Skip to content
2000
Volume 26, Issue 16
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Introduction

Docetaxel (DTX) is a chemotherapeutic drug that has high toxicity and low bioavailability. To solve these problems, PLGA nanoparticles (NPs) were loaded with DTX and coated with mucoadhesive polymers; chitosan (CS), carboxymethyl chitosan (CMCS), or glycol chitosan (GCS). The NPs were characterized for size, charge, and polydispersity.

Methods

The particles were explored using SEM, FTIR, DSC, and XRD. studies were performed to evaluate the mucoadhesive properties of the NPs and the drug release.

Results

The results validated the successful formation of spherical and monodispersed DTX NPs. The coated NPs exhibited highly positive charges, reaching +44.30±0.21 mV, whereas the uncoated NPs were almost neutral. The formulations demonstrated excellent encapsulation efficiency (>98%) and loading capacity (>45%). All polymers used in the coating process enhanced the mucoadhesive properties of PLGA NPs and sustained DTX release. Both the mucoadhesiveness and release were related to the used coating polymer and its concentration. The formulations were stable for up to three months in the refrigerator.

Conclusion

In conclusion, loading DTX in PLGA NPs and coating them with CS, CMCS, or GCS provides a promising strategy to increase the NPs' residence time on mucosal surfaces, which is expected to decrease the required dose of DTX and reduce its side effects.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010335722240923110808
2024-10-04
2026-02-01
Loading full text...

Full text loading...

References

  1. HerbstR.S. KhuriF.R. Mode of action of docetaxel – A basis for combination with novel anticancer agents.Cancer Treat. Rev.200329540741510.1016/S0305‑7372(03)00097‑5 12972359
    [Google Scholar]
  2. BeheshtizadehN. AmiriZ. TabatabaeiS.Z. SerajiA.A. GharibshahianM. NadiA. SaeinasabM. SefatF. AzarH.K. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: From cancer therapy to regenerative medicine approaches.J. Transl. Med.20242210.1186/s12967‑024‑05347‑9
    [Google Scholar]
  3. ZhangE. XingR. LiuS. LiP. Current advances in development of new docetaxel formulations.Expert Opin. Drug Deliv.201916330131210.1080/17425247.2019.1583644 30773947
    [Google Scholar]
  4. ImranM. SaleemS. ChaudhuriA. AliJ. BabootaS. Docetaxel: An update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer.J. Drug Deliv. Sci. Technol.20206010195910.1016/j.jddst.2020.101959
    [Google Scholar]
  5. BakerJ. AjaniJ. ScottéF. WintherD. MartinM. AaproM.S. von MinckwitzG. Docetaxel-related side effects and their management.Eur. J. Oncol. Nurs.2009131495910.1016/j.ejon.2008.10.003 19201649
    [Google Scholar]
  6. KarlssonJ. VaughanH.J. GreenJ.J. Biodegradable polymeric nanoparticles for therapeutic cancer treatments.Annu. Rev. Chem. Biomol. Eng.20181761139148
    [Google Scholar]
  7. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  8. SurS. RathoreA. DaveV. ReddyK.R. ChouhanR.S. SadhuV. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct.Nano-objects20192010039710.1016/j.nanoso.2019.100397
    [Google Scholar]
  9. NegahdariR. BohlouliS. SharifiS. Maleki DizajS. Rahbar SaadatY. KhezriK. JafariS. AhmadianE. Gorbani JahandiziN. RaeesiS. Therapeutic benefits of rutin and its nanoformulations.Phytother. Res.20213541719173810.1002/ptr.6904 33058407
    [Google Scholar]
  10. HaidarL.L. BilekM. AkhavanB. Surface bio‐engineered polymeric nanoparticles.Small20242021231087610.1002/smll.202310876 38396265
    [Google Scholar]
  11. AsghariF. SamieiM. AdibkiaK. AkbarzadehA. DavaranS. Biodegradable and biocompatible polymers for tissue engineering application: a review.Artif. Cells Nanomed. Biotechnol.201745218519210.3109/21691401.2016.1146731 26923861
    [Google Scholar]
  12. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  13. RafieiP. HaddadiA. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.Mater. Sci. Eng. C20182019104111
    [Google Scholar]
  14. RamalhoM.J. SerraÉ. LimaJ. LoureiroJ.A. PereiraM.C. Chitosan-PLGA mucoadhesive nanoparticles for gemcitabine repurposing for glioblastoma therapy.Eur. J. Pharm. Biopharm.2024200April11432610.1016/j.ejpb.2024.114326 38759897
    [Google Scholar]
  15. MansuriS. KesharwaniP. JainK. TekadeR.K. JainN.K. Mucoadhesion: A promising approach in drug delivery system.React. Funct. Polym.201610015117210.1016/j.reactfunctpolym.2016.01.011
    [Google Scholar]
  16. BitasD. SamanidouV. Biomedical applications.Molecules20192410683723
    [Google Scholar]
  17. M WaysT.M. LauW.M. Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems.Polymers (Basel)201810326710.3390/polym10030267 30966302
    [Google Scholar]
  18. NaikJ.B. PardeshiS.R. PatilR.P. PatilP.B. MujumdarA. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: an overview.Bionanoscience202010356458210.1007/s12668‑020‑00752‑y
    [Google Scholar]
  19. AlhalawehA. VilinskaA. GaviniE. RassuG. VelagaS.P. Surface thermodynamics of mucoadhesive dry powder formulation of zolmitriptan.AAPS PharmSciTech20111241186119210.1208/s12249‑011‑9691‑1 21918918
    [Google Scholar]
  20. Al-NemrawiN.K. AltawabeyehR.M. DarweeshR.S. Preparation and characterization of docetaxel-PLGA nanoparticles coated with folic acid-chitosan conjugate for cancer treatment.J. Pharm. Sci.2022111248549410.1016/j.xphs.2021.10.034 34728172
    [Google Scholar]
  21. KimD.W. YousafA.M. LiD.X. KimJ.O. YongC.S. ChoK.H. ChoiH.G. Development of RP-HPLC method for simultaneous determination of docetaxel and curcumin in rat plasma: Validation and stability.Asian J. Pharm. Sci.201712110511310.1016/j.ajps.2016.08.002 32104319
    [Google Scholar]
  22. Al-NemrawiN. AlshraiedehN.A. ZayedA. AltaaniB. Low molecular weight chitosan-coated PLGA nanoparticles for pulmonary delivery of tobramycin for cystic fibrosis.Pharmaceuticals (Basel)20181112810.3390/ph11010028 29517998
    [Google Scholar]
  23. RathodL.V. KapadiaR. SawantK.K. A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: In vitro, in vivo and stability studies.Mater. Sci. Eng. C20177152954010.1016/j.msec.2016.10.017 27987741
    [Google Scholar]
  24. CaiH. LiangZ. HuangW. WenL. ChenG. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery.Int. J. Pharm.20175321556510.1016/j.ijpharm.2017.08.084 28870763
    [Google Scholar]
  25. ArpagausC. PLA/PLGA nanoparticles prepared by nano spray drying.J. Pharm. Investig.201949440542610.1007/s40005‑019‑00441‑3
    [Google Scholar]
  26. GiovinoC. AyensuI. TettehJ. BoatengJ.S. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): A potential approach for buccal delivery of macromolecules.Int. J. Pharm.20124281-214315110.1016/j.ijpharm.2012.02.035 22405987
    [Google Scholar]
  27. Al-NemrawiN.K. OkourA.R. DaveR.H. Surface modification of PLGA nanoparticles using chitosan: Effect of molecular weight, concentration, and degree of deacetylation.Adv. Polym. Technol.20183783066307510.1002/adv.22077
    [Google Scholar]
  28. SannaV. RoggioA.M. PosadinoA.M. CossuA. MarcedduS. MarianiA. AlzariV. UzzauS. PintusG. SechiM. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies.Nanoscale Res. Lett.20116126010.1186/1556‑276X‑6‑260 21711774
    [Google Scholar]
  29. PeltonenL. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry.Adv. Drug Deliv. Rev.201813110111510.1016/j.addr.2018.06.009 29920294
    [Google Scholar]
  30. TakeuchiI. KobayashiS. HidaY. MakinoK. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.Colloids Surf. B Biointerfaces2017155354010.1016/j.colsurfb.2017.03.047 28391082
    [Google Scholar]
  31. SankhlaA. SharmaR. YadavR.S. KashyapD. KothariS.L. KachhwahaS. Biosynthesis and characterization of cadmium sulfide nanoparticles – An emphasis of zeta potential behavior due to capping.Mater. Chem. Phys.2016170445110.1016/j.matchemphys.2015.12.017
    [Google Scholar]
  32. AibaniN. RaiR. PatelP. CuddihyG. WasanE.K. Chitosan nanoparticles at the biological interface: Implications for drug delivery.Pharmaceutics20211310168610.3390/pharmaceutics13101686 34683979
    [Google Scholar]
  33. Al-nemrawiN.K. AlsharifS.S.M. DaveR.H. Preparation of chitosan-tpp nanoparticles: The influence of chitosan polymeric properties and formulation variables.Int. J. Appl. Pharm.2018105606510.22159/ijap.2018v10i5.26375
    [Google Scholar]
  34. LaiY.H. ChiangC.S. HsuC.H. ChengH.W. ChenS.Y. Development and characterization of a fucoidan-based drug delivery system by using hydrophilic anticancer polysaccharides to simultaneously deliver hydrophobic anticancer drugs.Biomolecules202010797010.3390/biom10070970 32605162
    [Google Scholar]
  35. SaeedA. ZahidS. SajidM. Ud DinS. AlamM.K. ChaudharyF.A. KaleemM. AlswairkiH.J. AbutayyemH. Physico-mechanical properties of commercially available tissue conditioner modified with synthesized chitosan oligosaccharide.Polymers (Basel)2022146123310.3390/polym14061233 35335563
    [Google Scholar]
  36. KurniasihM. Purwati; Cahyati, T.; Dewi, R.S. Carboxymethyl chitosan as an antifungal agent on gauze.Int. J. Biol. Macromol.201811916617110.1016/j.ijbiomac.2018.07.038 30009895
    [Google Scholar]
  37. KimD.E. LeeY.B. ShimH.E. SongJ.J. HanJ.S. MoonK.S. HuhK.M. KangS.W. Application of hexanoyl glycol chitosan as a non-cell adhesive polymer in three-dimensional cell culture.ACS Omega2022722184711848010.1021/acsomega.2c00890 35694497
    [Google Scholar]
  38. MusumeciT. VenturaC.A. GiannoneI. RuoziB. MontenegroL. PignatelloR. PuglisiG. PLA/PLGA nanoparticles for sustained release of docetaxel.Int. J. Pharm.20063251-217217910.1016/j.ijpharm.2006.06.023 16887303
    [Google Scholar]
  39. WangY. LiP. KongL. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery.AAPS PharmSciTech201314258559210.1208/s12249‑013‑9943‑3 23463262
    [Google Scholar]
  40. KangY. YinG. OuyangP. HuangZ. YaoY. LiaoX. ChenA. PuX. Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS).J. Colloid Interface Sci.20083221879410.1016/j.jcis.2008.02.031 18402971
    [Google Scholar]
  41. AliM.E.A. AboelfadlM.M.S. SelimA.M. KhalilH.F. ElkadyG.M. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases.Sep. Sci. Technol.201853182870288110.1080/01496395.2018.1489845
    [Google Scholar]
  42. MoganavallyP. DeepaM. SudhaP.N. SureshR. Adsorptive removal of lead and cadmium ions using cross-linked CMC Schiff base: Isotherm, kinetics and catalytic activity.Orient. J. Chem.201632144145310.13005/ojc/320150
    [Google Scholar]
  43. MansurA.A.P. MansurH.S. Quantum dot/glycol chitosan fluorescent nanoconjugates.Nanoscale Res. Lett.201510117210.1186/s11671‑015‑0879‑2 25897312
    [Google Scholar]
  44. YousefiA. EsmaeiliF. RahimianS. AtyabiF. DinarvandR. Preparation and in vitro evaluation of a pegylated nano-liposomal formulation containing docetaxel.Sci. Pharm.200977245346410.3797/scipharm.0806‑08
    [Google Scholar]
  45. GiriB.R. LeeJ. LimD.Y. KimD.W. Docetaxel/dimethyl-β-cyclodextrin inclusion complexes: preparation, in vitro evaluation and physicochemical characterization.Drug Dev. Ind. Pharm.202147231932810.1080/03639045.2021.1879840 33576707
    [Google Scholar]
  46. KolluruL.P. ChandranT. ShastriP.N. RizviS.A.A. D’SouzaM.J. Development and evaluation of polycaprolactone based docetaxel nanoparticle formulation for targeted breast cancer therapy.J. Nanopart. Res.2020221237210.1007/s11051‑020‑05096‑y
    [Google Scholar]
  47. Encinas-BasurtoD. KonhilasJ.P. PoltR. HayM. MansourH.M. Glycosylated Ang-(1-7) MasR agonist peptide Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles and microparticles in cognitive impairment: Design, particle preparation, physicochemical characterization, and in vitro release.Pharmaceutics202214358710.3390/pharmaceutics14030587 35335963
    [Google Scholar]
  48. Chandra DeyS. Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red.Int. J. Latest Res. Eng. Technol.2016March5262
    [Google Scholar]
  49. CycleM.C. JoseS. CinuT.A. SebastianR. ShojaM.H. AleykuttyN.A. Transferrin-conjugated docetaxel-PLGA nanoparticles for tumor targeting: Influence on MCF-7 cell cycle.Polymers (Basel)1905201911120
    [Google Scholar]
  50. RenL. YangX. GuoW. WangJ. ChenG. Inclusion complex of docetaxel with sulfobutyl ether β-cyclodextrin: Preparation, in vitro cytotoxicity and in vivo safety.Polymers (Basel)20201210233610.3390/polym12102336 33066097
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010335722240923110808
Loading
/content/journals/cpb/10.2174/0113892010335722240923110808
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): carboxymethyl chitosan; chitosan; Docetaxel; glycol chitosan; mucoadhesive; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test