Skip to content
2000
image of Progress in the Production of Phenyltrichlorosilane via Gas Phase Condensation Method

Abstract

Phenyltrichlorosilane is an important organosilicon compound, and its synthesis technology is a key research focus in the field of organosilicon chemistry. This article introduces the three main techniques for synthesizing phenyltrichlorosilane: the Grignard reagent method, the direct method, and the vapor phase condensation method, along with their respective advantages and disadvantages. It demonstrates that the vapor phase condensation method has become the dominant process due to its simple reaction apparatus and the feasibility of achieving continuous production. However, this method faces significant challenges, including low yield and the formation of carbon deposits within production pipelines. The process conditions of the vapor phase condensation method are summarized, including the reaction conditions of chlorobenzene and trichlorosilane at 540-680°C, which achieves a product yield of up to 65%. This study provides an in-depth analysis of the decomposition mechanism of trichlorosilane and chlorobenzene under high-temperature vapor-phase conditions, emphasizing the synthesis mechanism of phenyltrichlorosilane and analyzing the role of free radical initiators and their impact on enhancing the yield of phenyltrichlorosilane. Future research should focus on the development of new catalysts and initiators, process optimization, and the expansion of phenyltrichlorosilane's application fields.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728386435250424094028
2025-05-14
2025-08-13
Loading full text...

Full text loading...

References

  1. Patrone L. Gadenne V. Desbief S. Single and binary self-assembled monolayers of phenyl- and pentafluorophenyl-based silane species, and their phase separation with octadecyltrichlorosilane. Langmuir 2010 26 22 17111 17118 10.1021/la102742e 20968285
    [Google Scholar]
  2. Nedel’kin V.I. Nedel’kin A.V. Izmailov B.A. Zachernyuk A.B. Solov’eva E.N. Zachernyuk B.A. Practical Application of Selected Functional Organosilicone Polymers. Polym. Sci. Ser. C 2023 65 2 162 172 10.1134/S1811238223700418
    [Google Scholar]
  3. Verberne-Sutton S.D. LeJeune Z.M. Hill S. LeJeune J.P. Garno J.C. Nanostructures prepared by vacuum-line deposition of organosilanes through a colloidal mask. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 2018 36 6 061601 10.1116/1.5051350
    [Google Scholar]
  4. Sun S. Shi Y. Zhang J. Wu B. Xu W. Cao H. Wang L. Analysis and pathway exploration of high-boiling residues for methyl-chlorosilane-monomers production. Chem. Eng. J. 2024 483 149201 10.1016/j.cej.2024.149201
    [Google Scholar]
  5. Sołoducho J. Zając D. Spychalska K. Baluta S. Cabaj J. Conducting Silicone-Based Polymers and Their Application. Molecules 2021 26 7 2012 10.3390/molecules26072012 33916125
    [Google Scholar]
  6. Yingming W. Qiang F. Cang Y. Ling Z. Lei Z. Ling Y. Simulation and Optimization of the Separation Process of Light Components in Methylchlorosilanes. Silicone Material 2024 38 03 43 49 10.11941/j.issn.1009‑4369.2024.03.009
    [Google Scholar]
  7. Zhicheng T. Shaozhen Z. Zhilei Z. Application of Simulated Annealing Algorithm in Separation Optimization of Methylchlorosilane. Med. Chem. Res. 2022 12 113 115 10.3969/j.issn.1672‑8114.2022.12.038
    [Google Scholar]
  8. Li B. He C. Lu W. Wang J. Zeng Y. Gao B. Synthesis of highly branched polymethylphenylsiloxane grafted epoxy resin copolymer for high efficiency ablation thermal protection coating. Prog. Org. Coat. 2019 126 178 186 10.1016/j.porgcoat.2018.10.020
    [Google Scholar]
  9. Kadyrov R.R. Mukhametshin V.V. Kuleshova L.S. Mingulov I.S. Using new grouting materials during repair and insulation works. J. Phys. Conf. Ser. 2022 2176 1 012044 10.1088/1742‑6596/2176/1/012044
    [Google Scholar]
  10. Mohamed S.H. Hameed A.S. Yousif E. Alotaibi M.H. Ahmed D.S. El-Hiti G.A. New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes 2020 8 11 1488 10.3390/pr8111488
    [Google Scholar]
  11. Yu J. Gu K. Yang B. Wang K. Zhou Y. Gao C. The Permeability and Selectivity of the Polyamide Reverse Osmosis Membrane were Significantly Enhanced by PhSiCl3. Membranes 2021 11 2 142 10.3390/membranes11020142 33670463
    [Google Scholar]
  12. Nizamidin P. Yang Q. Guo C. Wufuer A. Yimit A. Muhammad T. Fabrication and Surface Modification of Niobium Metal–Organic Framework Membrane and its Gas Sensing Application. Adv. Mater. Interfaces 2022 9 23 2200742 10.1002/admi.202200742
    [Google Scholar]
  13. Liu J. Peng J. Bai Y. Li J. Song Z. Liu P. Ouyang T. Lan H. Huang Y. Progress in the Preparation and Application of Arylsilane. Curr. Org. Chem. 2023 27 1 28 37 10.2174/1385272827666230217093032
    [Google Scholar]
  14. Zhou M. Synthesis of phenyltrichlorosilane using SiCl4, a byproduct of polysilicon production. Master's thesis 2011 10.7666/d.Y2261787
    [Google Scholar]
  15. Qingchao H. Gang Y. Xiaoguang X. Chao S. Zhiyong Z. Yanping X. Preparation methods of phenyl chlorosilane are summarized. Silicone Material 2015 29 05 425 428 10.11941/j.issn.1009‑4369.2015.05.016
    [Google Scholar]
  16. O’Neil G.W. Siletanes: Synthesis, Structure, and Reagents in Organic Synthesis. A Review. Org. Prep. Proced. Int. 2022 54 2 95 127 10.1080/00304948.2021.2007018
    [Google Scholar]
  17. Maokuan Y. Jie S. Wei Z. Study of the Preparation Method for Phenyl Trichlorosilane and Its Application. Chenmical Intermediate 2017 05 7 8
    [Google Scholar]
  18. Acker J. Bohmhammel K. Thermodynamic assessment of the copper catalyzed direct synthesis of methylchlorosilanes. J. Organomet. Chem. 2008 693 15 2483 2493 10.1016/j.jorganchem.2008.04.026
    [Google Scholar]
  19. Gordon A.D. Hinch B.J. Strongin D.R. Effects of individual promoters on the Direct Synthesis of methylchlorosilanes. J. Catal. 2009 266 2 291 298 10.1016/j.jcat.2009.06.026
    [Google Scholar]
  20. Zhang P. Zhang D. Dong J. Chen G. Li J. Direct Synthesis of Methylchlorosilanes: Catalysts, Mechanisms, Reaction Conditions, and Reactor Designs. Org. Process Res. Dev. 2022 26 8 2270 2280 10.1021/acs.oprd.2c00107
    [Google Scholar]
  21. Mahmoodinia M. Bleken F. Svenum I-H. Rø T. BLASER, E.; GOUTTEBROZE, S.; VENVIK, H. Role of Copper in the Formation of Carbon during Direct Synthesis of Methylchlorosilanes. SSRN 2022 10.2139/ssrn.4118708
    [Google Scholar]
  22. Mahmoodinia M. Farooq H. Røe T. Svenum I-H. Venvik H.J. Effect of Copper Catalyst Content and Zinc Promoter on Carbon Formation in the Direct Synthesis of Methylchlorosilanes. Ind. Eng. Chem. Res. 2023 62 50 21579 21589 10.1021/acs.iecr.3c02940
    [Google Scholar]
  23. Guoping M. Li L. Guihua X. Xiaoyan N. Research on Composite Copper Powder Catalyst for Synthesis of Silicone Monomer. Silicone Material 2024 38 1 10.11941/j.issn.1009‑4369.2024.01.007
    [Google Scholar]
  24. Pakuła D. Marciniec B. Przekop R.E. Direct Synthesis of Silicon Compounds—From the Beginning to Green Chemistry Revolution. AppliedChem 2023 3 1 89 109 10.3390/appliedchem3010007
    [Google Scholar]
  25. Si R. Jing D. Liu F. Kong D. Liu X. Lu J. The development and application of Silicone-based heat transfer fluids. J. Phys. Conf. Ser. 2023 2539 1 012083 10.1088/1742‑6596/2539/1/012083
    [Google Scholar]
  26. Jin L. Zhang X. Cui C. Xi Z. Sun J. Simultaneous process parameters and heat integration optimization for industrial organosilicon production. Separ. Purif. Tech. 2021 265 118520 10.1016/j.seppur.2021.118520
    [Google Scholar]
  27. Davidson I.M.T. Eaborn C. Wood C.J. Organosilicon compounds. J. Organomet. Chem. 1967 10 3 401 408 10.1016/S0022‑328X(00)83163‑0
    [Google Scholar]
  28. Xing S. Wang Y. Organic silicon synthesis technology and product application. 2000
    [Google Scholar]
  29. Liu T. Huang Y. Wang C. Tang Q. Wang J. Effect of chloralkanes on the phenyltrichlorosilane synthesis by gas phase condensation. Chin. J. Chem. Eng. 2015 23 1 71 75 10.1016/j.cjche.2014.11.003
    [Google Scholar]
  30. Yunping Y. Daowei C. Yunfeng Z. Xiangqian C. Hong D. Jianxiong J. Research progress in the application of phenyltrichlorosilane. Silic. Mater. 2018 32 02 147 153 10.11941/j.issn.1009‑4369.2018.02.015
    [Google Scholar]
  31. Xinping B. Domestic and foreign silicone industry market status and development trend. Chem. Ind. 2008 06 39 46 10.3969/j.issn.1673‑9647.2008.06.007
    [Google Scholar]
  32. Yang B. Jiin H. Li Y. Li X. Present situation and development of organosilicon industry. Hebei Chemical Industry 2008 05 29 31 10.3969/j.issn.1003‑5059.2008.05.012
    [Google Scholar]
  33. Huang Y. Liu T. Wang J. Synthesis of phenyltrichlorosilane by vapor condensation. Chem React Eng Technol. 2012 28 02 164 167 10.3969/j.issn.1001‑7631.2012.02.012
    [Google Scholar]
  34. Ivanova E.V. Minyaylo E.O. Temnikov M.N. Mukhtorov L.G. Atroshchenko Y.M. Silicones in Cosmetics. Polym. Sci. Ser. B 2023 65 5 578 594 10.1134/S1560090423600201
    [Google Scholar]
  35. Zhao L. Analysis of the development trend of China’s organosilicon industry chain. Chem Ind. 2019 37 01 10 20
    [Google Scholar]
  36. Koiry S. Chauhan A. Synthesis strategies for si-based advanced materials and their applications. Handbook on Synthesis Strategies for Advanced Materials: Volume-III: Materials Specific Synthesis Strategies. Springer Singapore 2021 831 866 10.1007/978‑981‑16‑1892‑5_17
    [Google Scholar]
  37. Schuman D.P. Liu W.B. Nesnas N. Stoltz B.M. Transition‐metal‐free catalytic C─H bond silylation. Organosilicon Chemistry: Novel Approaches and Reactions Wiley 2019 213 240 10.1002/9783527814787.ch7
    [Google Scholar]
  38. Tyagi A. Yadav N. Khan J. Singh S. Kumar Hazra C. Transition‐metal‐free C−H Silylation: An emerging strategy. Asian J. Org. Chem. 2021 10 2 334 354 10.1002/ajoc.202000584
    [Google Scholar]
  39. Sakdasri W. Ngamprasertsith S. Saengsuk P. Sawangkeaw R. Supercritical reaction between methanol and glycerol: The effects of reaction products on biodiesel properties. Energy Convers. Manage. 2021 12 100145 10.1016/j.ecmx.2021.100145
    [Google Scholar]
  40. Knez Ž. Pantić M. Cör D. Novak Z. Knez Hrnčič M. Are supercritical fluids solvents for the future? Chem. Eng. Process. 2019 141 107532 10.1016/j.cep.2019.107532
    [Google Scholar]
  41. Yoon T.J. Lee Y.W. Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J. Supercrit. Fluids 2018 134 21 27 10.1016/j.supflu.2017.11.022
    [Google Scholar]
  42. Barry A.J. Pree L.D. Hook D.E. Preparation of phenyl silicon trichloride. Patent US2591668 1952
  43. Barry A.J. Production of arylhalosilanes. Patent US2626266 1953
  44. Barry A.J. Production of arylhalosilanes. Patent US2611775 1952
  45. Barry A.J. Production of arylhalosilanes. Patent US2626267 1953
  46. Barry A.J. Gilkey J.W. Hook D.E. Direct process for preparation of arylhalosilanes. Adv. Chem. Ser. 1959 23 23 246 264 10.1021/ba‑1959‑0023.ch023
    [Google Scholar]
  47. Wright A. The role of boron trichloride in the synthesis of phenyltrichlorosilane from benzene and trichlorosilane. J. Organomet. Chem. 1978 145 3 307 314 10.1016/S0022‑328X(00)81299‑1
    [Google Scholar]
  48. Derakhshandeh M. BCl3 Adsorption on Pristine, S-Doped, and Cr-Doped Graphynes: A DFT study. Preprint 2021 10.21203/rs.3.rs‑512555/v1
    [Google Scholar]
  49. Liujuan C. Zhang G. Liu J. Jiao J. Lin H. Wu M. Zhang X. Chen L. A potential practical process for remdesivir. Preprint 2021 10.26434/chemrxiv.14709351.v1
    [Google Scholar]
  50. Ashikawa N. Lunsford R. Nespoli F. Gilson E. Yu Y. Hu J. Kado S. Coated boron layers by boronization and a real-time boron coating using an impurity powder dropper in the LHD. Plasma Sci. Technol. 2024 26 8 085103 10.1088/2058‑6272/ad495f
    [Google Scholar]
  51. Valverde V. Jasim S.A. Ahmed Elawady Yadav A. Mahmud S.F. Abdullaeva B.S. Mohammed N. Abdulsayed Y.A. Omran A.A. A theoretical study on the application of zinc oxide nanotube for selective detection of BF3 and BCl3. Physica B 2024 674 415581 10.1016/j.physb.2023.415581
    [Google Scholar]
  52. Chernyshev E.A. Mironov V.F. Petrov A.D. New method for the preparation of of organosilicon monomers by the high-temperature condensation of alkenyl chlorides, aryl chlorides, and olefins with silanes containing silicon-attached hydrogen. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1960 9 12 1989 1997 10.1007/BF00912050
    [Google Scholar]
  53. Huang Y. Liu T. Wang C. Wang J. Mechanism and kinetics of the synthesis of phenyltrichlorosilane from trichlorosilane and chlorobenzene by gas phase condensation. Chem. Eng. J. 2013 226 255 262 10.1016/j.cej.2013.04.046
    [Google Scholar]
  54. Study on the reaction and separation process of trichlorosilane from trichlorohydrosilane and chlorobenzene. 2017 Available from: http://dx.doi.org/CNKI:CDMD:2.1018.015541
  55. Jennings A. A review of high-purity quartz for silicon production in Australia. Aust. J. Earth Sci. 2024 71 8 1085 1097 10.1016/j.cej.2024.149049
    [Google Scholar]
  56. Cohen K. Blanchard J. Jr Rodriguez P. Kelly K. Dorman J.A. Dooley K.M. Non-Catalytic direct partial oxidation of methane to methanol in a Wall-Coated microreactor. Chem. Eng. J. 2024 482 149049 10.1016/j.cej.2024.149049
    [Google Scholar]
  57. Patil N. Mishra N. Saed M. Green M. Wilhite B. Energy conversion: Radio frequency driven heating of catalytic reactors for portable green chemistry. Adv. Sustainable Syst. 2020 4 11 2070024 10.1002/adsu.202070024
    [Google Scholar]
  58. Xie J. Li X. Guo J. Luo L. Delgado J.J. Martsinovich N. Tang J. Highly selective oxidation of benzene to phenol with air at room temperature promoted by water. Nat. Commun. 2023 14 1 4431 10.1038/s41467‑023‑40160‑w 37481611
    [Google Scholar]
  59. Barry A.J. Gilkey J.W. Hook D.E. Preparation of Arylhalosilanes. Ind. Eng. Chem. 1959 51 2 131 138 10.1021/ie50590a032
    [Google Scholar]
  60. Tajima T. Civale L. Grumstrup T.P. Kelly D. Mealy M.A. Poudel A. Salazar H.R. Schulze R.K. Pizzol P. Sakai H. Ito H. Kako E. Okada T. Umemori K. Construction of a New MgB 2 Coating System for 1.3-GHz Superconducting RF Cavities at LANL. IEEE Trans. Appl. Supercond. 2023 33 5 1 10 10.1109/TASC.2023.3241261
    [Google Scholar]
  61. El Amrani A. Boucheham A. Guendouzi A. Labdelli B. Nasraoui C. Si-Kaddour R. Co-Diffusion Processing of p+/n/n+ Structure for n-Type Silicon Solar Cells Using Boron Doped Paper Sheets. Silicon 2022 14 1 223 228 10.1007/s12633‑020‑00809‑3
    [Google Scholar]
  62. Onursal N. 2D-,3D-Boron carbon nitride adsorption. Important research in the field of chemistry in a globalizing world iKSAD Publications Ankara 2023 10.5281/zenodo.10030567
    [Google Scholar]
  63. Ponomarev V.V. Golubtsov S.A. Andrianov K.A. Penskii V.N. Mechanisms of the arylation of hydrochlorosilanes under pressure. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1971 20 3 446 449 10.1007/BF00852027
    [Google Scholar]
  64. Chernyshev E.A. Komalenkova N.G. Bashkirova S.A. Gas phase reactions of dichlorosilylene. J. Organomet. Chem. 1984 271 1-3 129 143 10.1016/0022‑328X(84)85169‑4
    [Google Scholar]
  65. Chernyshev E.A. Krasnova T.L. Abramova E.S. Abronin E.A. Petrunin A.B. Sergeev A.P. Experimental and theoretical study of the pyrolysis of trichlorosilane. Russ. Chem. Bull. 1997 46 9 1582 1585 10.1007/BF02502944
    [Google Scholar]
  66. Walker K.L. Jardine R.E. Ring M.A. O’Neal H.E. Mechanisms and kinetics of the thermal decompositions of trichlorosilane, dichlorosilane, and monochlorosilane. Int. J. Chem. Kinet. 1998 30 1 69 88 10.1002/(SICI)1097‑4601(1998)30:1<69::AID‑KIN9>3.0.CO;2‑S
    [Google Scholar]
  67. Ring M.A. O’Neal H.E. Walker K.L. Kinetics of dichlorosilylene trapping by methane and mechanism and kinetics of the methyldichlorosilane decomposition. Int. J. Chem. Kinet. 1998 30 1 89 97 10.1002/(SICI)1097‑4601(1998)30:1<89::AID‑KIN10>3.0.CO;2‑G
    [Google Scholar]
  68. Krasnova T.L. Abramova E.S. Alekseev N.V. Chernyshev E.A. Pyrolysis of trichlorosilane in the presence of chloroform. Russ. Chem. Bull. 1999 48 10 1960 1963 10.1007/BF02494755
    [Google Scholar]
  69. Kunz A. Takahashi K. Roth P. 2000 10.1016/S0082‑0784(00)80354‑9
  70. Nagahashi T. Karasawa H. Horiike R. Kimura T. Shiraishi K. Comparative study of the gas phase reaction of SiCl 4, SiHCl 3, SiH 2 Cl 2, and SiH 3 Cl by thermodynamic analysis. Jpn. J. Appl. Phys. 2023 62 4 048002 10.35848/1347‑4065/acc3e8
    [Google Scholar]
  71. Peng M. Shi B. Han Y. Li W. Zhang J. Crystal facet dependence of SiHCl3 reduction to Si mechanism on silicon rod. Appl. Surf. Sci. 2022 580 152366 10.1016/j.apsusc.2021.152366
    [Google Scholar]
  72. Luo J. Song S. Li J. Qi N. Jin B. Zhu Y. Ji Y. Shi L. Gao J. Zhang Y. Li Z. Xu G. Su F. Ni-Ni 3 P/SiO 2 catalyst for highly selective production of silicon tetrachloride via silicon hydrochlorination. Ind. Eng. Chem. Res. 2022 61 15 5066 5079 10.1021/acs.iecr.1c05021
    [Google Scholar]
  73. Yang S. Zhao S. Chen J. Yan G. Shen Z. Zhao W. Wang L. Zhang Y. Liu X. Sun G. Zeng Y. Growth of 4H-SiC epitaxial layers at temperatures below 1500 °C using trichlorosilane (TCS). J. Cryst. Growth 2023 612 127058 10.1016/j.jcrysgro.2022.127058
    [Google Scholar]
  74. Yadav S. Multiscale Modelling of Hydrochlorination Reactions for Solar Grade Silicon Production. Canada University of Toronto 2021
    [Google Scholar]
  75. Vin N. Battin-Leclerc F. Le Gall H. Sebbar N. Bockhorn H. Trimis D. Herbinet O. A study of chlorobenzene pyrolysis. Proc. Combust. Inst. 2019 37 1 399 407 10.1016/j.proci.2018.05.067
    [Google Scholar]
  76. Wang W. Wang F. Cui H. Fan J. Quantitative acquisition of differential absorption cross sections of chlorobenzenes at different temperatures. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 287 Pt 2 122108 10.1016/j.saa.2022.122108 36423419
    [Google Scholar]
  77. Lv T. Xu M. He W. Zhang Y. Li W. Song S. Yang J. Zhao L. Wei L. An experimental and kinetic modeling study on pyrolysis of chlorobenzene. Combust. Flame 2023 248 112548 10.1016/j.combustflame.2022.112548
    [Google Scholar]
  78. Pan J. Jiang H. Qing T. Zhang J. Tian K. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere 2021 284 131348 10.1016/j.chemosphere.2021.131348 34214932
    [Google Scholar]
  79. Patel A.B. Shaikh S. Jain K.R. Desai C. Madamwar D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020 11 562813 10.3389/fmicb.2020.562813 33224110
    [Google Scholar]
  80. Geier M.C. Chlebowski A.C. Truong L. Massey Simonich S.L. Anderson K.A. Tanguay R.L. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch. Toxicol. 2018 92 2 571 586 10.1007/s00204‑017‑2068‑9 29094189
    [Google Scholar]
  81. Zhang Y. Zhu M. Wei Q. Wang M. Removing chlorobenzene via the synergistic effects of adsorption and catalytic oxidation over activated carbon fiber loaded with transition metal oxides. Atmosphere 2022 13 12 2074 10.3390/atmos13122074
    [Google Scholar]
  82. Kragt N. Tavana J. Al-Gharrawi M. Wheeler M.C. Hibbitts D. Schwartz T.J. Kinetics and reaction mechanism of Pd-Catalyzed chlorobenzene hydrogenolysis. J. Catal. 2024 432 115435 10.1016/j.jcat.2024.115435
    [Google Scholar]
  83. Liu K. Yang T. Zheng X. Wang C. Chen M. Potassium-assisted carbonization of chlorobenzene in Ar/H2 to prepare porous carbon with low oxygen content for high withstanding voltage EDLCs. Carbon 2021 172 154 161 10.1016/j.carbon.2020.09.091
    [Google Scholar]
  84. Minggao X. Wu W. Long Z. Jiuzhong Y. Baozhong Z. Yunnan S. Yang P. Chlorobenzene pyrolysis at low pressure by in-situ synchrotron radiation photoionization mass spectrometry. Daqi Yu Huanjing Guangxue Xuebao 2022 17 4 442 452 10.3969/j.issn.1673‑6141.2022.04.006
    [Google Scholar]
  85. Xu M. Zhu B. Zhao L. Sun Y. Pan Y. Yang J. Atmospheric-pressure pyrolysis study of chlorobenzene using synchrotron radiation photoionization mass spectrometry. J. Phys. Chem. A 2021 125 9 1949 1957 10.1021/acs.jpca.0c10413 33651613
    [Google Scholar]
  86. Xin S. Gao W. Cao D. Lv K. Liu Y. Zhao C. Wang Y. Jiang G. The thermal transformation mechanism of chlorinated paraffins: An experimental and density functional theory study. J. Environ. Sci. 2019 75 378 387 10.1016/j.jes.2018.05.022 30473303
    [Google Scholar]
  87. Heinicke J. Gehrhus B. Role of the trichlorosilyl radical and dichlorosilylene in gas-phase reactions of trichlorosilane. J. Anal. Appl. Pyrolysis 1994 28 1 81 92 10.1016/0165‑2370(93)00764‑E
    [Google Scholar]
  88. Incavo J.A. A detailed quantitative study of 1,2-dichloroethane cracking to vinyl chloride by a gas chromatographic pyrolysis device. Ind. Eng. Chem. Res. 1996 35 3 931 937 10.1021/ie9505017
    [Google Scholar]
  89. Kang S.H. Han J.S. Lee M.E. Yoo B.R. Jung I.N. Phosphonium chloride induced dichlorosilylene transfer from trichlorosilane. Organometallics 2003 22 13 2551 2553 10.1021/om0302488
    [Google Scholar]
  90. Köhler T. Gutacker A. Mejía E. Industrial synthesis of reactive silicones: Reaction mechanisms and processes. Org. Chem. Front. 2020 7 24 4108 4120 10.1039/D0QO01075H
    [Google Scholar]
  91. Li X. Yu R. Zhao T. Zhang Y. Yang X. Zhao X. Huang W. A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction. Eur. Polym. J. 2018 108 399 405 10.1016/j.eurpolymj.2018.09.021
    [Google Scholar]
  92. Huang Y. Yan J. Wang D. Feng S. Zhou C. Construction of self-healing disulfide-linked silicone elastomers by thiol oxidation coupling reaction. Polymers 2021 13 21 3729 10.3390/polym13213729 34771287
    [Google Scholar]
  93. Goetze U. Schmidt E. Hansel M. Zeller N. Process for the production of organosilanes. Patent DE10349286A1 2005
  94. Karsten K. Philipp A. Ingo K. Albert F. Louis J. Horst M. Process for preparing organosilanes. Patent DE502006000054 2007
  95. Tao W. Duanyou L. Yulin W. The invention relates to a thermal condensation production method of phenyl chlorosilane. Patent CN102443021A 2012
  96. Aktas Eken G. Huang Y. Prucker O. Rühe J. Ober C. Advancing glucose sensing through auto‐fluorescent polymer brushes: From surface design to nano‐arrays. Small 2024 20 22 2309040 10.1002/smll.202309040 38334235
    [Google Scholar]
  97. Chunjian X. Hongzhou H. Rui S. The invention relates to a continuous production method of phenyltrichlorosilane. Patent CN118359653A 2024
  98. Chowdhury M.S.I. Synthesis of Well-Defined Reactive End-and Mid-Functional Polystyrene by Atom Transfer Radical Polymerization. University of Rajshahi 2016
    [Google Scholar]
  99. Feng X. Liu R. Liu L. Jin Y. Shi Q. Yan P. Wu Y. Recent advances on visible light induced cationic polymerization. J. Polym. Sci. 2023 61 20 2411 2425 10.1002/pol.20230288
    [Google Scholar]
  100. Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh A.K. Lei A. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 2017 117 13 9016 9085 10.1021/acs.chemrev.6b00620 28639787
    [Google Scholar]
  101. Patel O.P.S. Nandwana N.K. Legoabe L.J. Das B.C. Kumar A. Recent advances in radical C−H bond functionalization of imidazoheterocycles. Adv. Synth. Catal. 2020 362 20 4226 4255 10.1002/adsc.202000633
    [Google Scholar]
  102. Mohamed S.M.D.S. Radical Grafting of Medium Chain-Length Poly-3-Hydroxyalkanoates with Glycerol 1, 3-Diglycerolate Diacrylate to Form Amphiphilic Gels: Mechanism and Copolymer Characterization. University of Malaya 2019
    [Google Scholar]
  103. Yu X.Y. Chen J.R. Xiao W.J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis. Chem. Rev. 2021 121 1 506 561 10.1021/acs.chemrev.0c00030 32469528
    [Google Scholar]
  104. Chatgilialoglu C. Ferreri C. Landais Y. Timokhin V.I. Thirty years of (TMS) 3 SiH: A milestone in radical-based synthetic chemistry. Chem. Rev. 2018 118 14 6516 6572 10.1021/acs.chemrev.8b00109 29938502
    [Google Scholar]
  105. Zhang J. Jiang M. Wang C.S. Guo K. Li Q.X. Ma C. Ni S.F. Chen G.Q. Zong Y. Lu H. Xu L.W. Shao X. Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nat. Commun. 2022 13 1 7961 10.1038/s41467‑022‑35613‑7 36575172
    [Google Scholar]
  106. Seidi F. Zhao W. Xiao H. Jin Y. Saeb M.R. Zhao C. Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polym. Chem. 2020 11 27 4355 4381 10.1039/D0PY00787K
    [Google Scholar]
  107. Jordan A. Stoy P. Sneddon H.F. Chlorinated solvents: Their advantages, disadvantages, and alternatives in organic and medicinal chemistry. Chem. Rev. 2021 121 3 1582 1622 10.1021/acs.chemrev.0c00709 33351588
    [Google Scholar]
  108. Guo R.L. Liu S.H. Shu C.M. Thermal hazard evaluation conjoined with product analysis of two water-soluble azo compounds. J. Therm. Anal. Calorim. 2022 147 19 10775 10784 10.1007/s10973‑022‑11257‑z
    [Google Scholar]
  109. Rahimpour M.R. Samimi F. Babapoor A. Tohidian T. Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review. Chem. Eng. Process. 2017 121 24 49 10.1016/j.cep.2017.07.021
    [Google Scholar]
/content/journals/coc/10.2174/0113852728386435250424094028
Loading
/content/journals/coc/10.2174/0113852728386435250424094028
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test