Skip to content
2000
Volume 30, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Phenyltrichlorosilane is an important organosilicon compound, and its synthesis technology is a key research focus in the field of organosilicon chemistry. This article introduces the three main techniques for synthesizing phenyltrichlorosilane: the Grignard reagent method, the direct method, and the vapor phase condensation method, along with their respective advantages and disadvantages. It demonstrates that the vapor phase condensation method has become the dominant process due to its simple reaction apparatus and the feasibility of achieving continuous production. However, this method faces significant challenges, including low yield and the formation of carbon deposits within production pipelines. The process conditions of the vapor phase condensation method are summarized, including the reaction conditions of chlorobenzene and trichlorosilane at 540-680°C, which achieves a product yield of up to 65%. This study provides an in-depth analysis of the decomposition mechanism of trichlorosilane and chlorobenzene under high-temperature vapor-phase conditions, emphasizing the synthesis mechanism of phenyltrichlorosilane and analyzing the role of free radical initiators and their impact on enhancing the yield of phenyltrichlorosilane. Future research should focus on the development of new catalysts and initiators, process optimization, and the expansion of phenyltrichlorosilane's application fields.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728386435250424094028
2025-05-14
2025-12-06
Loading full text...

Full text loading...

References

  1. PatroneL. GadenneV. DesbiefS. Single and binary self-assembled monolayers of phenyl- and pentafluorophenyl-based silane species, and their phase separation with octadecyltrichlorosilane.Langmuir20102622171111711810.1021/la102742e 20968285
    [Google Scholar]
  2. Nedel’kinV.I. Nedel’kinA.V. IzmailovB.A. ZachernyukA.B. Solov’evaE.N. ZachernyukB.A. Practical application of selected functional organosilicone polymers.Polym. Sci. Ser. C202365216217210.1134/S1811238223700418
    [Google Scholar]
  3. Verberne-SuttonS.D. LeJeuneZ.M. HillS. LeJeuneJ.P. GarnoJ.C. Nanostructures prepared by vacuum-line deposition of organosilanes through a colloidal mask.J. Vac. Sci. Technol. B Nanotechnol. Microelectron.201836606160110.1116/1.5051350
    [Google Scholar]
  4. SunS. ShiY. ZhangJ. WuB. XuW. CaoH. WangL. Analysis and pathway exploration of high-boiling residues for methyl-chlorosilane-monomers production.Chem. Eng. J.202448314920110.1016/j.cej.2024.149201
    [Google Scholar]
  5. SołoduchoJ. ZającD. SpychalskaK. BalutaS. CabajJ. Conducting silicone-based polymers and their application.Molecules2021267201210.3390/molecules26072012 33916125
    [Google Scholar]
  6. YingmingW. QiangF. CangY. LingZ. LeiZ. LingY. Simulation and optimization of the separation process of light components in methylchlorosilanes.Silicone Material20243803434910.11941/j.issn.1009‑4369.2024.03.009
    [Google Scholar]
  7. ZhichengT. ShaozhenZ. ZhileiZ. Application of simulated annealing algorithm in separation optimization of methylchlorosilane.Med. Chem. Res.20221211311510.3969/j.issn.1672‑8114.2022.12.038
    [Google Scholar]
  8. LiB. HeC. LuW. WangJ. ZengY. GaoB. Synthesis of highly branched polymethylphenylsiloxane grafted epoxy resin copolymer for high efficiency ablation thermal protection coating.Prog. Org. Coat.201912617818610.1016/j.porgcoat.2018.10.020
    [Google Scholar]
  9. KadyrovR.R. MukhametshinV.V. KuleshovaL.S. MingulovI.S. Using new grouting materials during repair and insulation works.J. Phys. Conf. Ser.20222176101204410.1088/1742‑6596/2176/1/012044
    [Google Scholar]
  10. MohamedS.H. HameedA.S. YousifE. AlotaibiM.H. AhmedD.S. El-HitiG.A. New porous silicon-containing organic polymers: synthesis and carbon dioxide uptake.Processes2020811148810.3390/pr8111488
    [Google Scholar]
  11. YuJ. GuK. YangB. WangK. ZhouY. GaoC. The permeability and selectivity of the polyamide reverse osmosis membrane were significantly enhanced by PhSiCl3.Membranes202111214210.3390/membranes11020142 33670463
    [Google Scholar]
  12. NizamidinP. YangQ. GuoC. WufuerA. YimitA. MuhammadT. Fabrication and surface modification of niobium metal-organic framework membrane and its gas sensing application.Adv. Mater. Interfaces2022923220074210.1002/admi.202200742
    [Google Scholar]
  13. LiuJ. PengJ. BaiY. LiJ. SongZ. LiuP. OuyangT. LanH. HuangY. Progress in the preparation and application of arylsilane.Curr. Org. Chem.2023271283710.2174/1385272827666230217093032
    [Google Scholar]
  14. ZhouM. Synthesis of phenyltrichlorosilane using SiCl4, a byproduct of polysilicon production.Master's thesis201110.7666/d.Y2261787
    [Google Scholar]
  15. QingchaoH. GangY. XiaoguangX. ChaoS. ZhiyongZ. YanpingX. Preparation methods of phenyl chlorosilane are summarized.Silicone Material2015290542542810.11941/j.issn.1009‑4369.2015.05.016
    [Google Scholar]
  16. O’NeilG.W. Siletanes: Synthesis, structure, and reagents in organic synthesis. A Review.Org. Prep. Proced. Int.20225429512710.1080/00304948.2021.2007018
    [Google Scholar]
  17. MaokuanY. JieS. WeiZ. Study of the preparation method for phenyl trichlorosilane and its application.Chenmical Intermediate20170578
    [Google Scholar]
  18. AckerJ. BohmhammelK. Thermodynamic assessment of the copper catalyzed direct synthesis of methylchlorosilanes.J. Organomet. Chem.2008693152483249310.1016/j.jorganchem.2008.04.026
    [Google Scholar]
  19. GordonA.D. HinchB.J. StronginD.R. Effects of individual promoters on the Direct Synthesis of methylchlorosilanes.J. Catal.2009266229129810.1016/j.jcat.2009.06.026
    [Google Scholar]
  20. ZhangP. ZhangD. DongJ. ChenG. LiJ. Direct synthesis of methylchlorosilanes: Catalysts, mechanisms, reaction conditions, and reactor designs.Org. Process Res. Dev.20222682270228010.1021/acs.oprd.2c00107
    [Google Scholar]
  21. MahmoodiniaM. BlekenF. SvenumI-H. RøT. BLASER, E.; Gouttebroze, S.; Venvik, H. Role of copper in the formation of carbon during direct synthesis of methylchlorosilanes.SSRN202210.2139/ssrn.4118708
    [Google Scholar]
  22. MahmoodiniaM. FarooqH. RøeT. SvenumI-H. VenvikH.J. Effect of copper catalyst content and zinc promoter on carbon formation in the direct synthesis of methylchlorosilanes.Ind. Eng. Chem. Res.20236250215792158910.1021/acs.iecr.3c02940
    [Google Scholar]
  23. GuopingM. LiL. GuihuaX. XiaoyanN. Research on composite copper powder catalyst for synthesis of silicone monomer.Silicone Material202438110.11941/j.issn.1009‑4369.2024.01.007
    [Google Scholar]
  24. PakułaD. MarciniecB. PrzekopR.E. Direct synthesis of silicon compounds-from the beginning to green chemistry revolution.AppliedChem2023318910910.3390/appliedchem3010007
    [Google Scholar]
  25. SiR. JingD. LiuF. KongD. LiuX. LuJ. The development and application of Silicone-based heat transfer fluids.J. Phys. Conf. Ser.20232539101208310.1088/1742‑6596/2539/1/012083
    [Google Scholar]
  26. JinL. ZhangX. CuiC. XiZ. SunJ. Simultaneous process parameters and heat integration optimization for industrial organosilicon production.Separ. Purif. Tech.202126511852010.1016/j.seppur.2021.118520
    [Google Scholar]
  27. DavidsonI.M.T. EabornC. WoodC.J. Organosilicon compounds.J. Organomet. Chem.196710340140810.1016/S0022‑328X(00)83163‑0
    [Google Scholar]
  28. XingS. WangY. Organic silicon synthesis technology and product application.2000
    [Google Scholar]
  29. LiuT. HuangY. WangC. TangQ. WangJ. Effect of chloralkanes on the phenyltrichlorosilane synthesis by gas phase condensation.Chin. J. Chem. Eng.2015231717510.1016/j.cjche.2014.11.003
    [Google Scholar]
  30. YunpingY. DaoweiC. YunfengZ. XiangqianC. HongD. JianxiongJ. Research progress in the application of phenyltrichlorosilane.Silic. Mater.2018320214715310.11941/j.issn.1009‑4369.2018.02.015
    [Google Scholar]
  31. XinpingB. Domestic and foreign silicone industry market status and development trend.Chem. Ind.200806394610.3969/j.issn.1673‑9647.2008.06.007
    [Google Scholar]
  32. YangB. JiinH. LiY. LiX. Present situation and development of organosilicon industry.Hebei Chemical Industry200805293110.3969/j.issn.1003‑5059.2008.05.012
    [Google Scholar]
  33. HuangY. LiuT. WangJ. Synthesis of phenyltrichlorosilane by vapor condensation.Chem. React. Eng. Technol.2012280216416710.3969/j.issn.1001‑7631.2012.02.012
    [Google Scholar]
  34. IvanovaE.V. MinyayloE.O. TemnikovM.N. MukhtorovL.G. AtroshchenkoY.M. Silicones in Cosmetics.Polym. Sci. Ser. B202365557859410.1134/S1560090423600201
    [Google Scholar]
  35. ZhaoL. Analysis of the development trend of China’s organosilicon industry chain.Chem. Ind.201937011020
    [Google Scholar]
  36. KoiryS. ChauhanA. Synthesis strategies for si-based advanced materials and their applications.Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies.SingaporeSpringer202183186610.1007/978‑981‑16‑1892‑5_17
    [Google Scholar]
  37. SchumanD.P. LiuW.B. NesnasN. StoltzB.M. Transition‐metal‐free catalytic C—H bond silylation.Organosilicon Chemistry: Novel Approaches and Reactions.Wiley201921324010.1002/9783527814787.ch7
    [Google Scholar]
  38. TyagiA. YadavN. KhanJ. SinghS. Kumar HazraC. Transition‐metal‐free C−H Silylation: An emerging strategy.Asian J. Org. Chem.202110233435410.1002/ajoc.202000584
    [Google Scholar]
  39. SakdasriW. NgamprasertsithS. SaengsukP. SawangkeawR. Supercritical reaction between methanol and glycerol: The effects of reaction products on biodiesel properties.Energy Convers. Manage.20211210014510.1016/j.ecmx.2021.100145
    [Google Scholar]
  40. KnezŽ. PantićM. CörD. NovakZ. Knez HrnčičM. Are supercritical fluids solvents for the future?Chem. Eng. Process.201914110753210.1016/j.cep.2019.107532
    [Google Scholar]
  41. YoonT.J. LeeY.W. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids.J. Supercrit. Fluids2018134212710.1016/j.supflu.2017.11.022
    [Google Scholar]
  42. BarryA.J. PreeL.D. HookD.E. Preparation of phenyl silicon trichloride.Patent US25916681952
  43. BarryA.J. Production of arylhalosilanes.Patent US26262661953
  44. BarryA.J. Production of arylhalosilanes.Patent US26117751952
  45. BarryA.J. Production of arylhalosilanes.Patent US26262671953
  46. BarryA.J. GilkeyJ.W. HookD.E. Direct process for preparation of arylhalosilanes.Adv. Chem. Ser.1959232324626410.1021/ba‑1959‑0023.ch023
    [Google Scholar]
  47. WrightA. The role of boron trichloride in the synthesis of phenyltrichlorosilane from benzene and trichlorosilane.J. Organomet. Chem.1978145330731410.1016/S0022‑328X(00)81299‑1
    [Google Scholar]
  48. DerakhshandehM. BCl3 Adsorption on Pristine, S-Doped, and Cr-Doped Graphynes: A DFT study.Preprint202110.21203/rs.3.rs‑512555/v1
    [Google Scholar]
  49. LiujuanC. ZhangG. LiuJ. JiaoJ. LinH. WuM. ZhangX. ChenL. A potential practical process for remdesivir.Preprint202110.26434/chemrxiv.14709351.v1
    [Google Scholar]
  50. AshikawaN. LunsfordR. NespoliF. GilsonE. YuY. HuJ. KadoS. Coated boron layers by boronization and a real-time boron coating using an impurity powder dropper in the LHD.Plasma Sci. Technol.202426808510310.1088/2058‑6272/ad495f
    [Google Scholar]
  51. ValverdeV. JasimS.A. Ahmed Elawady; Yadav, A.; Mahmud, S.F.; Abdullaeva, B.S.; Mohammed, N.; Abdulsayed, Y.A.; Omran, A.A. A theoretical study on the application of zinc oxide nanotube for selective detection of BF3 and BCl3.Physica B202467441558110.1016/j.physb.2023.415581
    [Google Scholar]
  52. ChernyshevE.A. MironovV.F. PetrovA.D. New method for the preparation of of organosilicon monomers by the high-temperature condensation of alkenyl chlorides, aryl chlorides, and olefins with silanes containing silicon-attached hydrogen.Bull. Acad. Sci. USSR, Div. Chem. Sci.19609121989199710.1007/BF00912050
    [Google Scholar]
  53. HuangY. LiuT. WangC. WangJ. Mechanism and kinetics of the synthesis of phenyltrichlorosilane from trichlorosilane and chlorobenzene by gas phase condensation.Chem. Eng. J.201322625526210.1016/j.cej.2013.04.046
    [Google Scholar]
  54. Study on the reaction and separation process of trichlorosilane from trichlorohydrosilane and chlorobenzene.2017Available From: http://dx.doi.org/CNKI:CDMD:2.1018.015541
  55. JenningsA. A review of high-purity quartz for silicon production in Australia.Aust. J. Earth Sci.20247181085109710.1016/j.cej.2024.149049
    [Google Scholar]
  56. CohenK. BlanchardJ. RodriguezP. KellyK. DormanJ.A. DooleyK.M. Non-Catalytic direct partial oxidation of methane to methanol in a Wall-Coated microreactor.Chem. Eng. J.202448214904910.1016/j.cej.2024.149049
    [Google Scholar]
  57. PatilN. MishraN. SaedM. GreenM. WilhiteB. Energy conversion: Radio frequency driven heating of catalytic reactors for portable green chemistry.Adv. Sustainable Syst.2020411207002410.1002/adsu.202070024
    [Google Scholar]
  58. XieJ. LiX. GuoJ. LuoL. DelgadoJ.J. MartsinovichN. TangJ. Highly selective oxidation of benzene to phenol with air at room temperature promoted by water.Nat. Commun.2023141443110.1038/s41467‑023‑40160‑w 37481611
    [Google Scholar]
  59. BarryA.J. GilkeyJ.W. HookD.E. Preparation of Arylhalosilanes.Ind. Eng. Chem.195951213113810.1021/ie50590a032
    [Google Scholar]
  60. TajimaT. CivaleL. GrumstrupT.P. KellyD. MealyM.A. PoudelA. SalazarH.R. SchulzeR.K. PizzolP. SakaiH. ItoH. KakoE. OkadaT. UmemoriK. Construction of a New MgB 2 Coating System for 1.3-GHz Superconducting RF Cavities at LANL.IEEE Trans. Appl. Supercond.202333511010.1109/TASC.2023.3241261
    [Google Scholar]
  61. El AmraniA. BouchehamA. GuendouziA. LabdelliB. NasraouiC. Si-KaddourR. Co-Diffusion Processing of p+/n/n+ Structure for n-Type Silicon Solar Cells Using Boron Doped Paper Sheets.Silicon202214122322810.1007/s12633‑020‑00809‑3
    [Google Scholar]
  62. OnursalN. 2D-,3D-Boron carbon nitride adsorptionImportant research in the field of chemistry in a globalizing worldiKSAD Publications:Ankara202310.5281/zenodo.10030567
    [Google Scholar]
  63. PonomarevV.V. GolubtsovS.A. AndrianovK.A. PenskiiV.N. Mechanisms of the arylation of hydrochlorosilanes under pressure.Bull. Acad. Sci. USSR, Div. Chem. Sci.197120344644910.1007/BF00852027
    [Google Scholar]
  64. ChernyshevE.A. KomalenkovaN.G. BashkirovaS.A. Gas phase reactions of dichlorosilylene.J. Organomet. Chem.19842711-312914310.1016/0022‑328X(84)85169‑4
    [Google Scholar]
  65. ChernyshevE.A. KrasnovaT.L. AbramovaE.S. AbroninE.A. PetruninA.B. SergeevA.P. Experimental and theoretical study of the pyrolysis of trichlorosilane.Russ. Chem. Bull.19974691582158510.1007/BF02502944
    [Google Scholar]
  66. WalkerK.L. JardineR.E. RingM.A. O’NealH.E. Mechanisms and kinetics of the thermal decompositions of trichlorosilane, dichlorosilane, and monochlorosilane.Int. J. Chem. Kinet.1998301698810.1002/(SICI)1097‑4601(1998)30:1<69:AID‑KIN9>3.0.CO;2‑S
    [Google Scholar]
  67. RingM.A. O’NealH.E. WalkerK.L. Kinetics of dichlorosilylene trapping by methane and mechanism and kinetics of the methyldichlorosilane decomposition.Int. J. Chem. Kinet.1998301899710.1002/(SICI)1097‑4601(1998)30:1<89:AID‑KIN10>3.0.CO;2‑G
    [Google Scholar]
  68. KrasnovaT.L. AbramovaE.S. AlekseevN.V. ChernyshevE.A. Pyrolysis of trichlorosilane in the presence of chloroform.Russ. Chem. Bull.199948101960196310.1007/BF02494755
    [Google Scholar]
  69. KunzA. TakahashiK. RothP. 200010.1016/S0082‑0784(00)80354‑9
  70. NagahashiT. KarasawaH. HoriikeR. KimuraT. ShiraishiK. Comparative study of the gas phase reaction of SiCl4, SiHCl3, SiH2Cl2, and SiH3Cl by thermodynamic analysis.Jpn. J. Appl. Phys.202362404800210.35848/1347‑4065/acc3e8
    [Google Scholar]
  71. PengM. ShiB. HanY. LiW. ZhangJ. Crystal facet dependence of SiHCl3 reduction to Si mechanism on silicon rod.Appl. Surf. Sci.202258015236610.1016/j.apsusc.2021.152366
    [Google Scholar]
  72. LuoJ. SongS. LiJ. QiN. JinB. ZhuY. JiY. ShiL. GaoJ. ZhangY. LiZ. XuG. SuF. Ni-Ni3P/SiO2 catalyst for highly selective production of silicon tetrachloride via silicon hydrochlorination.Ind. Eng. Chem. Res.202261155066507910.1021/acs.iecr.1c05021
    [Google Scholar]
  73. YangS. ZhaoS. ChenJ. YanG. ShenZ. ZhaoW. WangL. ZhangY. LiuX. SunG. ZengY. Growth of 4H-SiC epitaxial layers at temperatures below 1500°C using trichlorosilane (TCS).J. Cryst. Growth202361212705810.1016/j.jcrysgro.2022.127058
    [Google Scholar]
  74. YadavS. Multiscale Modelling of Hydrochlorination Reactions for Solar Grade Silicon Production.CanadaUniversity of Toronto2021
    [Google Scholar]
  75. VinN. Battin-LeclercF. Le GallH. SebbarN. BockhornH. TrimisD. HerbinetO. A study of chlorobenzene pyrolysis.Proc. Combust. Inst.201937139940710.1016/j.proci.2018.05.067
    [Google Scholar]
  76. WangW. WangF. CuiH. FanJ. Quantitative acquisition of differential absorption cross sections of chlorobenzenes at different temperatures.Spectrochim. Acta A Mol. Biomol. Spectrosc.2023287Pt 212210810.1016/j.saa.2022.122108 36423419
    [Google Scholar]
  77. LvT. XuM. HeW. ZhangY. LiW. SongS. YangJ. ZhaoL. WeiL. An experimental and kinetic modeling study on pyrolysis of chlorobenzene.Combust. Flame202324811254810.1016/j.combustflame.2022.112548
    [Google Scholar]
  78. PanJ. JiangH. QingT. ZhangJ. TianK. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes.Chemosphere202128413134810.1016/j.chemosphere.2021.131348 34214932
    [Google Scholar]
  79. PatelA.B. ShaikhS. JainK.R. DesaiC. MadamwarD. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches.Front. Microbiol.20201156281310.3389/fmicb.2020.562813 33224110
    [Google Scholar]
  80. GeierM.C. ChlebowskiA.C. TruongL. Massey SimonichS.L. AndersonK.A. TanguayR.L. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons.Arch. Toxicol.201892257158610.1007/s00204‑017‑2068‑9 29094189
    [Google Scholar]
  81. ZhangY. ZhuM. WeiQ. WangM. Removing chlorobenzene via the synergistic effects of adsorption and catalytic oxidation over activated carbon fiber loaded with transition metal oxides.Atmosphere20221312207410.3390/atmos13122074
    [Google Scholar]
  82. KragtN. TavanaJ. Al-GharrawiM. WheelerM.C. HibbittsD. SchwartzT.J. Kinetics and reaction mechanism of Pd-Catalyzed chlorobenzene hydrogenolysis.J. Catal.202443211543510.1016/j.jcat.2024.115435
    [Google Scholar]
  83. LiuK. YangT. ZhengX. WangC. ChenM. Potassium-assisted carbonization of chlorobenzene in Ar/H2 to prepare porous carbon with low oxygen content for high withstanding voltage EDLCs.Carbon202117215416110.1016/j.carbon.2020.09.091
    [Google Scholar]
  84. MinggaoX. WuW. LongZ. JiuzhongY. BaozhongZ. YunnanS. YangP. Chlorobenzene pyrolysis at low pressure by in-situ synchrotron radiation photoionization mass spectrometry.Daqi Yu Huanjing Guangxue Xuebao202217444245210.3969/j.issn.1673‑6141.2022.04.006
    [Google Scholar]
  85. XuM. ZhuB. ZhaoL. SunY. PanY. YangJ. Atmospheric-pressure pyrolysis study of chlorobenzene using synchrotron radiation photoionization mass spectrometry.J. Phys. Chem. A202112591949195710.1021/acs.jpca.0c10413 33651613
    [Google Scholar]
  86. XinS. GaoW. CaoD. LvK. LiuY. ZhaoC. WangY. JiangG. The thermal transformation mechanism of chlorinated paraffins: An experimental and density functional theory study.J. Environ. Sci.20197537838710.1016/j.jes.2018.05.022 30473303
    [Google Scholar]
  87. HeinickeJ. GehrhusB. Role of the trichlorosilyl radical and dichlorosilylene in gas-phase reactions of trichlorosilane.J. Anal. Appl. Pyrolysis1994281819210.1016/0165‑2370(93)00764‑E
    [Google Scholar]
  88. IncavoJ.A. A detailed quantitative study of 1,2-dichloroethane cracking to vinyl chloride by a gas chromatographic pyrolysis device.Ind. Eng. Chem. Res.199635393193710.1021/ie9505017
    [Google Scholar]
  89. KangS.H. HanJ.S. LeeM.E. YooB.R. JungI.N. Phosphonium chloride induced dichlorosilylene transfer from trichlorosilane.Organometallics200322132551255310.1021/om0302488
    [Google Scholar]
  90. KöhlerT. GutackerA. MejíaE. Industrial synthesis of reactive silicones: Reaction mechanisms and processes.Org. Chem. Front.20207244108412010.1039/D0QO01075H
    [Google Scholar]
  91. LiX. YuR. ZhaoT. ZhangY. YangX. ZhaoX. HuangW. A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction.Eur. Polym. J.201810839940510.1016/j.eurpolymj.2018.09.021
    [Google Scholar]
  92. HuangY. YanJ. WangD. FengS. ZhouC. Construction of self-healing disulfide-linked silicone elastomers by thiol oxidation coupling reaction.Polymers20211321372910.3390/polym13213729 34771287
    [Google Scholar]
  93. GoetzeU. SchmidtE. HanselM. ZellerN. Process for the production of organosilanes.Patent DE10349286A12005
    [Google Scholar]
  94. KarstenK. PhilippA. IngoK. AlbertF. LouisJ. HorstM. Process for preparing organosilanes.Patent DE5020060000542007
  95. TaoW. DuanyouL. YulinW. The invention relates to a thermal condensation production method of phenyl chlorosilane.Patent CN102443021A2012
  96. Aktas EkenG. HuangY. PruckerO. RüheJ. OberC. Advancing glucose sensing through auto‐fluorescent polymer brushes: From surface design to nano‐arrays.Small20242022230904010.1002/smll.202309040 38334235
    [Google Scholar]
  97. ChunjianX. HongzhouH. RuiS. The invention relates to a continuous production method of phenyltrichlorosilane.Patent CN118359653A2024
    [Google Scholar]
  98. ChowdhuryM.S.I. Synthesis of Well-Defined Reactive End-and Mid-Functional Polystyrene by Atom Transfer Radical Polymerization.University of Rajshahi2016
    [Google Scholar]
  99. FengX. LiuR. LiuL. JinY. ShiQ. YanP. WuY. Recent advances on visible light induced cationic polymerization.J. Polym. Sci.202361202411242510.1002/pol.20230288
    [Google Scholar]
  100. YiH. ZhangG. WangH. HuangZ. WangJ. SinghA.K. LeiA. Recent advances in radical C-H activation/radical cross-coupling.Chem. Rev.2017117139016908510.1021/acs.chemrev.6b00620 28639787
    [Google Scholar]
  101. PatelO.P.S. NandwanaN.K. LegoabeL.J. DasB.C. KumarA. Recent advances in radical C−H bond functionalization of imidazoheterocycles.Adv. Synth. Catal.2020362204226425510.1002/adsc.202000633
    [Google Scholar]
  102. MohamedS.M.D.S. Radical Grafting of Medium Chain-Length Poly-3-Hydroxyalkanoates with Glycerol 1, 3-Diglycerolate Diacrylate to Form Amphiphilic Gels: Mechanism and Copolymer Characterization.University of Malaya2019
    [Google Scholar]
  103. YuX.Y. ChenJ.R. XiaoW.J. Visible light-driven radical-mediated C-C bond cleavage/functionalization in organic synthesis.Chem. Rev.2021121150656110.1021/acs.chemrev.0c00030 32469528
    [Google Scholar]
  104. ChatgilialogluC. FerreriC. LandaisY. TimokhinV.I. Thirty years of (TMS) 3 SiH: A milestone in radical-based synthetic chemistry.Chem. Rev.2018118146516657210.1021/acs.chemrev.8b00109 29938502
    [Google Scholar]
  105. ZhangJ. JiangM. WangC.S. GuoK. LiQ.X. MaC. NiS.F. ChenG.Q. ZongY. LuH. XuL.W. ShaoX. Transition-metal free C-N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer.Nat. Commun.2022131796110.1038/s41467‑022‑35613‑7 36575172
    [Google Scholar]
  106. SeidiF. ZhaoW. XiaoH. JinY. SaebM.R. ZhaoC. Radical polymerization as a versatile tool for surface grafting of thin hydrogel films.Polym. Chem.202011274355438110.1039/D0PY00787K
    [Google Scholar]
  107. JordanA. StoyP. SneddonH.F. Chlorinated solvents: Their advantages, disadvantages, and alternatives in organic and medicinal chemistry.Chem. Rev.202112131582162210.1021/acs.chemrev.0c00709 33351588
    [Google Scholar]
  108. GuoR.L. LiuS.H. ShuC.M. Thermal hazard evaluation conjoined with product analysis of two water-soluble azo compounds.J. Therm. Anal. Calorim.202214719107751078410.1007/s10973‑022‑11257‑z
    [Google Scholar]
  109. RahimpourM.R. SamimiF. BabapoorA. TohidianT. MohebiS. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review.Chem. Eng. Process.2017121244910.1016/j.cep.2017.07.021
    [Google Scholar]
/content/journals/coc/10.2174/0113852728386435250424094028
Loading
/content/journals/coc/10.2174/0113852728386435250424094028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test