium dodicylsulfate (SDS) at different temperature.Chemistry Surfactants202241146155
    [Google Scholar]
  43. AleinerG.S. Us’yarovO.G. Conductivity of micellar solutions of ionic surfactants and surface conductivity of micelles.Colloid J.201072558859410.1134/S1061933X10050029
    [Google Scholar]
  44. LehningerAL. NelsonDL. CoxMM. Lehninger Principles of biochemistry1993
    [Google Scholar]
  45. RosenM.J. KunjappuJ.T. Surfactants and interfacial phenomena.John Wiley & Sons201210.1002/9781118228920
    [Google Scholar]
  46. TofaniL. FeisA. SnokeR.E. BertiD. BaglioniP. SmulevichG. Spectroscopic and interfacial properties of myoglobin/surfactant complexes.Biophys. J.20048721186119510.1529/biophysj.104.041731 15298921
    [Google Scholar]
  47. HeF. XuG. PangJ. AoM. HanT. GongH. Effect of amino acids on aggregation behaviors of sodium deoxycholate at air/water surface: surface tension and oscillating bubble studies.Langmuir201127253854510.1021/la103478c 21142096
    [Google Scholar]
  48. MalikN.A. FarooqU. Effect of caffeine on the micellization and related thermodynamic parameters of sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and triton x-100: a physicochemical study.Phys. Chem. Liquids202260226527410.1080/00319104.2021.1949594
    [Google Scholar]
  49. IsaacO.T. PuH. OniB.A. SamsonF.A. Surfactants employed in conventional and unconventional reservoirs for enhanced oil recovery—A review.Energy Rep.202282806283010.1016/j.egyr.2022.01.187
    [Google Scholar]
  50. AmisE.S. Solvent effects on reaction rates and mechanisms.Academic Press196610.1002/ange.19680800421
    [Google Scholar]
  51. PrabhakarK. HussainK. Kinetics of oxidation and mechanism of glycine by tributylammonium chlorochromate in acid medium.Int. J. Phar. Phceu. Rea2017103224234
    [Google Scholar]
  52. SumathiT. ShanmugasundaramP. ChandramohanG. DeepaD. RenganathanR. A kinetic and mechanistic study on the silver(I) catalysed oxidation of L-Glysine by cerium(IV) in sulphuric acid medium.J. Chemical Sci. Tech.201224451
    [Google Scholar]
  53. ChimatadarS.A. MadawaleS.V. NandibewoorS.T. Mechanistic study of iodide catalysed oxidation of l-glutamic acid by cerium(IV) in aqueous sulphuric acid medium.Trans. Met. Chem. (Weinh.)200732563464110.1007/s11243‑007‑0222‑6
    [Google Scholar]
  54. WibergK.B. Oxidation in Organic Chemistry.New YorkAcademic Press1965
    [Google Scholar]
  55. LyngdohC.B. DasS. MahantiM.K. Kinetics of oxidation of pyruvic acid by quinolinium dichromate.Oxid. Commun.2001243382387
    [Google Scholar]
  56. SenguptaK.K. ChakladarJ.K. ChatterjeeA.K. Kinetics of the oxidation of hypophosphorous and phosphorous acids by chromium(VI).J. Inorg. Nucl. Chem.197335390190810.1016/0022‑1902(73)80460‑9
    [Google Scholar]
  57. EspensonJ.H. Oxidation of transition metal complexes by chromium (VI).Acc. Chem. Res.197031034735310.1021/ar50034a004
    [Google Scholar]
  58. KhanZ. Kabir-ud-Din, Effect of manganese (II) ions on the oxidation of malic and oxaloethanoic acids by aqueous HCrO4−.Trans. Met. Chem. (Weinh.)200126667267810.1023/A:1012056310950
    [Google Scholar]
  59. MilazzoG. CaroliS. BraunR.D. Tables of standard electrode potentials.J. Electrochem. Soc.19781256261C10.1149/1.2131790
    [Google Scholar]
  60. SzabóM. KalmárJ. DitróiT. BellérG. LenteG. SimicN. FábiánI. Equilibria and kinetics of chromium(VI) speciation in aqueous solution – A comprehensive study from pH 2 to 11.Inorg. Chim. Acta201847229530110.1016/j.ica.2017.05.038
    [Google Scholar]
  61. YadavM.B. MeenaM. MeenaB.S. MeenaK. Micellar Effect on the Oxidation of Anisaldehyde by Quinolinium Dichromate in Aqueous Acidic Media: A Kinetic Study.Curr. Phys. Chem.202313320722110.2174/1877946813666230602092010
    [Google Scholar]
  62. MartellA.E. SmithR.M. Critical Stability Constants; Springer, 1989610.1007/978‑1‑4615‑6764‑6
    [Google Scholar]
  63. ChangR. Physical Chemistry with Applications to Biological Systems.New YorkMacMillan Publishing Co., Inc.1981
    [Google Scholar]
  64. TongJ.Y.P. KingE.L. The Kinetics and Mechanism of the Reaction of Cerium (IV) and Chromium (III) 1,2.J. Am. Chem. Soc.196082153805380910.1021/ja01500a001
    [Google Scholar]
/content/journals/cpc/10.2174/0118779468311853240726113410
Loading
/content/journals/cpc/10.2174/0118779468311853240726113410
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): glycine; Kinetics; mechanism; oxidation; QDC; SDS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test