Skip to content
2000
Volume 26, Issue 16
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Liposomes were extensively used for cosmetics and pharmaceuticals due to their versatility, biocompatibility, and biodegradability, as well as the ability to encapsulate water-soluble and fat-soluble substances. However, some challenges remain unsolved, including poor stability, complex preparation process, limited encapsulation efficiencies (EE%) and drug loading capacity (DLC%).

Methods

We herein prepared universal liquid proliposomes by rotary evaporation method and optimized formulations with different pH, glycerol content, ethanol content and preparation process.

Results

The EE% of water-soluble substances was above 85%, and the maximum DLC% was 37.5%. In 7 different conditions, the optimal formulation of the proliposomes remained stable over 60 days. The excellent stability of proliposomes and nicotinamide liposomes and their essence, when applied to cosmetic formulations, was confirmed by the Turbiscan stability analyzer.

Conclusion

The proposed universal liquid proliposomes can form liposomes encapsulating a variety of water-soluble substances rapidly, making them an accessible and versatile tool for improving the stability and applicability of water-soluble raw materials.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010328982241004064135
2024-10-15
2026-02-02
Loading full text...

Full text loading...

References

  1. JassJ. TjärnhageT. PuuG. From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: An atomic force microscopy study.Biophys. J.20007963153316310.1016/S0006‑3495(00)76549‑0 11106620
    [Google Scholar]
  2. PandeS. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes.Artif. Cells Nanomed. Biotechnol.202351142844010.1080/21691401.2023.2247036 37594208
    [Google Scholar]
  3. PattniB.S. ChupinV.V. TorchilinV.P. New Developments in Liposomal Drug Delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b00046 26010257
    [Google Scholar]
  4. PatravaleV.B. MandawgadeS.D. Novel cosmetic delivery systems: An application update.Int. J. Cosmet. Sci.2008301193310.1111/j.1468‑2494.2008.00416.x 18377627
    [Google Scholar]
  5. JiangT. WangT. LiT. MaY. ShenS. HeB. MoR. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma.ACS Nano201812109693970110.1021/acsnano.8b03800 30183253
    [Google Scholar]
  6. DymekM. SikoraE. Liposomes as biocompatible and smart delivery systems – the current state.Adv. Colloid Interface Sci.202230910275710.1016/j.cis.2022.102757 36152374
    [Google Scholar]
  7. JeongW.Y. KwonM. ChoiH.E. KimK.S. Recent advances in transdermal drug delivery systems: A review.Biomater. Res.20212512410.1186/s40824‑021‑00226‑6 34321111
    [Google Scholar]
  8. NematollahiM.H. PardakhtyA. Torkzadeh-MahanaiM. MehrabaniM. AsadikaramG. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention.RSC Advances2017778494634947210.1039/C7RA07834J
    [Google Scholar]
  9. NasrG. Greige-GergesH. ElaissariA. KhreichN. Liposome permeability to essential oil components: A focus on cholesterol content.J. Membr. Biol.2021254438139510.1007/s00232‑021‑00180‑3 33939003
    [Google Scholar]
  10. AlamM.I. PagetT. ElkordyA.A. Formulation and advantages of furazolidone in liposomal drug delivery systems.Eur. J. Pharm. Sci.20168413914510.1016/j.ejps.2016.01.017 26796143
    [Google Scholar]
  11. BarrigaH.M.G. HolmeM.N. StevensM.M. Cubosomes: The next generation of smart lipid nanoparticles?Angew. Chem. Int. Ed.201958102958297810.1002/anie.201804067 29926520
    [Google Scholar]
  12. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  13. BuengerJ. DrillerH. Ectoin: An effective natural substance to prevent UVA-induced premature photoaging.Skin Pharmacol. Physiol.200417523223710.1159/000080216 15452409
    [Google Scholar]
  14. BuomminoE. SchiraldiC. BaroniA. PaolettiI. LambertiM. De RosaM. TufanoM.A. Ectoine from halophilic microorganisms induces the expression of hsp70 and hsp70B′ in human keratinocytes modulating the proinflammatory response.Cell Stress Chaperones200510319720310.1379/CSC‑101R.1 16184764
    [Google Scholar]
  15. DamianD.L. Nicotinamide for skin cancer chemoprevention.Australas. J. Dermatol.201758317418010.1111/ajd.12631 28321860
    [Google Scholar]
  16. ApparooY. PhanC.W. KuppusamyU.R. SabaratnamV. Ergothioneine and its prospects as an anti-ageing compound.Exp. Gerontol.202217011198210.1016/j.exger.2022.111982 36244584
    [Google Scholar]
  17. HossainS. KhetraY. DulariaC. Biosynthesis of lactobionic acid: A systematic review.Crit. Rev. Food Sci. Nutr.202311410.1080/10408398.2023.2273450 37874029
    [Google Scholar]
  18. MunY. KimW. ShinD. Melanocortin 1 Receptor (MC1R): Pharmacological and Therapeutic Aspects.Int. J. Mol. Sci.202324151215210.3390/ijms241512152 37569558
    [Google Scholar]
  19. IachinaI. AntonescuI.E. DreierJ. SørensenJ.A. BrewerJ.R. The nanoscopic molecular pathway through human skin.Biochim. Biophys. Acta, Gen. Subj.2019186371226123310.1016/j.bbagen.2019.04.012 30998962
    [Google Scholar]
  20. MercuriA.M. Quality by Design Applied to Ocular Solid Lipid Nanoparticles Containing a Hydrophilic Peptide Prepared via Hot High Pressure Homogeniser.Curr. Drug Deliv.20161381247126010.2174/1567201813666160325131831 27012669
    [Google Scholar]
  21. SantoI.E. CampardelliR. AlbuquerqueE.C. Vieira De MeloS.A.B. ReverchonE. PortaG.D. Liposomes size engineering by combination of ethanol injection and supercritical processing.J. Pharm. Sci.2015104113842385010.1002/jps.24595 26211426
    [Google Scholar]
  22. TrucilloP CampardelliR ReverchonE SupercriticalCO Supercritical CO2 assisted liposomes formation: Optimization of the lipidic layer for an efficient hydrophilic drug loadingJ. CO2 Util.201718181188
    [Google Scholar]
  23. ZhangL. ZhuH. YeP. ZhuL. RenY. LeiJ. Controlled production of liposomes with novel microfluidic membrane emulsification for application of entrapping hydrophilic and lipophilic drugs.J. Ind. Eng. Chem.202413147048010.1016/j.jiec.2023.10.051
    [Google Scholar]
  24. ArreguiJ.R. KovvasuS.P. BetageriG.V. Daptomycin proliposomes for oral delivery: Formulation, characterization, and in vivo pharmacokinetics.AAPS PharmSciTech20181941802180910.1208/s12249‑018‑0989‑0 29616488
    [Google Scholar]
  25. JunpingW. MaitaniY. TakayamaK. NagaiT. in vivo evaluation of doxorubicin carried with long circulating and remote loading proliposome.Int. J. Pharm.20002031-2616910.1016/S0378‑5173(00)00410‑5 10967428
    [Google Scholar]
  26. SunC. WangJ. LiuJ. QiuL. ZhangW. ZhangL. Liquid proliposomes of nimodipine drug delivery system: Preparation, characterization, and pharmacokinetics.AAPS PharmSciTech201314133233810.1208/s12249‑013‑9924‑6 23319300
    [Google Scholar]
  27. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze–thawing.J. Food Sci. Technol.201754103132314110.1007/s13197‑017‑2749‑7 28974798
    [Google Scholar]
  28. FuD. XuH. SunR. LiuX. JiZ. ZhouD. SongL. Engineering marine phospholipid nanoliposomes via glycerol-infused proliposomes: Mechanisms, strategies, and versatile applications in scalable food-grade nanoliposome production.Food Chem.202444813903010.1016/j.foodchem.2024.139030 38531301
    [Google Scholar]
  29. TomiieA. ShinozakiM. YamadaT. KuriyamaJ. Moisturizing effects of diglycerol combined with glycerol on human stratum corneum.J. Oleo Sci.201665868168410.5650/jos.ess15253 27430380
    [Google Scholar]
  30. DuG. SunX. Ethanol injection method for liposome preparation.Methods Mol. Biol.20232622657010.1007/978‑1‑0716‑2954‑3_5 36781750
    [Google Scholar]
  31. PalA. SuntharP. KhakharD.V. Effects of ethanol addition on the size distribution of liposome suspensions in water.Ind. Eng. Chem. Res.201958187511751910.1021/acs.iecr.8b05028
    [Google Scholar]
  32. BalouchM. StorchmannováK. ŠtěpánekF. BerkaK. Computational prodrug design methodology for liposome formulability enhancement of small-molecule APIs.Mol. Pharm.20232042119212710.1021/acs.molpharmaceut.2c01078 36939094
    [Google Scholar]
  33. López-PintoJ.M. González-RodríguezM.L. RabascoA.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes.Int. J. Pharm.2005298111210.1016/j.ijpharm.2005.02.021 15896932
    [Google Scholar]
  34. PilchE. MusiałW. Liposomes with an ethanol fraction as an application for drug delivery.Int. J. Mol. Sci.20181912380610.3390/ijms19123806 30501085
    [Google Scholar]
  35. HarpinV. RutterN. Percutaneous alcohol absorption and skin necrosis in a preterm infant.Arch. Dis. Child.198257647747910.1136/adc.57.6.477 7092315
    [Google Scholar]
  36. LachenmeierD.W. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity.J. Occup. Med. Toxicol.2008312610.1186/1745‑6673‑3‑26 19014531
    [Google Scholar]
  37. ChungS.K. ShinG.H. JungM.K. HwangI.C. ParkH.J. Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization.Colloids Surf. A Physicochem. Eng. Asp.201445481510.1016/j.colsurfa.2014.03.095
    [Google Scholar]
  38. MelchiorS. CodrichM. GorassiniA. MehnD. PontiJ. VerardoG. TellG. CalzolaiL. CalligarisS. Design and advanced characterization of quercetin-loaded nano-liposomes prepared by high-pressure homogenization.Food Chem.202342813668010.1016/j.foodchem.2023.136680 37418880
    [Google Scholar]
  39. TamjidiF. ShahediM. VarshosazJ. NasirpourA. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innov. Food Sci. Emerg. Technol.201319294310.1016/j.ifset.2013.03.002
    [Google Scholar]
  40. MehtaM. ShahJ. KhakhkharT. ShahR. HemavathiK.G. Anticonvulsant hypersensitivity syndrome associated with carbamazepine administration: Case series.J. Pharmacol. Pharmacother.201451596210.4103/0976‑500X.124428 24554914
    [Google Scholar]
  41. SarabandiK. JafariS.M. MohammadiM. AkbarbagluZ. PezeshkiA. Khakbaz HeshmatiM. Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization.Food Hydrocoll.20199644245010.1016/j.foodhyd.2019.05.047
    [Google Scholar]
  42. YuanJ.J. QinF. TuJ.L. LiB. Preparation, characterization, and antioxidant activity evaluation of liposomes containing water-soluble hydroxytyrosol from olive.Molecules201722687010.3390/molecules22060870 28538693
    [Google Scholar]
  43. HaoX. GuanR. HuangH. YangK. WangL. WuY. Anti‐inflammatory activity of cyanidin‐3‐O‐glucoside and cyanidin‐3‐O‐glucoside liposomes in THP‐1 macrophages.Food Sci. Nutr.20219126480649110.1002/fsn3.2554 34925779
    [Google Scholar]
  44. DymekM. OlechowskaK. Hąc-WydroK. SikoraE. Liposomes as carriers of GHK-Cu tripeptide for cosmetic application.Pharmaceutics20231510248510.3390/pharmaceutics15102485 37896245
    [Google Scholar]
  45. BhiseK. SauS. KebriaeiR. RiceS.A. StamperK.C. AlsaabH.O. RybakM.J. IyerA.K. Combination of vancomycin and cefazolin lipid nanoparticles for overcoming antibiotic resistance of MRSA Materials.2018117124510.3390/ma11071245 30036944
    [Google Scholar]
  46. FanN. LiQ. LiuY. MaB. LiM. YinD. Preparation of an HI-6-loaded brain-targeted liposomes based on the nasal delivery route and the evaluation of its reactivation of central toxic acetylcholinesterase.Eur. J. Pharm. Sci.202318410640610.1016/j.ejps.2023.106406 36805055
    [Google Scholar]
  47. KesharwaniP. MdS. AlhakamyN.A. HosnyK.M. HaqueA. QbD Enabled Azacitidine Loaded Liposomal Nanoformulation and Its in vitro Evaluation.Polymers.202113225010.3390/polym13020250 33451016
    [Google Scholar]
  48. HuangR. ZhaoZ. JiangX. LiW. ZhangL. WangB. TieH. Liposomal chrysin attenuates hepatic ischaemia-reperfusion injury: Possible mechanism via inhibiting NLRP3 inflammasome.J. Pharm. Pharmacol.202274221622610.1093/jpp/rgab153 34791354
    [Google Scholar]
  49. ZhuD. MaW. YangM. ChengS. ZhangL. DuM. Protection of osteogenic peptides in nanoliposomes: Stability, sustained release, bioaccessibility and influence on bioactive properties.Food Chem.202443613768310.1016/j.foodchem.2023.137683 37837681
    [Google Scholar]
  50. LiuN. ParkH.J. Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes.Colloids Surf. B Biointerfaces2010761161910.1016/j.colsurfb.2009.09.041 19926458
    [Google Scholar]
  51. GeL. LiJ. Study on stability of coal water slurry under different coal water slurry dispersants by using stability analyzer.IOP Conf Ser: Mater Sci Eng201910.1088/1757‑899X/631/2/022003
    [Google Scholar]
  52. XiongR. GuoJ. KiyingiW. FengH. SunT. YangX. LiQ. Method for Judging the Stability of Asphaltenes in Crude Oil.ACS Omega2020534214202142710.1021/acsomega.0c01779 32905364
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010328982241004064135
Loading
/content/journals/cpb/10.2174/0113892010328982241004064135
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test